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What	to	model	in	a	neuron	model?		
-  Morphology	(shape,	axonal	target,	smooth	or	spiny);	
-  Electrophysiology	(spike	shape,	paEern	of	spike	train);	
-  Neurochemistry	(neurotransmiEer	released	at	synapses);	
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Fig. 2. Known types of neurons correspond to different values of the parameters , , , in the model described by the (1), (2). RS, IB, and CH are cortical
excitatory neurons. FS and LTS are cortical inhibitory interneurons. Each inset shows a voltage response of the model neuron to a step of dc-current
(bottom). Time resolution is 0.1 ms. This figure is reproduced with permission from www.izhikevich.com. (Electronic version of the figure and reproduction
permissions are freely available at www.izhikevich.com.)

• The parameter describes after-spike reset of the recovery vari-
able caused by slow high-threshold and conductances.
A typical value is .

Various choices of the parameters result in various intrinsic firing pat-
terns, including those exhibited by the known types of neocortical [1],
[3], [4] and thalamic neurons as summarized in Fig. 2. A possible exten-
sion of the model (1), (2) is to treat , and as vectors, and use
instead of in the voltage (1). This accounts for slow conductances
with multiple time scales, but we find such an extension unnecessarily
for cortical neurons.

III. DIFFERENT TYPES OF DYNAMICS

Neocortical neurons in the mammalian brain can be classified into
several types according to the pattern of spiking and bursting seen in
intracellular recordings. All excitatory cortical cells are divided into the
following four classes [1], [3]:
• RS (regular spiking) neurons are the most typical neurons in the
cortex. When presented with a prolonged stimulus (injected step
of dc-current in Fig. 2RS, bottom) the neurons fire a few spikes
with short interspike period and then the period increases. This is
called the spike frequency adaptation. Increasing the strength of
the injected dc-current increases the interspike frequency, though
it never becomes too fast because of large spike-afterhyperpolar-
izations. In the model, this corresponds to (deep
voltage reset) and (large after-spike jump of ).

• IB (intrinsically bursting) neurons fire a stereotypical burst of
spikes followed by repetitive single spikes (Fig. 2IB). In the
model, this corresponds to (high voltage reset)
and (large after-spike jump of ). During the initial burst,
variable builds up and eventually switches the dynamics from
bursting to spiking.

• CH (chattering) neurons can fire stereotypical bursts of closely
spaced spikes. The inter-burst frequency can be as high as 40 Hz.
In the model, this corresponds to (very high voltage
reset) and (moderate after-spike jump of ).

All inhibitory cortical cells are divided into the following two classes
[4]:
• FS (fast spiking) neurons can fire periodic trains of action poten-
tials with extremely high frequency practically without any adap-
tation (slowing down), as one can see in Fig. 2FS. In the model,
this corresponds to (fast recovery).

• LTS (low-threshold spiking) neurons can also fire high-frequency
trains of action potentials (Fig. 2LTS), but with a noticeable spike
frequency adaptation. These neurons have low firing thresholds,
which is accounted for by in the model. To achieve a
better quantitative fit with real LTS neurons, other parameters of
the model need to be changed as well.

In addition, our model can easily reproduce behavior of thalamo-cor-
tical neurons, which provide the major input to the cortex
• TC (thalamo-cortical) neurons have two firing regimes: When
at rest ( is around 60 mV) and then depolarized, they exhibit



Neuron	model	

•  Determinis/c	vs.	Stochas/c	
•  Firing	rate	vs.	Spiking	
•  High-dimensional	vs.	Low	dimensional	
•  More	vs.	Less	biologically	faithful	



Why	stochas/c	neuron	models?	

•  In	vivo	and	in	vitro	recordings	of	single	neuron	
spike	trains	are	characterized	by	a	high	degree	
of	variability	

•  The	following	examples	are	taken	from	the	
book	by	Gerstner,	Kistler,	Naud	and	Paninski,	
Neuronal	Dynamics,	CUP,	2014		



Awake	mouse,	cortex,	freely	whisking	

Crochet	et	al.,	2011	

Spontaneous	ac/vity	in	vivo	



Trial	to	trial	variability	in	vivo	

15	repe//ons	of	the	same	random	dot	mo/on	paEern	

Adapted	from	Bair	and	Koch,	1996;		
Data	from	Newsome,	1989		



Trial	to	trial	variability	in	vitro	

4	repe//ons	of	the	same	/me-dependent	s/mulus	

Modified	from	Naud	and	Gerstner,	2012		



	

Sources	of	noise:		
extrinsic	and	intrinsic	to	neurons			

Lindner,	2016	



Two	types	of	noise	model	for	a	neuron	

•  Spike	genera/on	is	directly	modeled	as	a	
stochas/c	process	

•  Spike	genera/on	and	synap/c	
transmission	are	modeled	
determinis/cally	and	noise	enters	the	
dynamics	via	addi/onal	stochas/c	terms		



Spiking	vs.	firing	rate	



The	firing	rate	neuron	



Transfer	func/ons	

Step function: 

Piecewise linear: 

Sigmoid 
(e.g. logistic): 



Comments	

•  Firing	rate	models	are	among	the	earliest	
forms	of	neuron	modeling	(late	1930s)	

•  They	are	the	default	neuron	model	used	by	
Ar/ficial	Neural	Networks	(ANNs)	

•  In	brain	modeling,	firing	rate	models	are	
supposed	to	mimic	not	single	cells	but	the	
“average”	firing	behavior	of	cell	popula)ons	



Popula/on	rate	model		
•  Suppose	a	popula/on	of	neurons	so	close	together	
that	they	can	be	considered	as	‘equivalent’,	i.e.	they	
have	similar	proper/es	and	connec/vity	and	receive	
the	same	input.	Due	to	noise,	which	is	assumed	to	be	
independent	for	each	neuron,	their	response	to	the	
input	can	be	different.		

•  The	firing	rate,	or	ac/vity	A(t),	of	the	popula/on	is	
given	by	

	
	
				where	nspikes	is	the	number	of	spikes	of	the		popula/on	
				in	the	short	/me	Δt	

A(t) = lim
Δt→0

lim
N→∞

1
Δt
nspikes t;t +Δt( )

N



•  Assume	there	are	many	groups	of	neurons.	Each	group	
i	contains	a	large	number	of	neurons	and	is	described	
by	its	ac/vity	Ai(t).		

•  The	interac/on	between	the	different	groups	can	be	
modeled	by		

	
	
				where	Aj	is	the	popula/on	ac/vity	of	group	j	which		
				receives	input	from	other	groups	i	
•  In	this	equa/on,	Jij	are	no	longer	the	weights	of	
synapses	between	two	neurons	but	an	effec/ve	
interac/on	strength	between	two	groups	of	neurons.			

Aj = f J jiAi
i
∑
"

#
$

%

&
'



Model	dimension	
•  The	dimension	of	a	model	is	the	number	of	
variables	used	by	the	model:	1,	2,	3,	4,	etc	

•  In	general,	the	higher	the	number	of	
dimensions	of	a	model,	the	more	difficult	to	
understand	its	behavior	

•  Each	variable	has	an	equa/on	associated	to	it,	
so	high	dimensional	models	are	more	
computa)onally	expensive	

	



Criteria	for	biological	faithfulness	
•  Explicitness:	model	variables	can	be	mapped	
to	measured	quan//es;	

•  Number	of	details	included:	dendri/c	
morphologies,	ionic	channel	types,	
inhomogenei/es	in	ion	channel	distribu/ons,	
intracellular	and	biochemical	mechanisms	
(calcium	buffering,	diffusion,	second	
messengers	pathways),	extracellular	poten/al	

•  How	is	a	spike	generated?	By	hand	or	
naturally	from	the	equa/ons	



Hodgkin-Huxley	model	

•  4D,	single	compartment,	explicit	(based	on	ionic	
conductances),	spikes	naturally	generated	

REVIEW

Modeling Single-Neuron Dynamics
and Computations: A Balance of
Detail and Abstraction
Andreas V. M. Herz,1* Tim Gollisch,2 Christian K. Machens,3 Dieter Jaeger4

The fundamental building block of every nervous system is the single neuron. Understanding how
these exquisitely structured elements operate is an integral part of the quest to solve the mysteries
of the brain. Quantitative mathematical models have proved to be an indispensable tool in
pursuing this goal. We review recent advances and examine how single-cell models on five levels of
complexity, from black-box approaches to detailed compartmental simulations, address key
questions about neural dynamics and signal processing.

A
hundred years ago, Lapicque (1) pro-
posed that action potentials are gen-
erated when the integrated sensory or

synaptic inputs to a neuron reach a threshold value.
This Bintegrate-and-fire[model remains one of the
most influential concepts in neurobiology because
it provides a simple mechanistic explanation for
basic neural operations, such as the encoding of
stimulus amplitude in spike frequency. However,
advances in experimental technique have shown
that the integrate-and-fire model is far from
accurate in describing real neurons. Their mor-
phology, composition of ionic conductances, and
distribution of synaptic inputs generate a plethora
of dynamical phenomena and support various fun-
damental computations (Table 1 and Table 2).

Understanding the dynamics and computa-
tions of single neurons and their role within
larger neural networks is therefore at the core of
neuroscience: How do single-cell properties
contribute to information processing and, ulti-
mately, behavior? Quantitative models address
these questions, summarize and organize the
rapidly growing amount and sophistication of
experimental data, and make testable predictions.
As single-cell models and experiments become
more closely interwoven, the development of data
analysis tools for efficient parameter estimation
and assessment of model performance constitutes
a central element of computational studies.

All these tasks require a delicate balance
between incorporating sufficient details to ac-
count for complex single-cell dynamics and
reducing this complexity to the essential charac-
teristics to make a model tractable. The appro-
priate level of description depends on the
particular goal of the model. Indeed, finding the

best abstraction level is often the key to success.
We highlight these aspects for five main levels
(Fig. 1) of single-cell modeling.

Level I: Detailed Compartmental Models

Morphologically realistic models are based on
anatomical reconstructions and focus on how the
spatial structure of a neuron contributes to its
dynamics and function. These models extend the
cable theory of Rall, who showedmathematically
that dendritic voltage attenuation spreads asym-
metrically (2). This phenomenon allows dendrites
to compute the direction of synaptic activation pat-
terns, and thus provides a mechanism for motion
detection (3). When voltage-dependent conduct-
ances are taken into account, numerical integration
over the spatially discretized dendrite—the ‘‘com-
partmental model’’ (3)—is needed to solve the
resulting high-dimensional system of equations.

For complex dendritic trees, more than 1000
compartments are required to capture the cell’s
specific electrotonic structure (e.g., to simulate
spike backpropagation in pyramidal neurons) (4).
Such detailed models also generate testable
mechanistic hypotheses. For instance, simula-
tions of Purkinje cells predicted that a net
inhibitory synaptic current underlies specific
spike patterns in vivo (5), in accordance with
later experimental findings (6). In turn, even
established models such as the thalamocortical
neuron (7) are constantly improved by adding
new biophysical details such as dendritic calci-
um currents responsible for fast oscillations (8).

A large body ofmorphologically realisticmod-
els demonstrates how spatial aspects of synaptic
integration in dendrites support specific computa-
tions (Table 1 and Table 2), as discussed in
various reviews (9, 10). In pyramidal cells, for ex-
ample, distal inputs are amplified via dendritic
spikes or plateau potentials, supporting local
coincidence detection and gain modulation. Den-
dritic inward currents play a major role in the
control of spiking (6) or the modulation of re-
sponses to synchronous inputs (11). Such inter-
actions among synaptic inputs, voltage-gated
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Fig. 1. Examples for five levels of single-cell
modeling. Level I: Detailed compartmental model
of a Purkinje cell. The dendritic tree is segmented
into electrically coupled Hodgkin-Huxley–type com-
partments (level III). Level II: Two-compartment
model as in (23). The dendrite receives synaptic
inputs and is coupled to the soma where the
neuron’s response is generated. Level III: Hodgkin-
Huxley model, the prototype of single-compartment
models. The cell’s inside and outside are separated
by a capacitance Cm and ionic conductances in
series with batteries describing ionic reversal
potentials. Sodium and potassium conductances
(gNa, gK) depend on voltage; the leak gleak is fixed.
Level IV: Linear-nonlinear cascade. Stimuli S(t) are
convolved with a filter and then fed through a
nonlinearity to generate responses R(t), typically
time-dependent firing rates. Level V: Black-box
model. Neglecting biophysical mechanisms, condi-
tional probabilities p(R|S) describe responses R for
given stimuli S.
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Hodgkin-Huxley	(1949)	demonstrated	that:	

•  At	rest,	the	conductance	of	the	membrane	of	a	squid	
axon	to	K+	is	25	/mes	higher	than	its	conductance	to	
Na+:	GK	>>	GNa;	

•  At	the	peak	of	an	ac/on	poten/al,	the	membrane	
conductance	to	Na+	is	20	/mes	higher	than	its	
conductance	to	K+:	GK	>>	Gna;	

•  During	the	ajer-hyperpolariza/on	period,	the	
membrane	conductance	to	Na+	is	very	low	and	its	
conductance	to	K+	is	larger	than	at	rest:	GNa≈0	and		

				GK	>	GK_rest	



HH	explained	the	ac/on	poten/al	
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Hodgkin-Huxley	model	
	

Mathema/cal	fimng	of	experimental	conductances	
(measured	during	voltage	clamp	condi/ons)	

K+	conductance:	persistent	
	
r	=	4,	s	=	0	
	
Do	not	inac/vate		

Na+	conductance:	transient	
	
r	=	3,	s	=	1	
	
Inac/vate		

-  GX:	maximal	conductance;	
-  p:	frac/on	of	GX	aEained	at	a	

given	moment;	
-  EX:	Nernst	poten/al	if	ion	X.		

-  m:	ac/va/on	variable	(grows	
from	0	to	1	with	increase	of		
V);	

-  h:	inac/va/on	variable	
(decreases	from	1	to	0	with	
increase	of	V)		



Voltage	(mV)	



Hodgkin-Huxley	formalism	
Opening	and	closing	of		
Individual	channels	is	a		
stochas/c	process	

K+	channel	 Na+	channel	

Ensemble	average	
(determinis/c)	

I = g ⋅ p ⋅ V −E( ) p = probability of open channel 

p =mahb m	=	frac/on	of	open	ac/va/on	gates	

h	=	frac/on	of	open	inac/va/on	gates	

V V 



Comment	

•  Hodgkin	and	Huxley	(1952)	developed	their	
model	to	describe	ac/on	poten/al	genera/on	
in	the	squid	giant	axon	

•  It	is	hugely	different	from	mammalian	cor/cal	
neurons	

•  But	ionic	currents	in	cor/cal	neurons	can	be	
described	in	a	similar	way,	hence	“Hodgkin-
Huxley-type	models”	



•  Fast	Na	(INa)):	transient;	ac/on	poten/al	genera/on	
•  Slow	Na	(INaP):	slowly	inac/va/ng	(persistent);	keeps	neurons	

depolarized	(facilita/ng	bursts)		
•  Delayed	rec)fier	K	(IK):	persistent;	ac/on	poten/al	termina/on	
•  A	current	(IA):	transient	K	current;	creates	spike	delays	
•  M	current	(IM):	slow	persistent	K	current;	causes	spike	rate	adapta/on	
•  Inward	rec)fier	(Ikir):	ac/vated	by	hyperpolariza/on;	keeps	res/ng	

poten/al	near	EK	
•  Ca	dependent	K	channels	(IC	or	IAHP):	persistent;	depend	on	[Ca2+];	

responsible	for	ajerhyperpolariza/ons	(AHPs),	spike	frequency	
adapta/on	and	burs/ng	

•  Calcium	channels	(ICaT	and	ICaL):	transient	and	persistent;	responsible	
for	bursts	and	subthreshold	voltage	oscilla/ons					

•  h	current	(Ih):	slow;	ac/vated	by	hyperpolariza/on;	mixture	of	Na	and	
K	ions;	rhythmic	firing	and	slow	repolariza/on	ajer	hyperpolarizing			

The	zoo	of	ion	channels	



Detailed	compartmental	models	
•  D	=	q(m+1);	q	=	number	of	compartments;	m	=	number	
of	conductances	

•  Used	mostly	for	single-neuron	modeling	(but	the	
advent	of	fast	computers	is	changing	that)		

Model	of	a	cerebellar	Purkinje	cell	(De	SchuEer	
and	Bower,	1994):	4550	compartments.		



Comment	
•  The	addi/on	of	more	and	more	compartments	
to	a	neuron	model	seems	to	be	a	good	strategy	
to	get	closer	to	the	“real	thing”.	

•  However,	increased	complexity	not	necessarily	
always	lead	to	beEer	models:	
– Each	new	compartment	requires	the	modeler	to	
decide	which	conductances	to	put	in	it	and	with	
what	parameters,	and	there	are	few	cases	in	which	
these	are	known	(so	the	modeler	has	to	“guess”).		

– As	the	number	of	parameters	increase	so	does	the	
number	of	parameter	combina/ons	that	produce	
similar	behavior	(how	unique	is	a	model?).				



Reduced	compartmental	models	
•  Few	compartments	(e.g.	ball-and-s/ck	model)	
•  Used	in	“realis/c”	network	models	

Model	
	
	
Real	



Reduced	HH	models	
•  Single	compartment	models	

with	only	2	or	3	variables	
(one	being	V)	

•  Can	replicate	a	number	of	
proper/es	of	the	HH	model,	
including	the	genesis	of	an	
ac)on	poten)al	

•  Can	be	analyzed	in	the	phase	
plane	using	dynamical	
systems	tools:	equilibrium	
points,	limit	cycles,	
bifurca/ons		

Izhikevich	(2007)	



Example	of	reduced	HH	model:		
V	and	n	(fast	and	slow	variables)	

V,	m:	fast	variables	
n,	h:	slow	variables	
	
m(t)à	m∞	
n(t)	=	0.84	–	h(t)	
	
Model	with	2	variables:	
V(t)	and	n(t)	
	

Nullclines:	dV/dt	=	0;	dn/dt	=	0	



Fitzhugh-Nagumo	Model	
2-D	system	that	has	the	same	qualita/ve	characteris/cs	of	the	fast-slow	phase	plane		

Cubic	

v	=	voltage;		
w	=	recovery	variable	

Stable	branches	

Unstable	branch	

System	has	a	stable	res/ng	state		
and	is	excitable		

The	res/ng	state	is	unstable		
and	there	is	a	periodic	orbit			

Keener	&	Sneyd	(1998)		



Simple	spiking	neuron	models	

•  1D	or	2D,	non-HH	type	models	(not	explicit)	
•  Emphasis	on	neuronal	response	(spike	trains)	
•  Spikes	generated	by	hand	
•  Examples:	

–  Leaky	integrate-and-fire	(LIF)	model	(Lapicque	1907)	
– Non-linear	LIF	models	(quadra/c,	exponen/al)	
–  Izhikevich	model	
– Adap/ve	exponen/al	integrate-and-fire	(AdEx)	model	



The	LIF	model	

•  Subthreshold	dynamics	(V		<	Vth):	

•  Spike	emiEed	(by	hand)	at	t	=	tsp	
when	V	=	Vth	

•  Then	voltage	reset	to	V	=	Vreset	

•  (Op/onal)	refractory	period:	

τ
dV
dt

= − V −Vrest( )+ R ⋅ I

Response	to	
noisy	input	I(t)	

V (t) =Vreset  for tsp < t < tsp +τ ref



Dynamics	of	the	LIF	model	
•  Rescaling																																										:												

	

	
						with	threshold	at	v	=	1		
•  Stable	fixed	point	at	v	=	i	
•  For	i	<	1	the	membrane	poten/al	goes	to	the	

fixed	point	and	stays	there	(no	spikes)	
•  For	i	>	1	the	membrane	poten/al	gets	to	the	

threshold	and	a	spike	occurs	
•  Ajer	the	spike	the	membrane	poten/al	is	reset	

to	0	and	the	process	starts	again		
•  The	neuron	keeps	firing	regularly	while	the	

above	threshold	s/mulus	is	on	

τ
dV
dt

= − V −Vrest( )+ R ⋅ I

v ≡ V −Vrest

Vth −Vrest

;   i ≡ RI
Vth −Vrest

;   #t ≡ t / τ ⇒

⇒
dv
d "t

= −v( "t )+ i



Non-linear	I&F	models	
•  Extensions	of	the	LIF	model	given	by												

	
						with	
			

•  The	black	dot	in	the	top	graph	is	a	stable	fixed	point	
and	the	white	dot	is	an	unstable	fixed	point	

•  The	voltage	value	of	the	white	dot	is	the	cri/cal	
voltage	for	spike	ini/a/on	by	a	short	current	pulse	

•  The	boEom	graph	shows	the	case	for	a	constant	
super-threshold	current:	the	result	is	repe//ve	
firing	

•  No/ce	that	a	strong	inhibitory	current	can	push	the	
curve	below	the	dv/dt	=	0	line	and	disrupt	the	
repe//ve	firing	

τ
dv
dt
= φ v( )+ i

φ(v) = a v− b( )2   (quadratic IF model, QIF)

φ(v) = −v+ aev−b   (exponential IF model, EIF)



LIF	with	adap/ve	variable	

Adapta/on	conductance	(recovery	
variable):	incremented	ajer	each	spike	to	
provide	nega/ve	feedback	on	V	and	drive	it	
towards	Vr	thus	making	it	more	difficult		
for	V	to	reach	threshold.	



Izhikevich	and	AdEx	models	

•  Nonlinear	I&F	models	
with	a	second	variable	
(recovery	variable)	

•  Can	replicate	many	
neuronal	spiking	paEerns	

•  Proposed	by	Izhikevich	in	
2003	and	BreEe	and	
Gerstner	in	2005	

If	V	=	Vpeak	(e.g.	0	mV	or	+20	mV),	

www.izhikevich.com	

hEps://neuronaldynamics.epfl.ch/online/Ch6.S1.html	



AdEx	(2005)	



Neuron	models:		
detailed	vs.	simplified	

•  Conductance-based	(HH)	and	compartmental	models	are	
useful	to	study	single	neurons:	
–  Propaga/on	of	membrane	poten/als	along	the	dendri/c	tree	
–  Pharmacological	manipula/ons	
–  Func/onal	proper/es	of	single	neurons	

•  But	to	model	neural	networks	it	is	necessary	to	know/
es/mate	parameters	for	all	neurons,	a	phenomenal	task		

•  IF	model	and	its	variants	are	too	simple	to	be	used	as	
biophysical	neuron	models	

•  But	are	useful	for	the	construc/on	of	large-scale	network	
models	and	study:		
–  Spiking	ac/vity	paEerns	in	networks	
–  Func/onal	proper/es	of	networks	or	network	parts	



Part	3	
	

	Synaptic models 



Purpose	of	synap/c	modeling	

•  To	capture	the	following	facts:	
1.  Some	neurons	have	stronger	and	more	las/ng	

influences	over	a	given	neuron	than	others	
2.  Some	of	these	influences	are	excitatory	(increase	

the	likelihood	of	spike	emission)	while	some	are	
inhibitory	(decrease	this	likelihood)	

3.  The	strength	of	the	influence	of	a	neuron	over	
another	one	changes	over	/me	as	a	func/on	of	
the	ac/vi/es	of	both	neurons	(synap/c	plas/city)	



Types	of	synapses	

Pereda,	2014	



Types	of	synapses	

Electrical	
•  2	neurons	linked	together	

by	gap	junc/ons	
•  Rapid	communica/on	
•  Bidirec/onal	

communica/on	
•  Excita/on/inhibi/on	at	the	

same	synapse	
•  Occur	between	neurons	

and	glia	

Chemical	
•  Signal	transduc/on	
•  Excitatory	or	inhibitory	
•  Slower	communica/on	
•  Unidirec/onal	

communica/on	
•  More	plas/c	



Electrical	synapse	

An	ac/on	poten/al	in	the	
presynap/c	neuron	causes	the	
postsynap/c	neuron	to	be	
depolarized	within	a	frac/on	of	
millisecond	

Neuroscience.	2nd	edi/on.	
Purves	D,	Augus/ne	GJ,	Fitzpatrick	D,	et	al.,	editors.	
Sunderland	(MA):	Sinauer	Associates,	2001	

V2 = kV1
IGJ =GGJ V1 −V2( )

Gap	junc/on	coupling	can	be	
modeled	by	a	single	resistance	
connec/ng	the	2	cells	(see	
equivalent	circuit	to	the	lej).		
The	corresponding	equa/ons	are	
given	below	the	figure.	The	cell-cell	
coupling	coefficient	is	k	and	the	
transjunc/onal	current	is	IGJ		



Chemical	synapse	(generic	steps)	



Chemical	Synapses	
•  Excitatory	or	inhibitory	
•  Ionotropic	(fast)	and	metabotropic	(slow)	
•  Many	neurotransmiEers,	but	the	most	common	
in	the	cortex	are:	
– Glutamate	(usually	excitatory)	
–  γ-aminobutyric	acid	(GABA)	(usually	inhibitory)	

•  Dynamics	depends	on	receptor	type:	
– Glutamate	receptors:	AMPA/Kainate	and	NMDA	
– GABA	receptors:	GABAA	and	GABAB	

•  Short-term	and	long-term	synap/c	plas/city	



Postsynap/c	poten/als	

•  Excitatory	postsynap/c	
poten/al	(EPSP):	Transient	
depolariza/on	of	the	
postsynap/c	membrane	by	
presynap/c	release	of	
neurotransmiEer	

•  Inhibitory	postsynap/c	
poten/al	(IPSP):	Transient	
hyperpolariza/on	of	the	
postsynap/c	membrane	by	
presynap/c	release	of	
neurotransmiEer	



Postsynap/c	poten/als	summa/on	

Temporal	summa/on:	
(spikes	from	the	same	cell		
arriving	at	successive	/mes)	

Spa/al	summa/on:	
(spikes	from	different	cells		
arriving	at	the	same	/me)	



Ionotropic	and	Metabotropic	Synapes	

Ionotropic:	fast	

Metabotropic:	slow	



Synap/c	receptors	

Glutamate	
•  Ionotropic	

– AMPA/Kainate:	early	
EPSP	

– NMDA:	ac/vated	
when	cell	is	already	
depolarized	(late	
EPSP)	

GABA	
•  Ionotropic	

– GABAA		

•  Metabotropic	
– GABAB	



Synap/c	models	

•  There	are	many	models,	the	most	common	in	
network	models	assumes	a	synap)c	current	

	
•  Vrev	=	−75	mv	(inhibitory	synapses)	and	Vrev	=	0	
(excitatory	synapses)	

•  g(t)	=	synap/c	conductance	of	postsynap)c	cell	
•  Synap/c	delays	can	
				also	be	introduced	
	

Isyn = g(t) Vpost −Vrev( )



Synap/c	conductance	

•  The	/me	course	of	g(t)	can	be	modeled	by	
kine/c	equa/ons	but	in	general	fixed	/me	
course	func/ons	are	used	



Fixed	func/ons	used	to	model	g(t)	

(a)	

(b)	

(c)	

(alpha	func/on)	

Gerstner	&	Kistler,	2002	



•  Current-based	model:	Each	presynap/c	spike	
generates	a	postsynap/c	current	pulse	in	
neuron	i	

•  tj(f)	are	the	spike	/mes	of	presynap/c	neuron	j	
•  wij	is	the	synap/c	efficacy	(weight)	of	the	
synapse	from	neuron	j	to	neuron	i	

Synap/c	inputs	in	the	LIF	model	
(also	valid	for	other	IF	models)	

Fixed	func/on	



•  Conductance-based	model:	Each	presynap/c	
spike	generates	a	change	in	the	conductance	
of	the	postsynap/c	membrane	with	/me	
course	g(t	−	tj(f))		

Synap/c	inputs	in	the	LIF	model	
(also	valid	for	other	IF	models)	

	



Short-term	plas/city	
•  Synap/c	conductance	given	by	
	
	
•  ps	=	probability	that	a	postsynap/c	

channel	opens	given	that	a	transmiEer	
was	released	by	presynap/c	neuron	à	
modeled	by	an	α	func/on	

•  prel	=	probability	that	a	transmiEer	is	
released	by	presynap/c	neuron	following	
the	arrival	of	an	ac/on	poten/al	

•  prel	is	affected	by	synap/c	facilita)on	and	
depression	

g(t) = gps prel

τ p
dprel
dt

= p0 − prel + fF 1− prel( ) δ t − t j( )
j
∑

Above.	Facilita/on	of	excitatory	
cor/cal	synapse	in	a	slice	of	rat	
somatosensory	cortex.	Right.	
Frequency	dependency	of	
facilita/on	and	depression.	
Markran	et	al.,	1998.		

Simula/on	of	facilita/on	(lej)	and	depression	(right):	
sequence	of	4	presynap/c	spikes	followed	by	a	5th	
spike	400	ms	ajer	(Gerstner	&	Kistler,	2002)	

τ p
dprel
dt

= p0 − prel − fD prel δ t − t j( )
j
∑



Ac/vity-dependent	synap/c	plas/city	

•  Widely	believed	as	the	basic	phenomenon	
underlying	learning	and	memory	

•  Hebb	(1949):	if	input	from	neuron	A	ojen	
contributes	to	the	firing	of	neuron	B,	then	the	
synapse	from	A	to	B	should	be	strengthened	

•  More	recently,	Hebb’s	sugges/on	has	been	
generalized	to	include	decreases	in	strength	
arising	from	repeated	failure	of	neuron	A	to	
be	involved	in	the	ac/va/on	of	neuron	B		



LTP	and	LTD	
long-term	poten/a/on	and	long-term	depression	

Purves	et	al.	(2001)	

Low-frequency	s/mula/on	



LTP	and	LTD	
Very	complicated	mechanisms		
not	completely	understood	



The	generic	mechanism	of	synap/c	plas/city	should	be	like	this	

Now	there	is	a	
stronger	link	

The	synapse	is	
s/mulated	

More	
receptors	

More	neuro-	
transmiEers	



Synap/c	plas/city	and	memory	
•  Morris	(1986)	showed	that	LTP	was	necessary	
for	the	forma/on	of	memories	in	vivo.	

•  Animals	where	the	NMDA	
receptors	were	blocked	were	
unable	to	learn	the	posi/on	of	
the	pla�orms	where	they	could	
stand	without	swimming.	

•  In	vitro	analysis	showed	that	
LTP	was	indeed	blocked.	

•  Tonegawa	(1996)	showed	that	
gene/cally	altered	mice	with	
impaired	NMDA	receptors	
showed	poor	spa/al	naviga/on	
capabili/es.						



Hebbian	plas/city	
•  Mechanism	of	synap)c	weight	change	

proposed	by	Hebb	in	1949	to	
implement	forma/on	of	cell	assemblies	
and	learning	

•  The	weight	of	the	synapse	between	two	
neurons	grows	whenever	their	firing	
ac/vity	is	correlated:	neurons	that	fire	
together	wire	together	

•  Spike-Iming	dependent	plasIcity	
(STDP):	experimental	protocol	of	
synap/c	plas/city	induc/on	discovered	
by	Markram	in	1995.	Causal	version	of	
Hebb’s	rule:	the	spike	of	pre-synap/c	
neuron	must	precede	the	spike	of	post-
synap/c	neuron	for	their	weight	to	
increase,	otherwise	the	weight	
decreases	

LTP	

LTD	



Models	of	long-term	plas/city	

•  Changes	in						(maximal	synap/c	conductance)	to	
model	incorpora/on	or	removal	of	channels	

•  Implemented	by	hand	or	through	a	learning	rule	
(e.g.	Hebb’s	rule)	

•  The	/me-scale	of	changes	in							is	much	slower	
than	the	one	of	membrane	poten/al	dynamics		

Isyn = g ⋅ s(t) ⋅ Vpost −Vrev( )

g

g



Hebbian	rule	for	rate-based	neurons	

Change	in	ith	synap/c	
weight	(Hebb’s	rule)	

β	=	learning	rate;	
S	=	ac/vity	of	postsynap/c	
neuron;	
xi	=	ac/vity	of	ith	presynap/c	
neuron		



BCM	model	
•  Bienenstock,	Cooper	and	
Munro	(1981)	introduced	
a	unified	framework	to	
treat	poten/a/on	and	
depression.	

•  The	BCM	model	
incorporates	a	sliding	
threshold	that	separates	
poten/a/on	from	
depression.	

•  It	can	be	proved	that	
under	some	condi/ons	it	
can	be	derived	from	
STDP.		

•  x:	presynap/c	ac/vity;	
•  y:	postsynap/c	
ac/vity;	

•  w	=	synap/c	weight	
•  dw/dt	=	φ(y)x	-	εw	


