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Part	0	
	

Presenta(on	of		
Computa(onal	Neuroscience	 

 



Neuroscience:	fast-growing	young	science	

•  Neuron	discovery:		
				1889,	Ramon	y	Cajal	

•  Concept	of	synapse:		
				1897,	Sherrington	

•  1st	“official”	use	of	the	term	neuroscience,	circa	
1965	

•  1st	Society	for	Neuroscience	(SfN)	congress:	1971	
(1100	par(cipants)		

•  50th	SfN	congress:	2019	(~30,000	par(cipants)	
  



Brain:	complex	system	
• ~86	billion	neurons			
• Trillions	of	synapses	



Brain:	many	(interrelated)		
levels	of	organiza(on	Spatial scales of the brain

⇠10cm Whole brain

⇠1cm Brain structure/cortical areas

100µm- 1mm Local network/‘column’/‘module’

10µm- 1mm Neuron

100nm- 1µm Sub-cellular compartments

⇠10nm Channel, receptor, intracellular protein

!
!



Brain:	lots	of	data,	poor	
understanding	

	Types	of	data:		
•  Anatomical:	cell	shapes,	connec(ons	
•  Physiological:	bioelectrical	proper(es	
•  Biochemical:	molecular	processes	
•  Psychological:	behavior	
•  Recent	techniques:	molecular	biology,	imaging,	

optogene(cs,	mathema6cal	and	computa6onal	
modeling	



•  In vitro 

•  In vivo 

•  In silico 



Computa(onal	Neuroscience	

•  Theore(cal	part	of	neuroscience:	also	called	
theore(cal	neuroscience	

•  Objec(ve:	to	determine	and	ar(culate	the	
principles	and	mechanisms	behind	the	
func(oning	of	the	nervous	system	

•  It	is	assumed	that	this	func(oning	involves	
“computa(ons”	

•  Due	to	their	complexity,	most	models	are	
explored	with	the	use	of	computer	simula(ons	



Part	1	
	

Basic	Concepts	 
 



Neuron	
•  The	brain	is	made	of	
isolated	cells	–	neurons	and	
glia	–,	which	are	
structurally,	metabolically	
and	func(onally	
independent.		

•  Neuron	doctrine	(Ramon	y	
Cajal,	1894):	The	neuron	is	
the	basic	func6onal	unit	of	
the	nervous	system	

•  Neurons	are	specialized	for	
intercellular	communica(on			

hgps://en.wikipedia.org/wiki/Neuron	



Structure	of	a	neuron	
•  A	typical	neuron	consists	of	three	
main	parts:	

•  Dendrites:	receive	and	process	
inputs	

•  Soma	(cell	body):	integrates	inputs	
•  Axon:	generates	output	(at	the	
ini(al	segment)	and	transmits	it	to	
target	neurons	

•  The	connec(on	from	an	axon	of	
one	neuron	to	a	dendrite	of	
another	neuron	is	called	a	synapse			

  Inputs



Variability	of	neuronal	structures	

In addition to synapses from axons onto dendrites, there are also synapses 
from axons onto cell bodies (somata) and onto other axons.



Introdução à Neurociência Computacional – Antonio Roque – Aula 2 

 2 

• A principal característica que distingue os neurônios das demais células é que eles 

são especializados para comunicação intercelular. 

• Existem milhares de tipos diferentes de neurônios (veja a figura a seguir).  
 

 
• Alguns neurônios não possuem dendritos, mas outros possuem arborizações 

dendríticas extremamente complexas. Alguns neurônios não possuem axônios, 

mas outros possuem axônios que podem atingir até 1 m de extensão. 

• Do ponto de vista anatômico, os neurônios podem ser diferenciados por tamanho 

e forma. As diferenças em tamanho e forma têm implicações sobre as maneiras 

como os neurônios processam e transmitem informação. 

• Os neurônios não são apenas unidades retransmissoras, isto é, que transmitem a 

mesma informação que recebem. Pelo contrário, um neurônio típico coleta sinais 

de várias fontes, integra e transforma esses sinais gerando complexos sinais de 

saída que são enviados para muitos outros neurônios. 

 

 

 

 
 

More	neuronal	structures	

The functional implications of these different structures are still not clear!



Neural	circuits	and	networks	



Neuronal	Membrane	
•  Thin	membrane	(60-70	Å)	that	separates	the	
cytoplasm	from	the	extracellular	space		

• Made	of	a	lipid	bilayer	in	which	proteins	are	
immersed	

•  Some	proteins	cross	the	membrane	forming	ion	
channels	

hgp://what-when-how.com/neuroscience/electrophysiology-of-neurons-the-neuron-part-1/	



Ion	channels	
• Membrane	proteins	may	undergo	
conforma(onal	changes	under	electrical	and	
chemical	control,	thus	regula(ng	ionic	flux		

•  The	figure	below	illustrates	a	channel	opening	
due	to	a	protein-ligand	binding	

Open	channel	
Closed	channel	



Membrane	poten(al	
•  There	is	a	difference	of	electrical	poten(al	
between	the	two	sides	of	the	neuronal	
membrane	

•  Defining	the	zero	of	poten(al	at	the	outside	
the	inside	is,	in	general,	at	a	poten(al	of		–50	
to	–90	mV	

Microelectrode	filled	
with	a	saline	solu(on	

Axon	 Axon	



Ionic	concentra(ons	
•  Ion	concentra(ons	
are	different	on	the	
two	sides	of	the	
neuronal	membrane	

Ion In (mM) Out (mM) 

Frog muscle (20°C) 

K+ 124 2,25 

Na+ 10,4 109 

Cl- 1,5 77,5 

Ca2+ 10-4 2,1 

Squid giant axon (20°C) 

K+ 400 20 

Na+ 50 440 

Cl- 40-150 560 

Ca2+ 10-4 10 

Typical mammalian cell 

(37°C) 

K+ 140 5 

Na+ 5-15 145 

Cl- 4 110 

Ca2+ 10-4 2,5 - 5 

Inside	

Outside	



Origin	of	the	membrane	poten(al	

•  Nernst	poten(al	

E = RT
zF
ln [C]out
[C]in

Inside (mM) Outside (mM) Equilibrium protential (Nernst) 

K+ 400 20 -75 mV 

Na+ 50 440 +55 mV 

Cl- 40-150 560 -66 a -33 mV 

Ca2+ 10-4 10 +145 mV 

A- (organic 

ions) 

385 — — 

Squid	giant	axon	at	20oC	



Mul(-ion	equilibrium	

Goldman-Hodgkin-Katz	
equa(on	

PX	=	permeability	of	ion	X	

Squid	giant	axon	at	20oC	

(PNa/PK)	=	0.03;	(PCl/PK)	=	0.1	à	V	=	−70	mV				



Depolariza(on	and	hyperpolariza(on	

Graded	varia(on	 Ac(on	poten(al	



Ac(on	poten(al	(spike)	
•  Shape	(width	and	amplitude)	characteris(c	of	each	
neuron	

•  Threshold	phenomenon	(all	or	none)	
•  Propagates	unchanged	along	the	axon	while	
subthreshold	voltage	fluctua(ons	are	strongly	agenuated	

hgps://commons.wikimedia.org/wiki/
File:Ac(on_poten(al.svg#/media/
File:Ac(on_poten(al.svg	



Refractory	periods	
•  Absolute:	period	during	which	a	second	s(mulus	(no	

mager	how	strong)	will	not	lead	to	a	second	spike.	It	is	
as	if	the	spike	threshold	were	infinite			

•  Rela6ve:	period	during	which	a	second	spike	can	be	
generated	by	a	second	s(mulus	stronger	than	the	first.	
The	strength	of	the	second	s(mulus	decays	with	(me		



Chemical	transmission	across	synapses	
•  The	spike	propagates	down	the	

axon	of	presynap(c	neuron	to	
synap(c	boutons	that	make	
contact	with	postsynap(c	neurons.			

•  When	the	spike	arrives	at	the	
synapse,	a	neurotransmiger	
substance	is	released	from	stored	
vesicles.	

•  The	neurotransmiger	diffuses	
across	the	synap(c	cleU	and	binds	
to	receptor	proteins	on	the	
postsynap(c	membrane.	

•  Many	neurotransmiger	receptors	
are	ion	channels.	Binding	of	
neurotransmiger	opens	them	and	
results	in	an	inward	or	outward	
flow	of	ions.	This	generates	a	
postsynap(c	poten(al	(PSP)	in	the	
postsynap(c	neuron.	



Postsynap(c	poten(als	

EPSP:	excitatory	postsynap(c	
poten(al	
IPSP:	inhibitory	postsynap(c	
poten(al	

•  The postsynaptic potentials 
(PSPs) spread along the 
dendrites towards the soma 
and axon hillock where they 
can result in firing of an action 
potential.

•  PSPs can be excitatory 
(EPSPs, increase the 
probability of firing) or 
inhibitory (IPSPs, decrease 
it). 

•  The summation of a number 
of EPSPs is necessary to 
generate an action potential. 



Neuronal	firing	pagerns	
Different types of neurons fire different patterns of action potentials in 
response to synaptic input and application of electrical current. 

How are these firing patterns used to transmit information? 



Neural	coding	
Spike trains can be used to represent information by the mean rate of spikes (rate 
coding), the timing of spikes (temporal coding), and the synchrony of spikes 
(correlation code).  
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Examples	of	rate	coding	

Skin	pressure	receptor	

Orienta(on-selec(ve	
cells	in	visual	cortex	

Movement	
direc(on	cells	in	
the	cerebellum		



Examples	of	temporal	coding	

Echoloca(on	in	bats	

Binaural	sound	localiza(on		



Example	of	correla(on	coding	

The	binding	problem		



Mechanisms:	lateral	inhibi(on	
Lateral	inhibi(on	can	be	implemented	by	feed-forward	or	feedback	circuits.	

	 																				feed-forward		 		 																											feedback			

excita(on	

inhibi(on	

flow
	of	inform

a(on	



Lateral	inhibi(on	in	the	Limulus	eye	

Limulus	(horseshoe	crab)	eye	is	
made	of	omma(dia	that	can	be		

s(mulated	independently:	
experiments	by	Ratliff	&	Hartline	

(1956)	

feed-forward	 feedback	

Ratliff	and	Hartline	observed	increase	in	ac(vity	of	A	
when	the	third	omma(dium	(C)	was	s(mulated.	
	
This	indicated	that	lateral	inhibi(on	is	implemented	by		
a	feedback	circuit.			



Mechanisms:	oscilla(ons	

Oscillatory activity in neural populations 
is a ubiquitous phenomenon in the brain. 

rate, with coupling strengths that vary between neurons. The underly-
ing model is parsimonious, requiring only order n parameters to pre-
dict order n2 pairwise correlations. Moreover, the model is intuitive,
involving procedures among the simplest in neuroscience—summing
the activity of multiple neurons, and correlating the spike train of each
neuron with the result. To assess whether more advanced procedures
would yield different results, we used a variant of latent variable ana-
lysis designed for discrete spike count data4,21 to obtain the weights of

individual neurons to the first detected factor. Reassuringly, these weights
were highly correlated with population coupling (Extended Data Fig. 5a);
latent variable analysis found the same basic structure as our simple
coupling model.

The ability of the model to predict correlations may appear surprising
given that it operates without knowledge of the neurons’ sensory tuning.
In primary sensory areas, neurons with similar sensory selectivity show
stronger stimulus-independent correlations1,3,5,22, and we observed a
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Figure 2 | A simple model based on population coupling predicts the
structure of pairwise correlations in a cortical population. a, The model
generates random spike patterns subject to three constraints: that the
population coupling of each neuron, the mean firing rate of each neuron, and
the distribution of the population rate must match those in the original data.
b, Random activity generated by the model produces pairwise correlations that
are similar to those measured in the original spike trains (n 5 67 units in
one experiment; correlations computed in 20-ms bins). The upper triangle
shows observed pairwise correlations, and the lower one shows pairwise
correlations predicted by the model. Neurons are arranged in order of
population coupling. The values on the diagonal (all 1s) have been removed.
Similarity of observed and predicted correlations is indicated by the symmetry
of the upper and lower triangles. c, Percentage of explainable correlation
structure predicted, as a function of the variability of population rate (filled
symbols, see Methods). The model captures pairwise correlations, but only in

experiments in which the population rate fluctuates. It cannot predict them
when population rate is mostly constant (a highly desynchronized cortical
state). Recordings were obtained from mouse V1 in wakefulness (diamonds)
or under anaesthesia (circles), or from A1 of awake rat (squares), all
spontaneous activity; note that a variety of states is observed in all conditions.
Open symbols show predictions of a model that ignores population coupling.
The example experiment in b is shown in red. d, Same as b for predictions
made without using population coupling. Such predictions fail to capture the
structure of pairwise correlations (open markers in c). e, The model cannot
predict a relationship between similarity of preferred orientation and
spontaneous pairwise correlations (P 5 0.15, Pearson correlation). f, As a
result, this correlation is retained in the residual pairwise correlations obtained
by subtracting the modelled from actual correlations (r 5 0.26, P , 1023,
Pearson correlation), indicating that the predictions of coupling and
orientation sum linearly. The black line in f shows regression on cos 2Dhð Þ.
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Figure 1 | Neighbouring neurons differ markedly in population coupling
during spontaneous activity. a, Schematic of a single shank of silicon
electrode array, and spike waveforms of four example wide-spiking neighbour
neurons measured with the array in deep layers of V1 of an awake mouse.
b, Population raster of spontaneous activity in 66 neurons recorded from the
whole array. Cells are arranged vertically in order of population coupling.
Arrows indicate the four example neurons shown in a. c, Population rate
measured by summing all the spikes detected on the entire array. d, LFP
measured on a shank adjacent to that on which the example neurons were
recorded (LFP waveforms were similar across shanks). e, Spike-triggered
population rate (stPR) for the four example neurons. The spike train of each

neuron was excluded from the population rate before computing its stPR.
f, The spike-triggered local field potential (stLFP) for the four example cells
(inverted for ease of comparison) resembles their stPR (shown in e). Inset,
normalized magnitudes of stPR and stLFP (see Methods) are highly correlated
across cells (r 5 20.71, P , 102100, rank correlation, n 5 431 neurons).
g, Differences in population coupling disappear after shuffling spikes in a
manner that preserves each neuron’s mean firing rate and the population rate.
Inset, population couplings in the actual spike trains (red) and after shuffling
(grey), for neurons from all experiments. h, stPR of four example neurons
simultaneously recorded in primate area V4, computed as in e.
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Synap(c	Plas(city	
•  Generic	name	given	to	
any	type	of	change	
(strengthening	or	
weakening)	in	the	
efficacy	of	a	synapse	

•  Synap(c	plas(city	can	
be	of	short	or	long	
dura(on	

•  Hypothe(cal	mechanism	
underlying	memory	
forma(on	and	learning	

hgps://qbi.uq.edu.au/brain-basics/brain/
brain-physiology/long-term-synap(c-plas(city	



Hebbian	plas(city	
Donald Hebb 



Hebbian	plas(city	



Hebbian	plas(city	



Hebbian	plas(city	



Hebbian	plas(city	
	



Hebbian	plas(city	



Hebbian	plas(city	

Neurons	that	fire	together		
wire	together	



	

Mechanisms:		
Hebbian	plas(city	to	model	

associa6ve	learning	































Components	of	a	computa(onal	
neuroscience	model	

Emergent	network	ac(vity	

Plas(city	

Model	=		structure				+			dynamics	
																			(anatomy)						(ac(vity)	



3D	representa(on	of	a	network	model	



Modeling level 

Simplified Detailed 

Detailed	models	
with	many	

variables	and	
parameters	

Simple models 
with few variables 
and parameters 

Microscopic		
(ion	channels,		
synapses)	

Mesoscopic		
(neurons,		
networks)	

Macroscopic		
(brain	regions,	
whole	brain)	


