Active Matter 2 Julia Yeomans University of Oxford

- 1. What is active matter and why is it interesting?
- 2. Background 1: low Reynolds number hydrodynamics
- 3. Background 2: nematic liquid crystals
- 4. Active nematics and active turbulence
- 5. Self-propelled topological defects
- 6. Confining active turbulence
- 7. Bacteria: the hare and the tortoise
- 8. Eukaryotic cells as an active system

nematic symmetry

Topological defects in nematic liquid crystals

topological charge
m =
$$\frac{1}{2\pi} \int_{dS} d\theta$$

Active turbulence: bacteria

Dense suspension of microswimmers

Dogic group Brandeis

Active turbulence

Fluorescence Confocal Microscopy

$$(\partial_t + u_k \partial_k) Q_{ij} - S_{ij} = \Gamma H_{ij}$$

$$\left(\partial_t + u_k \partial_k\right) Q_{ij} - S_{ij} = \Gamma H_{ij}$$

$$S_{ij} = (\lambda E_{ik} + \Omega_{ik})(Q_{kj} + \delta_{kj}/3) + (Q_{ik} + \delta_{ik}/3)(\lambda E_{kj} - \Omega_{kj}) - 2\lambda(Q_{ij} + \delta_{ij}/3)(Q_{kl}\partial_k u_l)$$
$$E_{ij} = (\partial_i u_j + \partial_j u_i)/2$$
$$\Omega_{ij} = (\partial_j u_i - \partial_i u_j)/2$$

$$(\partial_t + u_k \partial_k) Q_{ij} - S_{ij} = \Gamma H_{ij}$$

$$\begin{split} S_{ij} &= (\lambda E_{ik} + \Omega_{ik})(Q_{kj} + \delta_{kj}/3) + \\ & (Q_{ik} + \delta_{ik}/3)(\lambda E_{kj} - \Omega_{kj}) - 2\lambda(Q_{ij} + \delta_{ij}/3)(Q_{kl}\partial_k u_l) \\ & E_{ij} = (\partial_i u_j + \partial_j u_i)/2 \\ & \Omega_{ij} = (\partial_j u_i - \partial_i u_j)/2 \end{split}$$

 $H_{ij} = -\delta \mathcal{F}/\delta Q_{ij} + (\delta_{ij}/3) \operatorname{Tr}(\delta \mathcal{F}/\delta Q_{kl})$ $\mathcal{F} = K(\partial_k Q_{ij})^2 / 2 + A Q_{ij} Q_{ji} / 2 + B Q_{ij} Q_{jk} Q_{ki} / 3 + C(Q_{ij} Q_{ji})^2 / 4$

$$\rho(\partial_t + u_k \partial_k) u_i = \partial_j \Pi_{ij}$$

$$\rho(\partial_t + u_k \partial_k) u_i = \partial_j \Pi_{ij}$$

$$\Pi_{ij}^{viscous} = 2\mu E_{ij}$$

$$\rho(\partial_t + u_k \partial_k) u_i = \partial_j \Pi_{ij}$$

$$\Pi_{ij}^{viscous} = 2\mu E_{ij}$$

$$\begin{split} \Pi_{ij}^{passive} &= -P\delta_{ij} + 2\lambda(Q_{ij} + \delta_{ij}/3)(Q_{kl}H_{lk}) - \lambda H_{ik}(Q_{kj} + \delta_{kj}/3) \\ &-\lambda(Q_{ik} + \delta_{ik}/3)H_{kj} - \partial_i Q_{kl}\frac{\delta \mathcal{F}}{\delta \partial_j Q_{lk}} + Q_{ik}H_{kj} - H_{ik}Q_{kj} \end{split}$$

Tumbling parameter

$$(\partial_t + u_k \partial_k) Q_{ij} - S_{ij} = \Gamma H_{ij}$$

couples nematic order and shear flows

relaxation to minimum of Landau-de Gennes free energy

$$\rho(\partial_t + u_k \partial_k) u_i = \partial_j \Pi_{ij}$$

viscous + passive stress

Active turbulence: bacteria

Dense suspension of microswimmers

$$(\partial_t + u_k \partial_k) Q_{ij} - S_{ij} = \Gamma H_{ij}$$
 couples nematic order and shear flows

relaxation to minimum of Landau-de Gennes free energy

$$\rho(\partial_t + u_k \partial_k) u_i = \partial_j \Pi_{ij}$$
 viscous + passive

$$(\partial_t + u_k \partial_k) Q_{ij} - S_{ij} = \Gamma H_{ij}$$
 couples nematic order and shear flows

relaxation to minimum of Landau-de Gennes free energy

$$\rho(\partial_t + u_k \partial_k) u_i = \partial_j \prod_{ij} u_{ij}$$
viscous + passive + active stress
$$\Pi_{ij}^{active} = -\zeta Q_{ij}$$

Active stress => active turbulence

Active contribution to the stress

-ζQ

Gradients in the magnitude or direction of the order parameter induce flow.

Hatwalne, Ramaswamy, Rao, Simha, PRL 2004

nematic ordering is unstable to bend instabilities

Active stress => active turbulence

Active contribution to the stress

Gradients in the magnitude or direction of the order parameter induce flow.

Linear stability analysis => nematic state is unstable to vortical flows

Hatwalne, Ramaswamy, Rao, Simha, PRL 2004 Active stress => active turbulence

Active contribution to the stress

Gradients in the magnitude or direction of the order parameter induce flow.

Linear stability analysis => nematic state is unstable to vortical flows

What happens instead is active turbulence

Hatwalne, Ramaswamy, Rao, Simha, PRL 2004

Active turbulence

Dense suspension of microswimmers

Vorticity field

Modelling active turbulence

Active turbulence: topological defects are created and destroyed

Active turbulence: topological defects are created and destroyed

Flow fields around defects

$$m = +\frac{1}{2}$$

0 0.25 0.5 0.75 1 Average flow speed (Proportion of max)

$$m = -\frac{1}{2}$$

Dogic group, Brandeis

Active turbulence

Fluorescence Confocal Microscopy

Sanchez, Chen, DeCamp, Heymann, Dogic, Nature 2012 L. Giomi, M.J. Bowick, Ma Xu, M.C. Marchetti, PRL 110, 228101

00:00

Instability 1

100 µm

Martínez-Prat et al Nature Physics 15, 362 (2019)

FC Keber et al, Science, 2014

- 1. What is active matter and why is it interesting?
- 2. Background 1: nematic liquid crystals
- 3. Background 2: low Reynolds number hydrodynamics
- 4. Active nematics and active turbulence
- 5. Self-propelled topological defects
- 6. Confining active turbulence
- 7. Bacteria: the hare and the tortoise
- 8. Eukaryotic cells as an active system

Amin Doostmohammadi Tyler Shendruk Kristian Thyssen Sumesh Thampi Santhan Chandragiri Jerome Hardouin Rian Hughes

Justine Laurent Jordi Ignes-Mullol Teresa Lopex-Leon Francesc Sagues Why study confined active systems?

To control active turbulence

Many active systems are finite in extent – tissues, organoids, tumours

The physics:

Two competing length scales

Motile topological defects

States of an Active Nematic in a Channel

States of an Active Nematic in a Channel

Ceilidh Dance

Vortex lattice and active topological microfluidics

No flow => laminar flow => the Ceilidh dance => active turbulence

Increasing activity =>

<= Increasing confinement

Microtubules and kinesin motors in channels

The dancing state in confined microtubule – kinesin mixtures

Distribution of defects across the channel:

Blue -1/2

Green +1/2

Shear + periodic bursts of defects

Distance between defects is set by the channel width

Shear + bursts of defects

Defect bursts are periodic

