Part 4

Network Architecture



Types of architecture

 Artificial
* Biologically inspired (data-driven)



Artificial architectures
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Biologically inspired architectures

* Incorporate elements and quantitative information
of real network architectures

Mazza etal, 2004 [, @\x - ST S

Olfactory Epithelium Olfactory Bulb Olfactory cortex

SimoOes-de-Souza & Roque, 2004



Spatial scale: macro or microscopic

Local: connectivity among neurons in cortical layers/
columns

Global: connectivity among cortical areas

A macaque cortex
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TABLE 1. Connectivity matrix for the neuronal network of the control dentate gyrus
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Axo-axonic  MOPP
Granule Cells Mossy Cells Basket Cells Cells Cells HIPP Cells  HICAP Cells IS Cells
Granule cells X 95 15 3 X 110 40 20
(1,000,000) X 7-12 10-20 15 X 100-120 30-50 10-30
Molecular ref. [1-5] ref. [6] ref. [7) ref. [6-9] rf. [67.9]  ref.[6]  ref [410.11] ref. [47.1011]  ref. 7]
layer Mossy cells 350 75 75 5 600 200 X
(30.000) 3 200-500 5-10 5-10 5 600 200 X
ref. [11] ref. [4,11-13] ref. [12,13] ref. [13] ref. [13]  ref. [14]  ref. [1213]  ref. [12,13] ref. [15]
Grantis Basket cells 1,250 7 35 X X 05 X X
I ¥ BC cell layer (10,000) 1.000-1.500 50-100 20-50 X X 0-1 X X
ref. [16,17] ref. [4,16-19]  ref. [1L16,17.19]  ref. [16,17.2021]  ref. [18]  ref. [I8 ref. [18] ref. [18] ref. [10.20]
./ L
AAC cells X X X X X X X
| Hilus (2,000) 2,000-4,000 100-200 X X X X X X
ref. [4.22] ref. [4,1822]  ref. [4.5,11,1423] ref. [5,18] ref. [5,18]  ref. [5,18]  ref. [5.18] ref. [5,18]  ref. [5,18,19]
MOPP cells 7,500 X 40 15 75 X 7.5 X
(4.000) 5.000-10,000 X 30-50 1-2 5-10 X 5-10 X
Hil ref. [11,14] ref. [14] ref. [14,24] ref. [1425]  ref. [14.26] ref. [14.25] ref. [14.2025]  ref. [1425]  ref. [14.15]
s 3 HIPP cells 1,550 35 450 30 15 X 15 X
(12,000) 1,500-1,600 20-50 400-500 2040 10-20 X 10-20 X
ref. [11] ref. [411.20]  ref. [4111227.28]  ref. [41120]  ref. [2025]  ref. [25]  ref. [14.20.25]  ref. [25] ref. [15.20]
HICAP cells 700 35 175 X 15 50 50 X
(3.000) 700 30-40 150-200 X 10-20 50 50 X
ref. [5,2930]  ref. [4,11,20] ref. [20] ref. [4,11,20] ref. [0 ref. [1420]  ref. [20] ref. [20]
IS cells X X 75 X X 7.5 7.5 450
(3.000) X X 5-10 X 5-10 5-10 100-800
ref. [15,29.30] ref. [15] ref. [15] ref. [15.19] ref. [15] ref. [19] ref. [19] ref. [15]




itecture (cortex)

Microscopic arch

* The neocortex can be subdived into 6 layers

in terms of densities and types of

Layers differ
cells

"B

Abeles, 1991
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The anatomical details of neuronal connections in the
mammalian cerebral cortex are still being determined, but

recently there have been published comprehensive schemes
involving excitatory and inhibitory cells in various layers
along with external thalamic inputs (Douglas and Martin,

2004). Cortical arcuits involve excitatory (spiny cells) and
smooth inhibitory neurons with numbers in the ratio of
about 4 to 1. Inhibitory cells are usually fast spiking inter-
neurons, with only local connections, which may be pre-
dominantly vertical or horizontal. These cells and their
subtypes have quite different anatomical and physiological
properties and have different concentrations in the various
layers (McCormick et al., 1985). Excitatory cells send their
output through both local and long range connections to
other parts of cortex or other structures (Binzegger et al.,
2005).

Tuckwell (2006)



Microscopic architecture (cortex)

Behavioral/Systems/Cognitive

Tom Binzegger,'? Rodney J. Douglas,! and Kevan A. C. Martin!
'Institute of Neuroinformatics, University of Ztrich, and Eidgendssische Technische Hochschule Zarich, CH-8057 Zarrich, Switzerland, and *Henry
Wellcome Building for Neuroecology, University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, United Kingdom

The Journal of Neuroscience, September 29, 2004 - 24(39):8441- 8453 - 8441

A Quantitative Map of the Circuit of Cat Primary
Visual Cortex

Alex M. Thomson, David C. West, Yun Wang' and
A. Peter Bannister

Synaptic Connections and Small Circuits
Involving Excitatory and Inhibitory Neurons
in Layers 2-5 of Adult Rat and Cat
Neocortex: Triple Intracellular Recordings
and Biocytin Labelling /n Vitro

Department of Physiology, Royal Free and University College
Medical School, Rowland Hill Street, London NW3 2PF, UK
IPresent address: Lilly Research Centre, Eli Lilly & Co. Ltd,
Windlesham, Surrey GU20 6PH, UK

© Oxford University Press 2002. Al rights reserved. Cerebral Cortex Sep 2002;12:936-953; 1047-3211/02/$4.00
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Minimal layered cortical network model

Local cortical microcircuit model —
. 27

1 mm? cortical surface

Integrates knowledge from over 50

experimental papers

Excitatory (E) and inhibitory (I)

populations of point neurons in each

background input
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Layer and type-specific connection § L
probabilities 2 -

Replicates well the layer-specific i C#_m +

distribution of spike rates

(80% excit. 20% inhibit.)
The Cell-Type Specific Cortical
Microcircuit: Relating Structure and
Activity in a Full-Scale Spiking Network
Model =

Dias C. Potjans @, Markus Diesmann

&

10° synapses

Cerebral Cortex, Velume 24, Issue 3, L March 2014, Pages 785-806,
https.//doi.org10.1093/cercor/bhs3ss




Macroscopic architecture (cortex)

" Brain regions as network nodes
= Nodes can be linked via axonal tracing or diffusion tensor
imaging (DTI)



Macroscopic architecture (cortex)

 Hierarchical and modular structure
 Rich club structure



Connectome



C. Elegans Connectome

* Small Nervous System ~ 302 neurons

* Genome mapped (1998)
* Somatic connectome mapped: White et al. 1986 (~35 years)

— 279 neurons;
— ~8000 connections: (Gap, Glutamatergic, Cholinergic, GABA)

— Constantly being updated (e.g. Varshney et al 2011, Haspel et al
2012, Cook et al 2019)

— Additional extra synaptic currents mapped (monoamines,
neuropeptides)

— Evolutionary Information is available
— Central resource combine the data: Wormatlas
+ more



Wormatlas.org



Fruit Fly

FIYEM is making the data — and all the tools necessary to use it — available for
free.

bioRxiv paper published on January 21, 2020.

They are currently on track to complete a connectome of the entire fly nervous
system by 2022

https://www.janelia.org/project-team/flyem



Zebra Fish

Olfactory bulb

Adrian A. Wanner & Rainer W. Friedrich, Nature Neuroscience 23:433-442, 2020



Mouse

Allen Brain Atlas — connectivity.brain-map.org



Macaque Macro Connectivity

http://cocomac.g-node.org/main/index.php?



Human Brain Project

https://www.humanbrainproject.eu/en/explore-the-brain/



The connectome is not enough

 The connectome gives a
view of the static graph of
nodes and edges that
comprise the cortex:
structural connectome

 To go beyond we need to
capture somehow statistical
interdependencies among
the activities displayed by
the network nodes:
functional connectome



Structural and functional connectivity

Structural

Connectivity

Usually
based on
axonal
tracing or
water
diffusion
measures
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Fig. 2. Workflow for structural and functional connectivity analysis. High-resolution anatomical MRI
scans of each subject are used as references for further measurements (1). For establishing functional
connectivity, a time series of brain activity in different voxels or regions can be derived (3). The
correlation between the time series of different voxels or, using aggregated measures, brain regions
can be detected and represented as a correlation matrix (5). This matrix can either directly be
interpreted as a weighted network (6) or i1t can be binarized in that only values above a threshold lead
to a network connection (7). For establishing structural connectivity, diffusion tensor imaging or
diffusion spectrum imaging can be applied (2). Using deterministic tracking, for example. the number
of streamlines between brain regions can be represented in a matrix (4). This weighted matrix can
either be analyzed directly (6) or be tresholded so that connections are only formed if a minimum
number of streamlines has been reached (7).

Functional
Connectivity

—

Usually
based on
correlation
measures

Kaiser, 2010



Structural

Connectivity
(Anatomy,
Synaptic connections, ...)
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Connectivity

(Correlated or anti- Resting-state
correlated clusters of fMRI

nodes, ...) fluctuations



The “dynome”

Connectome + neural and synaptic dynamics = Dynome

Neuron Time

Beyond the Connectome: The Dynome

Nancy J. Kopell,'” Howard J. Gritton,” Miles A. Whittington,® and Mark A. Kramer’
'Department of Mathematics and Statistics, Boston University, Boston, MA 02215, USA
2Department of Biemedical Engineering, Boston University, Boston, MA 02215, USA

3The Hull York Medical School, University of York, Heslington, York YO 10 SDD, UK
*Comrespondence: n<@math.bu.edu

http//dx.doi.org/10.1016/).newron.2014.08.016



Part 5

Putting it all together:
neuron and synapse models in a
network architecture
(some models from my group and
collaborators)



Laboratory of Neural Systems — SisNe
sisne.org

 Dynamic phenomena in models of neurons
and neural networks

e HH-type and simplified neurons

Some examples



Synaptic and cortical plasticity

Mazza, de Pinho,
Piqueira & Roque,
J Comput Neurosci
16:177-201, 2004

Lesioned

VPL




Spontaneous activity in
cortical network models 1
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(&) ) Cornell University

N

arXiv.org > g-bio > arXiv:1905.01181 Search...

Quantitative Biology > Neurons and Cognition

Optimal interplay between synaptic strengths and network structure enhances activity fluctuations and information
propagation in hierarchical modular networks

Rodrigo F.O. Pena, Vinicius Lima, Renan O. Shimoura, Jodo P. Novato, Antonio C. Roque
(Submitted on 3 May 2019 (v1), last revised 6 May 20189 (this version, v2))

In network models of spiking neurons, the coupled impact of network structure and synaptic parameters on activity propagation is still an open problem. For spiking networks with hierarchical modular topology, we
show that slow spike-train fluctuations emerge due to the increase of either the global synaptic strength parameter or the network hierarchical level, while the network size remains constant. Through an
information-theoretical approach we show that information propagation of activity among adjacent modules is enhanced as the number of modules increases until an optimal value is reached and then decreases.
This suggests that there is an optimal interplay between hierarchical level and synaptic strengths for information propagation among modules, but we also found that information transfer measured from the spike-
trains differs from this one indicating that modular organization restructures information communicated in the mesoscopic level. By examining the increase of synaptic strengths and number of modules we find that
the network behavior changes following different mechanisms: (1) increase of autocorrelations among individual neurons, and (2) increase of cross-correlations among pairs of neurons, respectively. The latter being
better for information propagation. Our results have important implications and suggest roles that link topological features and synaptic levels to the transmission of information in cortical networks.

Comments: 27 pages, 7 figures
Subjects: Neurons and Cognition (q-bio.NC); Adaptation and Self-Organizing Systems (nlin.AO)
Cite as: arXiv:1905.01181 [g-bio.NC]

(or arXiv:1905.01181v2 [g-bio.NC] for this version)



Latin American 2006 * 2008
School on 2010 * 2012

Computational www.sisne.org/lascon 2014 * 2016
Neuroscience 2018 * 2020

Next one: 2022



NeuroMat

Research, Innovation and Dissemination
Center for Neuromathematics

http://neuromat.numec.prp.usp.br

R FAPESP [T\N'H

Universidade de Sao Paulo

SAO PAULO RESEARCH FOUNDATION
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