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Active matter: takes energy from its surroundings on a single 
particle level and uses it to do work. 
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Fig. 1. Low Reynolds number swimmers: (a) a sperm cell [13], the wavemoving along the

flagellum definesadirection in timeand allowsmotion at zeroReynoldsnumber; (b) E. coli,

an exampleof a pusher, thefar flow circulatesoutwards from thehead and tail and inwards

to the sides; (c) Chlamydomonas, the ‘breast-stroke’ of the flagella leads to a contractile

(puller) far flow which circulates from thesides to thefront and rear; (d) Euglena metaboly,

shape changes of the body result in propulsion; (e) Paramecium, the surface is covered by

beating cilia, thesesynchronise, and metachronal waves in thebeating pattern moveacross

the surface of the organism; (f) a fabricated microswimmer, driven by a rotating magnetic

field [11].

bacteria and algae, and fabricated microswimmers, swim. For such tiny entities the
governing equationsaretheStokesequations, thezero Reynoldsnumber limit of the
Navier-Stokes equations. This implies the well-known Scallop Theorem, that swim-
ming strokesmust benon-invariant under timereversal to allow a net motion, ideas
introduced in Sec. 2. Then, in Sec. 3, wedefinetwo model microswimmersand show
how to calculatetheir swimming speeds.

A concept that we stress in this review is that biological swimmers move au-
tonomously, freefrom any net external forceor torque. Asa result the leading order
term in themultipole (far field) expansion of theStokes equations vanishesand mi-
croswimmers generically have dipolar far flow fields. Sec. 4 is a discussion of the
multipole expansion, and its application to microswimming, and we introduce the
stresslet and rotlet. Then, in Sec 5, wedescribephysical exampleswhere thedipolar
natureof thebacterial flow field hassignificant consequences, velocity statistics in a
dilutebacterial suspensionand tracer di↵usion inaswimmer suspension. A discussion
of open questionsin Sec. 6closesthepaper. Asthisisatutorial reviewwehaveaimed
to citereferenceswhich can beused asentries to theliterature.
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II. METHODOLOGY

A. Immersed Boundary-Lattice Boltzmann Method.
Theswimmer andciliaresideinafluiddomain. Thefluid flow
iscomputed usingthelatticeBoltzmann method,7 which isan
efficient numerical solver for theNavier−Stokesequations.The
sizeof thefluiddomainisLx×Ly×Lz=60×40×60inlattice
Boltzmann units, with periodic boundary conditions in thex
and z directions and no-slip conditions applied on the
boundariesy= 0 and y= Ly. To match thescalesof recently
fabricated synthetic cilia and well-studied swimming micro-
organisms, such asthealgaChlamydomonasreinhardtii, weset
thelatticeBoltzmann grid spacingΔx = 2.5μmand thetime
stepΔt =1μs.Thisyieldsaciliumlengthandswimmer length
of 25 μm and biologically relevant swimmer speeds on the
order of 102−103 μm/s(seebelow).

In our simulation, the upper and lower walls lie 100 μm
apart.Wewill focusonswimmer dynamicsnear thelower wall,
wheretheciliaarelocated.Althoughthewall separation isonly
4timestheswimmer length,weanticipatethat our conclusions
alsoapplyinthecasethat theupper wall isfurther awayor even
absent. Notably, bacterial cell scattering experiments have
suggested that awall hasnegligiblehydrodynamic effect until
the swimmer collides with it, aligning with the wall and
remaining in close proximity.14 Once our model swimmer
reaches the ciliated lower wall, the upper boundary is
sufficiently far away to beinconsequential.

Theflowfieldgeneratedbytheciliaalsopotentiallydepends
on the wall separation. Performing simulations with the wall
separation doubled, however, we found that the flow profile
within the ciliary layer was qualitatively identical. The main
differencewasareduced shear ratein thefluid abovethecilia
(see Figure S1). Since for our analysis we are primarily
interested in thedynamicsof swimmers that reach theciliary
layer, thelocationof theupper wall isnot critical,providedthat
it isat least afewbody lengthsaway fromthelower wall.

TheLBmethod iscoupled to thedynamicsof solid objects
usingtheimmersedboundarymethodasfollows.10Anobject in
thefluidisdefinedbyacollectionof meshnodes.At eachtime
step, internal forces and torques acting on each node are
computed using a constitutive model relating the stresses to
strains within the object. These forces and torques are
transferred to the fluid in accordance with local force and
torquebalance. Theresultingflowfield isthen used to advect
theobject nodes, thereby satisfyingano-slip condition on the
object. Anadditional featurenot present in traditional IBMsis
that nodes have an associated orientation, which is updated
usingthefluid vorticity field.15 Thisisrequired for theelastic
filament model of thecilia(seeSupportingInformation text).

Although this method of advecting immersed boundaries
helps to prevent interpenetration of bodies,15 we reinforce
excluded volume effectsaround objectsby imposing ashort-
rangedrepulsiveforcebetweennodesof swimmersandthoseof
cilia.Theformof thisforcecorrespondstotherepulsivepart of
aMorsepotential interaction

= − − −V r D( ) (1 e )a r rMorse ( ) 20 (1)

wherethemaximal interactionrangeisr0 =1.5Δx.Theprecise
details of the repulsive interaction are not expected to
qualitatively influencetheoutcomesof themodel.

B. Swimmer Model. Theswimmer that wesimulateherein
is based on a theoretical model proposed by Najafi and
Golestanian.16 The body consists of three linked spherical

beadsarranged alongaline. Thelengthsof thelinksbetween
neighboring beads oscillate as illustrated in Figure 1A. The

strokeisnonreciprocal, which isawell-known prerequisitefor
generatinganet displacement fromacyclic sequenceof body
deformationsin thezero-Reynolds-number limit.17 Thismodel
swimmer was chosen because it is one of the simplest that
capturesthefundamental characteristic of self-propulsion in a
viscousfluidand is, asfor manybiological swimmers, attracted
toasurfaceintheabsenceof thecilia. (However, theapproach
described here is sufficiently general that we can introduce
other typesof swimmers, suchasaflagellated organism;18 this
will bethesubject of futurework.)

Inour three-dimensional numerical model, eachbeadof the
swimmer isadvectedwith thelocal flowvelocity. Linear elastic
forces and torques are employed to maintain a swimmer
configuration that is close to rigid and collinear. Using one
immersed boundary node for each bead gives an effective
hydrodynamic radiusR= Δx. Wechoose the link lengths to
oscillate between Lmin

link = 4Δx and Lmax
link = 6Δx so that the

average total swimmer length isLswim = 10Δx = 25 μm. We
investigateswimmerswithtwodifferent strokeperiods,Tswim=
200Δt and 1000Δt. In both cases, we determined the net
displacement after onecycle to beabout 1%of theswimmer
length. This is consistent with the analytical result for the
displacement,Δ, given by Earl et al.:19

ε ε= + ≈R L L L
7

12
[( / ) ( / ) ] 0.009max

link 2
max
link 3 swi

whereε = (Lmax
link − Lmin

link).
Converting to physical units, theaveragespeedsof thefast

and slow swimmers are vswim = 1250 and 250 μm/s,
respectively.Bycomparison,experimentshavefoundswimming
speeds up to 240 μm/s for the 10 μm long C. reinhardtii,20

whilebacteriaandcertainfishlarvaeareknowntoreachrelative
speeds of 50 body lengths per second.21 Our simulated
swimmersarethereforerepresentativeof biological examplesin
terms of speed. For a fluid with the viscosity of water, the
correspondingReynoldsnumbersareRefast =0.03andReslow =
0.006, indicatingthedominanceof viscousover inertial effects.

C. Cilium Model. Each ciliumismodeled asan elastic rod
of length Lcil = 10Δx = 25 μm, discretized into N = 10
segmentsof equal lengths. Therodsegmentsarecharacterized
by position and orientation vectors. Internal mechanicsof the
rod are governed by linear elastic constitutive relations

Figure1. Simulation setup and detailsof theindividual components.
(A) A schematic of theswimming strokecycle for the three-linked-
sphereswimmer. Thedarker sphere indicatestheleadingend of the
swimmer.Onefull cycleleadstoanet displacement of about 1%of the
bodylength. (B) Thesimulationdomaincontainingnineciliaandone
swimmer. (C) A superposition of configurations of a single cilium
showingtheperiodicstrokeinducedbytheexternal drivingforce.This
strokeisanimated in MovieS1.
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Why study active matter:

1. to understand biological systems: biomechanics and self-assembly

2. To create new types of micro-engines

3. As examples of non-equilibrium statistical physics
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Tensor order parameter, Q
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First we describe the equat ions of motion, those corresponding to an act ive nematic, that

we use to model the act ive suspension. These are the standard equat ions of liquid crystal

hydrodynamics, writ ten in terms of a tensor order parameter Q, together with an act ive

term which means that any gradient in Q will produce a flow field. Evolut ion of Q along

with the momentum ρu is given by [? ? ],

(∂t + uk∂k)Qi j − Si j = ΓH i j , (1)

ρ(∂t + uk∂k)ui = ∂j Πi j . (2)

DQ

Dt
− S = ΓH , (3)

ρ
Du

Dt
= ∇ · (Π vi scous + Π passi ve + Π acti ve). (4)

D

Dt
≡ ∂t + u ·∇ (5)

Here the generalised advect ion term

Si j = (λE i k + Ωi k)(Qkj + δkj / 3) + (Qi k + δi k / 3)(λEkj − Ωkj )

− 2λ(Qi j + δi j / 3)(Qkl∂kul )

Si j = (λE i k + Ωi k)(Qkj + δkj / 3) + (Qi k + δi k / 3)(λEkj − Ωkj ) − 2λ(Qi j + δi j / 3)(Qkl∂kul )

(6)

S = (λE + Ω) · (Q +
I

3
) + (Q +

I

3
) · (λE − Ω) − 2λ(Q +

I

3
)(Q : ∇ u) (7)

Here, the strain rate tensor, E i j = (∂i uj + ∂j ui )/ 2

and the vort icity tensor, Ωi j = (∂j ui − ∂i uj )/ 2

describe where λ is the alignment parameter. We choose λ = 0.7 corresponding to tumbling

rods [? ]. Rotat ional diffusivity is denoted by Γ and the molecular field

H i j = −
δF

δQi j

+
δi j

3
Tr

δF

δQkl

(8)

isermined from the free energy,

F =
K

2
(∂kQi j )

2 +
A

2
Qi j Qj i +

B

3
Qi j Qj kQki +

C

4
(Qi j Qj i )

2 (9)

Landau-de Gennes free energy

:

An ‘elastic liquid’



Topological defects in nematic liquid crystals
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generat ing the hydrodynamics has 3 parts;

1. the viscous stress, Πvi scous
i j = 2µE i j

2

topological charge, m =
1

2π dS

dθ (1)

m = +
1

2
(2)

m = −
1

2
(3)

First we describe the equat ions of mot ion, those corresponding to an act ive nemat ic, that

we use to model the act ive suspension. These are the standard equat ions of liquid crystal

hydrodynamics, writ ten in terms of a tensor order parameter Q, together with an act ive

term which means that any gradient in Q will produce a flow field. Evolut ion of Q along

with the momentum ρu is given by [25, 26],

(∂t + uk∂k)Qi j − Si j = ΓH i j , (4)

ρ(∂t + uk∂k)ui = ∂j Πi j . (5)

Here the generalised advect ion term

Si j = (λE i k + Ωi k)(Qkj + δkj / 3) + (Qi k + δi k / 3)(λEkj − Ωkj )

− 2λ(Qi j + δi j / 3)(Qkl∂kul )

Here, the strain rate tensor, E i j = (∂i uj + ∂j ui )/ 2

and the vort icity tensor, Ωi j = (∂j ui − ∂i uj )/ 2

describe where λ is the alignment parameter. We choose λ = 0.7 corresponding to tumbling

rods [8]. Rotat ional diffusivity is denoted by Γ and the molecular field
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. Here K is the elast ic constant , A, B and C are material constants. The total stress
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1. the viscous stress, Πvi scous
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