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Topological defects in nematic liquid crystals
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First we describe the equat ions of mot ion, those corresponding to an act ive nematic, that

we use to model the act ive suspension. These are the standard equat ions of liquid crystal

hydrodynamics, writ ten in terms of a tensor order parameter Q, together with an act ive

term which means that any gradient in Q will produce a flow field. Evolut ion of Q along

with the momentum ρu is given by [25, 26],

(∂t + uk∂k)Qi j − Si j = ΓH i j , (4)

ρ(∂t + uk∂k)ui = ∂j Πi j . (5)

Here the generalised advect ion term

Si j = (λE i k + Ωi k)(Qkj + δkj / 3) + (Qi k + δi k / 3)(λEkj − Ωkj )

− 2λ(Qi j + δi j / 3)(Qkl∂kul )

Here, the strain rate tensor, E i j = (∂i uj + ∂j ui )/ 2

and the vort icity tensor, Ωi j = (∂j ui − ∂i uj )/ 2

describe where λ is the alignment parameter. We choose λ = 0.7 corresponding to tumbling

rods [8]. Rotat ional diffusivity is denoted by Γ and the molecular field
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. Here K is the elast ic constant, A, B and C are material constants. The total st ress

generat ing the hydrodynamics has 3 parts;

1. the viscous stress, Πvi scous
i j = 2µE i j
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. Here K is the elast ic constant , A, B and C are material constants. The total stress

generat ing the hydrodynamics has 3 parts;

1. the viscous stress, Πvi scous
i j = 2µE i j
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Active turbulence: bacteria

Dense suspension of microswimmers
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Continuum equations of liquid crystal hydrodynamics
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Continuum equations of liquid crystal hydrodynamics



Continuum equations of liquid crystal hydrodynamics

Tumbling parameter



Continuum equations of liquid crystal hydrodynamics

viscous + passive stress

couples nematic order and shear flows

relaxation to minimum of Landau-de Gennes free energy
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Continuum equations of liquid crystal hydrodynamics
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Continuum equations of active liquid crystal hydrodynamics

viscous + passive + active stress

couples nematic order and shear flows

relaxation to minimum of Landau-de Gennes free energy



Active contribution to the stress

Gradients in the magnitude or direction of the 
order parameter induce flow.

Active stress => active turbulence 

4

Defects move with fluid velocity

we can use the scaling argument given above to write

v ∼ ζ velQ/ µ.

At steady state, the rate of creat ion and rate of destruct ion of a pair of defects are equal.

Hence

If defect velocity ∼ fluid velocity, α ζ
K

= βσζ Qn2

µ
⇒

vel ∼ ζ/ n2K , effect ively vel ∼ K − 1

n ∼
√

K / ζ1/ 4

v ∼ ζK

ω∼ ζ

giving ∼ 1/ n2K . Therefore the relevant length scale characterising the velocity field

is indeed independent of the act ivity. Moreover the dependence of on n and K gives the

data collapse demonstrated in Fig. 4.

At steady state, two characterist ic length scales

(1) for the director field and vort icity n ∼
√

K / ζ1/ 4 - controlled by defect density (2) for

the velocity field vel ∼ ζ/ n2K , effect ively vel ∼ K − 1

ω = ∇ × u

Q = 3q
2

nn − I
3

Π acti ve ∝ nn

Π acti ve = − ζQ

ζ > 0

ζ < 0

Hatwalne, Ramaswamy, 
Rao, Simha, PRL 2004



nematic ordering is unstable to bend instabilities
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Active turbulence

Dense suspension of 
microswimmers
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Modelling active turbulence



Active turbulence: topological defects are created and destroyed
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generat ing the hydrodynamics has 3 parts;

1. the viscous stress, Πvi scous
i j = 2µE i j

2

m =
1

2π dS

dθ (1)

m = +
1

2
(2)

m = −
1

2
(3)

First we describe the equat ions of mot ion, those corresponding to an act ive nematic, that

we use to model the act ive suspension. These are the standard equat ions of liquid crystal

hydrodynamics, writ ten in terms of a tensor order parameter Q, together with an act ive

term which means that any gradient in Q will produce a flow field. Evolut ion of Q along

with the momentum ρu is given by [25, 26],

(∂t + uk∂k)Qi j − Si j = ΓH i j , (4)

ρ(∂t + uk∂k)ui = ∂j Πi j . (5)

Here the generalised advect ion term

Si j = (λE i k + Ωi k)(Qkj + δkj / 3) + (Qi k + δi k / 3)(λEkj − Ωkj )

− 2λ(Qi j + δi j / 3)(Qkl∂kul )

Here, the strain rate tensor, E i j = (∂i uj + ∂j ui )/ 2

and the vort icity tensor, Ωi j = (∂j ui − ∂i uj )/ 2

describe where λ is the alignment parameter. We choose λ = 0.7 corresponding to tumbling

rods [8]. Rotat ional diffusivity is denoted by Γ and the molecular field

H i j = −
δF

δQi j

+
δi j

3
Tr

δF

δQkl

(6)

isermined from the free energy,

F =
K

2
(∂kQi j )

2 +
A

2
Qi j Qj i +

B

3
Qi j Qj kQki +

C

4
(Qi j Qj i )

2 (7)

. Here K is the elast ic constant , A, B and C are material constants. The total stress

generat ing the hydrodynamics has 3 parts;

1. the viscous stress, Πvi scous
i j = 2µE i j



Active turbulence: topological defects are created and destroyed

2

m =
1

2π dS

dθ (1)

m = +
1

2
(2)

m = −
1

2
(3)

First we describe the equat ions of mot ion, those corresponding to an act ive nematic, that

we use to model the act ive suspension. These are the standard equat ions of liquid crystal

hydrodynamics, writ ten in terms of a tensor order parameter Q, together with an act ive

term which means that any gradient in Q will produce a flow field. Evolut ion of Q along

with the momentum ρu is given by [25, 26],

(∂t + uk∂k)Qi j − Si j = ΓH i j , (4)

ρ(∂t + uk∂k)ui = ∂j Πi j . (5)

Here the generalised advect ion term

Si j = (λE i k + Ωi k)(Qkj + δkj / 3) + (Qi k + δi k / 3)(λEkj − Ωkj )

− 2λ(Qi j + δi j / 3)(Qkl∂kul )

Here, the strain rate tensor, E i j = (∂i uj + ∂j ui )/ 2

and the vort icity tensor, Ωi j = (∂j ui − ∂i uj )/ 2

describe where λ is the alignment parameter. We choose λ = 0.7 corresponding to tumbling

rods [8]. Rotat ional diffusivity is denoted by Γ and the molecular field

H i j = −
δF

δQi j

+
δi j

3
Tr

δF

δQkl

(6)

isermined from the free energy,

F =
K

2
(∂kQi j )

2 +
A

2
Qi j Qj i +

B

3
Qi j Qj kQki +

C

4
(Qi j Qj i )

2 (7)

. Here K is the elast ic constant, A, B and C are material constants. The total st ress

generat ing the hydrodynamics has 3 parts;

1. the viscous stress, Πvi scous
i j = 2µE i j

2

m =
1

2π dS

dθ (1)

m = +
1

2
(2)

m = −
1

2
(3)

First we describe the equat ions of mot ion, those corresponding to an act ive nematic, that

we use to model the act ive suspension. These are the standard equat ions of liquid crystal

hydrodynamics, writ ten in terms of a tensor order parameter Q, together with an act ive

term which means that any gradient in Q will produce a flow field. Evolut ion of Q along

with the momentum ρu is given by [25, 26],

(∂t + uk∂k)Qi j − Si j = ΓH i j , (4)

ρ(∂t + uk∂k)ui = ∂j Πi j . (5)

Here the generalised advect ion term

Si j = (λE i k + Ωi k)(Qkj + δkj / 3) + (Qi k + δi k / 3)(λEkj − Ωkj )

− 2λ(Qi j + δi j / 3)(Qkl∂kul )

Here, the strain rate tensor, E i j = (∂i uj + ∂j ui )/ 2

and the vort icity tensor, Ωi j = (∂j ui − ∂i uj )/ 2

describe where λ is the alignment parameter. We choose λ = 0.7 corresponding to tumbling

rods [8]. Rotat ional diffusivity is denoted by Γ and the molecular field

H i j = −
δF

δQi j

+
δi j

3
Tr

δF

δQkl

(6)

isermined from the free energy,

F =
K

2
(∂kQi j )

2 +
A

2
Qi j Qj i +

B

3
Qi j Qj kQki +

C

4
(Qi j Qj i )

2 (7)

. Here K is the elast ic constant , A, B and C are material constants. The total stress

generat ing the hydrodynamics has 3 parts;

1. the viscous stress, Πvi scous
i j = 2µE i j

Topological defects are self motile



Flow fields around defects
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Here, the strain rate tensor, E i j = (∂i uj + ∂j ui )/ 2

and the vort icity tensor, Ωi j = (∂j ui − ∂i uj )/ 2

describe where λ is the alignment parameter. We choose λ = 0.7 corresponding to tumbling

rods [8]. Rotat ional diffusivity is denoted by Γ and the molecular field

H i j = −
δF

δQi j

+
δi j

3
Tr

δF

δQkl

(6)

isermined from the free energy,

F =
K

2
(∂kQi j )

2 +
A

2
Qi j Qj i +

B

3
Qi j Qj kQki +

C

4
(Qi j Qj i )

2 (7)

. Here K is the elast ic constant , A, B and C are material constants. The total stress

generat ing the hydrodynamics has 3 parts;

1. the viscous stress, Πvi scous
i j = 2µE i j
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1. What is active matter and why is it interesting?

2. Background 1:  nematic liquid crystals

3. Background 2: low Reynolds number hydrodynamics

4. Active nematics and active turbulence

5. Self-propelled topological defects

6. Confining active turbulence

7. Bacteria: the hare and the tortoise

8. Eukaryotic cells as an active system
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Why study confined active systems?

To control active turbulence

Many active systems are finite in extent – tissues, 
organoids, tumours

The physics:

Two competing length scales

Motile topological defects



States of an Active Nematic in a Channel

Fig. 5 Enstrophy (a) Channel-averaged enstrophy distribution for a

channel of height h= 35 and Frank coefficient K = 0.4 for different values

of the dimensionless activity number A=
p

zh2/ K. A not yet defined so

moved to (a) (b) Enstrophy peak position as a function of A. Coloured

markers correspond to the distributions shown in (a). add fig 7 in here?

ity49,50. However, confinement truncates the allowable range of

`z and screens interactions on separations > h. Thus, there is

a competition between the activity-induced length scale `z and

the screening length h, as described by the dimensionless activity

number A = h/ `z =
p

zh2/ K.

However, the activity number is not the only control param-

eter that affects the order parameter hei since the + 1/ 2 discli-

nation speed increases linearly with both activity and channel

height (Fig. 2) and, therefore, does not depend directly on A.

In addition to the dimensionless activity number A, we must

account for the self-motility speed of the + 1/ 2 disclinations13

v+ 1/ 2 ⇠hz / h . Increasing self-motility sufficiently is anticipated

to lead to meso-scale turbulence but t The magnitude of the self

motility must be judged against the characteristic velocity scale of

the nematic liquid crystal 51 nQ = `QEQ/ h , where EQ is the char-

acteristic nematic energy density scale (EQ = 0.3; see ESI) and

`Q =
p

K/ EQ is the equilibrium nematic persistence length. The

competition between these two velocity scales defines a charac-

teristic self-motility number V = v+ 1/ 2/ nQ⇠hz /
p

KEQ.

By plotting flow structures as a function of activity number A

and non-dimensionalized disclination speed V, the flow regimes

are well separated into distinct dynamically steady states (Fig. 6).

The non-flowing quiescent state is shown at the lower left and

meso-scale turbulence at the upper right, with unidirectional flow,

oscillating flow and Ceilidh dynamics found between. comment

on initial conditions which aregoing to matter

I think weshould drastically cut down on speculation about what

Fig. 6 Dynamical steady state diagram of flow structures. Flow

regimes as a function of the dimensionless activity number

A= h/ `z =
p

zh2/ K and self-motility number V = v+ 1/ 2/ nQ = A
p

z / EQ

Why thestrange hatched lines?, why call theyellow region turbulent

patches?

Fig. 7 The channel-averaged enstrophy acts as an order parameter

for dynamical transitions between flow states. Activity is increased in

incremental steps of Dz = 2⇥10− 4, from non-flowing to oscillating flow

to Ceilidh dynamics. The linear rise within the oscillating flow state is

subtracted off and the dynamical transition to Ceilidh dynamics is seen

to be continuous with measurable hysteresis. Red symbols denote

increasing activity, whereas blue symbols denote decreasing activity in

increments of Dz = 2⇥10− 4. All other simulation parameters are given

in § 5.

wecan’t do, next para isa minimal suggestion

The region of the phase diagram that we can access in our sim-

ulations is limited by numerical stability and it would be inter-

esting to reach further into the low A, high V and high A, low V

regimes. In particular the form of the phase boundaries suggest

that a direct transition from the stable to the oscillating flow state

might occur at higher self-mobility.

2.4 Lattice defects

As a system-spanning ordered flow state, the Ceilidh dynamics

state itself can possess various irregularities. We refer to these

imperfections in the long-range structure as lattice defects, which

should not be confused with the ± 1/ 2 topological disclinations

that occur in the continuous director field. These lattice defects

arise when the system becomestrapped in astate in which adanc-

ing pair of + 1/ 2 disclinations is separated by other dancing-pairs.

While themajority of irregularities are resolved asthe steady state

1–9 | 5

Voituriez et al
EPL (2005)
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Ceilidh Dance



Vortex lattice and active topological microfluidics



No flow  =>  laminar flow => the Ceilidh dance => active turbulence

Increasing activity  =>

<=  Increasing confinement



Microtubules and kinesin motors in channels

Widths 30 – 400 micronsHardouin et al,  Communications Physics 2 (2019) 



The dancing state in confined microtubule – kinesin mixtures

Distribution of defects across
the channel:

Blue  -1/2

Green  +1/2 





Shear + periodic bursts of defects 

λi

λi

w

w

Distance between defects is 
set by the channel width



Shear + bursts of defects Defect bursts are periodic

Exp Exp Sim Sim

time


