Part 2

Single neuron models



The membrane equation (passive)
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What to model in a neuron model?

-  Morphology (shape, axonal target, smooth or spiny);
- Electrophysiology (spike shape, pattern of spike train);
- Neurochemistry (neurotransmitter released at synapses);
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Neuron model

Deterministic vs. Stochastic

Firing rate vs. Spiking
High-dimensional vs. Low dimensional
More vs. Less biologically faithful



Why stochastic neuron models?

* In vivo and in vitro recordings of single neuron
spike trains are characterized by a high degree
of variability

* The following examples are taken from the
book by Gerstner, Kistler, Naud and Paninski,
Neuronal Dynamics, CUP, 2014



Spontaneous activity in vivo

Awake mouse, cortex, freely whisking
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Trial to trial variability in vivo

15 repetitions of the same random dot motion pattern
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Trial to trial variability in vitro

4 repetitions of the same time-dependent stimulus
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Modified from Naud and Gerstner, 2012



Sources of noise:
extrinsic and intrinsic to neurons
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Two types of noise model for a neuron

* Spike generation is directly modeled as a
stochastic process

* Spike generation and synaptic
transmission are modeled
deterministically and noise enters the
dynamics via additional stochastic terms



Spiking vs. firing rate

Spiking model Firing rate model
Output of neuron
firing /

Output of neuron rate A
/ time

Membrane
potential

Membrane
potential



The firing rate neuron

Inputs Internal variable called f
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Comments

* Firing rate models are among the earliest
forms of neuron modeling (late 1930s)

* They are the default neuron model used by
Artificial Neural Networks (ANNSs)

* |n brain modeling, firing rate models are
supposed to mimic not single cells but the
“average” firing behavior of cell populations



Population rate model

e Suppose a population of neurons so close together
that they can be considered as ‘equivalent’, i.e. they
have similar properties and connectivity and receive
the same input. Due to noise, which is assumed to be
independent for each neuron, their response to the
input can be different.

* The firing rate, or activity A(t), of the population is

given by

is the number of spikes of the population
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* Assume there are many groups of neurons. Each group
i contains a large number of neurons and is described
by its activity A(t).

 The interaction between the different groups can be
modeled by

4, =f(2‘]jiAi
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where A; is the population activity of group j which
receives input from other groups i
* In this equation, J; are no longer the weights of

synapses between two neurons but an effective
interaction strength between two groups of neurons.



Model dimension

* The dimension of a model is the number of
variables used by the model: 1, 2, 3, 4, etc

* |n general, the higher the number of
dimensions of a model, the more difficult to
understand its behavior

* Each variable has an equation associated to it,
so high dimensional models are more
computationally expensive



Criteria for biological faithfulness

* Explicitness: model variables can be mapped
to measured quantities;

* Number of details included: dendritic
morphologies, ionic channel types,
inhomogeneities in ion channel distributions,
intracellular and biochemical mechanisms
(calcium buffering, diffusion, second
messengers pathways), extracellular potential

* How is a spike generated? By hand or
naturally from the equations



e 4D, single compartment, explicit (based on ionic
conductances), spikes naturally generated
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Hodgkin-Huxley (1949) demonstrated that:

e Atrest, the conductance of the membrane of a squid
axon to K* is 25 times higher than its conductance to
Na*: G >> Gy;

* At the peak of an action potential, the membrane

conductance to Na* is 20 times higher than its
conductance to K*: Gy >> G,

* During the after-hyperpolarization period, the
membrane conductance to Na* is very low and its
conductance to K* is larger than at rest: G,=0 and

G, >G

K_rest



HH explained the action potential
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Hodgkin-Huxley model

Mathematical fitting of experimental conductances
(measured during voltage clamp conditions)

=)
T TToT

K conductance (mmhofem®)

01 23 4567 8 9100
t (msec)
K* conductance: persistent
r=4,s=0

Do not inactivate

Ix =Gxp(V — Ex)

G,: maximal conductance;

p: fraction of G, attained at a
given moment;

E,: Nernst potential if ion X.

p:mrhs

m: activation variable (grows
from 0 to 1 with increase of
V);

h: inactivation variable
(decreases from 1 to 0 with
increase of V)

SOSUIM SoM 22arnce (NS o2}

38

32 -

;vg 1.0

;0 < — 3
8ﬁ¢;-" 7 s .‘B'
e hededeaded L1 |
0123458780941

ms

Na* conductance: transient

r=3,s=1

Inactivate



Depolarization

B Repolarization
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Hodgkin-Huxley formalism

lipid bilayer
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Comment RN

e Hodgkin and Huxley (1952) developed their
model to describe action potential generation
in the squid giant axon

* |tis hugely different from mammalian cortical
neurons

e Butionic currents in cortical neurons can be
described in a similar way, hence “Hodgkin-
Huxley-type models”



The zoo of ion channels

Fast Na (l,): transient; action potential generation

Slow Na (lI.p): slowly inactivating (persistent); keeps neurons
depolarized (facilitating bursts)

Delayed rectifier K (1, ): persistent; action potential termination
A current (1,): transient K current; creates spike delays
M current (l,,): slow persistent K current; causes spike rate adaptation

Inward rectifier (I, ): activated by hyperpolarization; keeps resting
potential near E
Ca dependent K channels (I or |,,,5): persistent; depend on [Ca?*];

responsible for afterhyperpolarizations (AHPs), spike frequency
adaptation and bursting

Calcium channels (I.,; and |, ): transient and persistent; responsible
for bursts and subthreshold voltage oscillations

h current (I, ): slow; activated by hyperpolarization; mixture of Na and
K ions; rhythmic firing and slow repolarization after hyperpolarizing



Detailed compartmental models

* D=g(m+1); g = number of compartments; m = number
of conductances

e Used mostly for single-neuron modeling (but the
advent of fast computers is changing that)

A. Characterized Neuron
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Model of a cerebellar Purkinje cell (De Schutter
and Bower, 1994): 4550 compartments.



Comment

* The addition of more and more compartments
to a neuron model seems to be a good strategy
to get closer to the “real thing”.

* However, increased complexity not necessarily
always lead to better models:

— Each new compartment requires the modeler to
decide which conductances to put in it and with
what parameters, and there are few cases in which
these are known (so the modeler has to “guess”).

— As the number of parameters increase so does the

number of parameter combinations that produce
similar behavior (how unique is a model?).



Reduced compartmental models

e Few compartments (e.g. ball-and-stick model)

e Used in “realistic” network models
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Remove h
Remove n and Leak

Reduced HH models

Hodgkin-Huxley
Transient Na Current (m,h)

Persistent K Current (n)
Leak Current

Leak Current

Transient Na Current (m,h)

Persistent Na Current (m)
Persistent K Current (n)

Minimal Models /\

Izhikevich (2007)

h m n

Gating for Gating for Gating for

Inactivation Activation Activation

of Na Current of Na Current of K Current
Leak Current Gating variables

Single compartment models
with only 2 or 3 variables
(one being V)

Can replicate a number of
properties of the HH model,
including the genesis of an
action potential

Can be analyzed in the phase
plane using dynamical
systems tools: equilibrium
points, limit cycles,
bifurcations



Example of reduced HH model:
V and n (fast and slow variables)
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Fitzhugh-Nagumo Model

2-D system that has the same qualitative characteristics of the fast-slow phase plane
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Simple spiking neuron models

1D or 2D, non-HH type models (not explicit)
Emphasis on neuronal response (spike trains)
Spikes generated by hand

Examples:

— Leaky integrate-and-fire (LIF) model (Lapicque 1907)
— Non-linear LIF models (quadratic, exponential)

— lzhikevich model

— Adaptive exponential integrate-and-fire (AdEx) model



The LIF model —
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Dynamics of the LIF model

] dVv
Rescaling TE=—(V—Vrest)+R'l :
V-V . RI )
ys—" . j= ct=tlTt=
‘/th _‘/rest ‘/th T Vrest
dv :
dt

with threshold atv=1
Stable fixed pointatv =i

For i< 1the membrane potential goes to the
fixed point and stays there (no spikes)

Fori>1the membrane potential gets to the
threshold and a spike occurs

After the spike the membrane potential is reset
to 0 and the process starts again

The neuron keeps firing regularly while the
above threshold stimulus is on




Non-linear I&F models

Extensions of the LIF model given by
dv ,
T—=0¢(Vv)+i
=00
with
p(v) = a(v — b)2 (quadratic IF model, QIF)
¢(v)=—-v+ae’” (exponential IF model, EIF)

The black dot in the top graph is a stable fixed point
and the white dot is an unstable fixed point

The voltage value of the white dot is the critical
voltage for spike initiation by a short current pulse

The bottom graph shows the case for a constant
super-threshold current: the result is repetitive
firing

Notice that a strong inhibitory current can push the
curve below the dv/dt = 0 line and disrupt the A
repetitive firing



LIF with adaptive variable

Firing rate adaptation
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Izhikevich and AdEx models

www.izhikevich.com
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Neuron models:
detailed vs. simplified

Conductance-based (HH) and compartmental models are
useful to study single neurons:

— Propagation of membrane potentials along the dendritic tree

— Pharmacological manipulations

— Functional properties of single neurons

But to model neural networks it is necessary to know/
estimate parameters for all neurons, a phenomenal task

IF model and its variants are too simple to be used as
biophysical neuron models

But are useful for the construction of large-scale network
models and study:

— Spiking activity patterns in networks

— Functional properties of networks or network parts



Part 3

Synaptic models



Purpose of synaptic modeling

* To capture the following facts:

1. Some neurons have stronger and more lasting
influences over a given neuron than others

2. Some of these influences are excitatory (increase
the likelihood of spike emission) while some are
inhibitory (decrease this likelihood)

3. The strength of the influence of a neuron over
another one changes over time as a function of
the activities of both neurons (synaptic plasticity)



Types of synapses

a Chemical synapse b Electrical synapse
Action
potential
Ca™*
Presynaptic @ Action_
terminal 0 potential
Synaptic
vesicle
. Gap junction
&Neurotransmntter channel
) o
lonotropic ° . Metabotropic

regepter receptor

Membrane Gene
potential lexpression)
Postsynaptic/ '\ [Biochemical| _‘
dag cascades
terminal B cascades |

Nature Reviews | Neuroscience

Pereda, 2014



Types of synapses

Electrical

2 neurons linked together
by gap junctions
Rapid communication

Bidirectional
communication

Excitation/inhibition at the
same synapse

Occur between neurons
and glia

Chemical
Signal transduction
Excitatory or inhibitory
Slower communication

Unidirectional
communication

More plastic



Electrical synapse

(A) Presynaptic (B)

cell membrane

\\\\\

Membrane potential (mV)

Ne

dy
Postsynaptic
cell membrane

Pores connecting
cyvtoplasm of two
neurons

Brief (~0.1 ms)

synaptic delay

Neuroscience. 2nd edition. 0 ! 5 3

Time (ms)

Purves D, Augustine GJ, Fitzpatrick D, et al., editors.
Sunderland (MA): Sinauer Associates, 2001
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T

iExtracellular Extracellular

V, =kV,

IGJ =GGJ (V1 _Vz)

An action potential in the
presynaptic neuron causes the
postsynaptic neuron to be
depolarized within a fraction of
millisecond

Gap junction coupling can be
modeled by a single resistance
connecting the 2 cells (see
equivalent circuit to the left).

The corresponding equations are
given below the figure. The cell-cell
coupling coefficient is k and the
transjunctional current is [



Chemical synapse (generic steps)

Presynaptic neuron

Ligand-gated e opan

channel closed

Postsynaptic neuron

OPostsynaptic—)ONerve impulse
potential



Chemical Synapses

Excitatory or inhibitory
lonotropic (fast) and metabotropic (slow)

Many neurotransmitters, but the most common
in the cortex are:

— Glutamate (usually excitatory)

— y-aminobutyric acid (GABA) (usually inhibitory)
Dynamics depends on receptor type:

— Glutamate receptors: AMPA/Kainate and NMDA
— GABA receptors: GABA, and GABA,

Short-term and long-term synaptic plasticity



Postsynaptic potentials

* Excitatory postsynaptic Synapric

potential

potential (EPSP): Transient e, O ere Psps
depolarization of the N
postsynaptic membrane by ™
presynaptic release of
neurotransmitter

Inhibitory postsynaptic

potential (IPSP): Transient
hyperpolarization of the
postsynaptic membrane by

presynaptic release of
neurotransmitter
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Postsynaptic potentials summation

| c
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Temporal summation:
(spikes from the same cell
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lonotropic and Metabotropic Synapes
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Synaptic receptors

Glutamate GABA
* lonotropic * lonotropic
— AMPA/Kainate: early — GABA,
EPSP

 Metabotropic

— NMDA: activated — GABA,

when cell is already

depolarized (late
EPSP)



Synaptic models

There are many models, the most common in
network models assumes a synaptic current

Isyn = g(t)(vpost - Vrev)

V.., = =75 mv (inhibitory synapses) and V., =0

ev

(excitatory synapses)

g(t) = synaptic conductance of postsynaptic cell

Synaptic delays can
also be introduced

J L etector

Ax
del

hhhhhhhhh
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Synaptic conductance

 The time course of g(t) can be modeled by
kinetic equations but in general fixed time
course functions are used
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Fixed functions used to model g(t)
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Synaptic inputs in the LIF model

(also valid for other IF models)

e Current-based model: Each presynaptic spike
generates a postsynaptic current pulse in

neuron /
dV

— —V; + RI}V"(t

Fixed function
/
syn
Z wiy Z

. tj(f) are the spike times of presynaptic neuron j

* w; is the synaptic efficacy (weight) of the
synapse from neuron j to neuron i



Synaptic inputs in the LIF model

(also valid for other IF models)

Conductance-based model: Each presynaptic
spike generates a change in the conductance
of the postsynaptic membrane with time
course g(t - t )
dV;
dt

I Z Wy Z (t — tg-f)) (Vi(t) = View)

= -V, + R’ ()




Short-term plasticity
M ° MF:equenc‘YDepeim e Synaptic conductance given by

o
1

< '
S UL L i ' Y= 9D 7
e . 2 & l" g gp
Above. Facilitation of excitatory £ & o 1)
cortical synapse in a slice of rat g + S * p, = probability that a postsynaptic
somatosensory cortex. Right.  * z channel opens given that a transmitter
Frequency dependency of o 20 4 e s s  Was released by presynaptic neuron -
il 4 H Presynaptic Frequency (Hz) .
facilitation and depression. yospic Freuency modeled by an a function
Markran et al., 1998. o , )
* P, = probability that a transmitter is
N — R released by presynaptic neuron following
30k | gl | the arrival of an action potential
— — . is affected by synaptic facilitation and
o 20F 0 20 Prel . y synap
2 L2 depression
= 1()”!'! Qmﬂ . y
LI | A L J
L | 1 . p [ _
o — 0 | - Tpd_;e_po_prel+fF(1_prel)26(t_tj)
0 100 200 300 400 500 0 100 200 300 400 500 J

t [ms] t [ms] dp

Simulation of facilitation (left) and depression (right): Tp dt =Po = Pra— porelzé(t B tj)
sequence of 4 presynaptic spikes followed by a 5th J
spike 400 ms after (Gerstner & Kistler, 2002)




Activity-dependent synaptic plasticity

* Widely believed as the basic phenomenon

underlying learning and memory

 Hebb (1949): if input from neuron A often

contributes to the firing of neuron B, t

nen the

synapse from A to B should be strengt

nened

 More recently, Hebb’s suggestion has

peen

generalized to include decreases in strength
arising from repeated failure of neuron A to
be involved in the activation of neuron B
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LTP and LTD

Very complicated mechanisms
not completely understood

caZ+
Na*
)l( vDCC
A VDCC g iy
az S— ’ > Ca
c +
P g
Axon Trk Dendrite
A == ERK/AKT/nNOS Gene expression  Nucleus

—

expression
— mBDNF CREB, NF-xB, AP-1

l it | Q CaMK N Tran::{:tion

Cell survival Kinases/q\—\"— el nd
Plasticity Phosphatase '
Adaptive stress responses ' s

Ds----. -
TrkB -
sONF Cell survival
Plasticity K

Adaptive stress responses
TRENDS in Endocrinology & Metabolism




The generic mechanism of synaptic plasticity should be like this

The synapse is

. Axon Synapse Dendrite More
stimulated

receptors

Axon

More neuro-
transmitters

Now thereis a
stronger link



Synaptic plasticity and memory

 Morris (1986) showed that LTP was necessary
for the formation of memories in vivo.

* Animals where the NMDA
receptors were blocked were
unable to learn the position of
the platforms where they could
stand without swimming.

* |n vitro analysis showed that
LTP was indeed blocked.

 Tonegawa (1996) showed that
genetically altered mice with
impaired NMDA receptors
showed poor spatial navigation
capabilities.



Hebbian plasticity

 Mechanism of synaptic weight change

proposed by Hebb in 1949 to 6 J

implement formation of cell assemblies

Apple Banana
and lea rning Assembly / Assembly
* The weight of the synapse between two .>"5.;‘~\9 ~9. ©
neurons grows whenever their firing %:'_"’Io?é),'°z ;j: -
activity is correlated: neurons that fire é_;é‘/;",? 05 # O . 0- Inactive
together wire together %0 0 o0
* Spike-timing dependent plasticity  pre [I
(STDP): experimental protocol of \l W, I
synaptic plasticity induction discovered v
by Markram in 1995. Causal version of . 1 :
Hebb’s rule: the spike of pre-synaptic KR LTP_ A
neuron must precede the spike of post- 0 =t , g
synaptic neuron for their weight to 051 Lib
0 0 40 -t

increase, otherwise the weight
decreases el pus



Models of long-term plasticity

an S8 SO (Voo = Vi)

 Changesin £ (maximal synaptic conductance) to
model incorporation or removal of channels

* Implemented by hand or through a learning rule
(e.g. Hebb’s rule)

* The time-scale of changes in £ is much slower
than the one of membrane potential dynamics



Hebbian rule for rate-based neurons

Change in ith synaptic
weight (Hebb’s rule)

_ B = learning rate;
Presynaptlc neurons S = activity of postsynaptic
neuron;
x; = activity of ith presynaptic
neuron



BCM model

 Bienenstock, Cooperand * X: presynaptic activity;
Munro (1981) introduced , .. -
a unified framework to y: postsynaptic

treat potentiation and activity;
depression. * w = synaptic weight
* The BCM model . dw/dt = d(y)x - ew

incorporates a sliding
threshold that separates
potentiation from
depression.

* |t can be proved that
under some conditions it

can be derived from
STDP.




