Wondering about an open-closed correspondence

Hiroshige Kajiura (Chiba University, Japan)

2020 Workshop on SFT and Related Aspects June 8, 2020

Plan:

- Recall A_{∞} -algebras and their typical properties
- Relation to field theory
- Other homotopy algebras
- Open-closed correspondence

• On what I study recently (Homological mirror symmetry)

Def. $[A_{\infty}$ -algebra (Stasheff'63)] $(A, \mathfrak{m} := \{m_k\}_{k \ge 1})$ is an A_{∞} -algebra \Leftrightarrow

 $A = \oplus_{r \in \mathbb{Z}} A^r$: \mathbb{Z} -graded vector space,

 $\mathfrak{m} := \{m_n : A^{\otimes n} \to A\}_{n \ge 1}$: linear maps of degree $|m_n| = (2 - n)$ satisfying the A_{∞} -relations:

$$0 = \sum_{k+l=n+1} \sum_{j=0}^{k-1} \pm m_k(a_1, \cdots, a_j, m_l(a_{j+1}, \cdots, a_{j+l}), a_{j+l+1}, \cdots, a_n)$$

for $n = 1, 2, ..., where a_i \in A^{|a_i|}, i = 1, ..., n$.

)

The A_{∞} -relations for n = 1, 2, 3:

for $m_1 = d$, $m_2 = \cdot$, $x, y, z \in V$:

$$egin{aligned} i) & d^2 = 0 \ , \ ii) & d(x \cdot y) = d(x) \cdot y + (-1)^{|x|} x \cdot d(y) \ , \ iii) & (x \cdot y) \cdot z - x \cdot (y \cdot z) = d(m_3)(x,y,z). \end{aligned}$$

 $i) \Leftrightarrow (A, d)$ forms a complex.

 $ii) \Leftrightarrow$ Leibniz rule of d w.r.t. the product \cdot .

iii) · is associative **up to homotopy**.

In particular, if $m_3 = 0$, the product \cdot is strictly associative. An A_{∞} -algebra (A, \mathfrak{m}) with $m_3 = m_4 = \cdots = 0$ is a **DG algebra**.

An A_{∞} -algebra (A, \mathfrak{m}) with $m_1 = 0$ is called **minimal**.

An Example of minimal A_{∞} -algebra

A generated by $e^0=id,e^2,e^5$

nontrivial A_{∞} -product:

 $m_2(e^0, e^2) = m_2(e^2, e^0) = e^2, \qquad m_3(e^2, e^2, e^2) = e^5$

Def. Given two A_{∞} -algebras (A, \mathfrak{m}) and (A', \mathfrak{m}') , an A_{∞} morphism $\mathfrak{f} : (A, \mathfrak{m}) \to (A', \mathfrak{m}')$ is a collection of degree (1 - k)multilinear maps $\mathfrak{f} := \{f_k : A^{\otimes k} \to A'\}_{k>1}$ s.t.

$$\sum_{i\geq 1}\sum_{\substack{k_1+\dots+k_n=n\\ =n}}\pm m'_i(f_{k_1}\otimes\dots\otimes f_{k_i})(a_1,\dots,a_n)$$
$$=\sum_{\substack{i+1+j=k\\ i+l+j=n}}\pm f_k(\mathbf{1}^{\otimes i}\otimes m_l\otimes \mathbf{1}^{\otimes j})(a_1,\dots,a_n)$$

for n = 1, 2,

Note: For n = 1: $m'_1 f_1 = f_1 m_1 \Leftrightarrow$ $f_1 : (A, m_1) \to (A', m'_1)$ forms a chain map. **Def.** $f: (A, \mathfrak{m}) \to (A', \mathfrak{m}')$ is called an A_{∞} -(quasi)-isomorphism iff $f_1: (A, m_1) \to (A', m_1')$ is a (quasi)-isomorphism.

Note that A_{∞} -quasi-isomorphisms define an equivalence relation.

Important theorems:

Minimal model theorem (Kadeishvili'83)

For any A_{∞} -algebra (A, \mathfrak{m}) , there exists an A_{∞} -algebra $(H(A), \mathfrak{m}')$ and an A_{∞} -quasi-isomorphism $(H(A), \mathfrak{m}') \to (A, \mathfrak{m})$.

Note that $\mathfrak{m}' = \{m'_1 = 0, m'_2, m'_3, ...\}$. Such an A_{∞} -algebra $(H(A), \mathfrak{m}')$ is called a **minimal model** of (A, \mathfrak{m}) .

* Minimal models of (A, \mathfrak{m}) are unique up to A_{∞} -isomorphisms on H(A).

More generally ...

Homological perturbation theory (HPT) (1982 \sim) (Kadeishvili, Gugenheim, Lambe, Stasheff, Huebschmann,...) For an A_{∞} -algebra (A, \mathfrak{m}) ,

strongly deformation retract (SDR) data is

$$(V,d) \xrightarrow[\pi]{\iota} (A,m_1) , \qquad h: A^r \to A^{r-1}$$

s.t. $m_1h + hm_1 = id_A - \iota \circ \pi$, $\pi \circ \iota = id_V$.

Given SDR data, there exists an A_{∞} -algebra (V, \mathfrak{m}') with $m'_1 = d$ and ι, π lift to A_{∞} -quasi-isomorphisms.

 $(\exists an explicit construction using Feynman graphs.)$

Relation to field theory

• cyclic
$$A_{\infty}$$
-algebra $(A, \mathfrak{m}, \omega)$
 \iff action $S = \sum_{n \ge 1} \frac{1}{n+1} \omega(\Phi, m_n(\Phi, \dots, \Phi))$
satisfying classical BV master eq. $(S, S) = 0$

- $(V, \mathfrak{m}', \omega')$ obtained by HPT \iff effective field theory of S on V
- the (cyclic) minimal model \iff on-shell scattering amplitudes

(cf. H.K' 02, 07 on classical open SFTs)

(Inspired by K. Fukaya's lectures in Japan)

Other homotopy algebras:

• L_{∞} -algebra (cf. Lada-Stasheff'92)

 m_2 corresponds to a Lie bracket. This satisfies the Jacobi identity up to homotopy m_3 .

• C_{∞} -algebra (= homotopy commutative A_{∞} -algebra)

(Kadeishvili, Markl, ...)

• OC_{∞} -algebra (=OCHA) (K-Stasheff'06, cf. E.Hoefel'12):

O=open, C=closed

mixture of A_∞ -algebra and L_∞ -algebra

Relation to string (field) theory

 A_{∞} -algebra \Leftrightarrow open string theory (Gaberdiel-Zwiebach'97, etc) L_{∞} -algebra \Leftrightarrow closed string theory (Zwiebach'92) OC_{∞} -algebra \Leftrightarrow open-closed string theory (Zwiebach'98) \uparrow cyclic extract the classical part of the action satisfying the quantum **BV master eq.**

Open-closed correspondence:

An OC_{∞} -algebra (which includes an A_{∞} -algebra A to an L_{∞} algebra L) gives us an L_{∞} -morphism (K-Stasheff'06)

$$\mathfrak{f}: L \to (C(A^{\otimes \bullet}, A), d_{Hoch}, [,]_G)$$

(Hoch = Hochschild, G = Gerstenhaber)

For each given field theory on the world sheet, we obtain f.

(cf. Poisson-sigma model \rightarrow Kontsevich's L_{∞} -quasi-isomorphism which solves the deformation quantization problem

(Cattaneo-Felder'98))

Wondering...

• For the bosonic open-closed SFT, is \mathfrak{f} an L_{∞} -quasi-isormophism ?

(Zwiebach'92: Interpolating SFTs may be useful.)

• For the bosonic classical open SFT $(A, \mathfrak{m}, \omega)$, what is the L_{∞} minimal model of the DGLA $(C(A^{\otimes \bullet}, A), d_{Hoch}, [,]_G)$?

If \mathfrak{f} is an L_{∞} quasi-isomorphism, then this should be

the on-shell scattering amplitudes of tree closed strings! $\Rightarrow (C(A^{\otimes \bullet}, A), d_{Hoch}, [,]_G) \text{ (with an appropriate cyclicity)}$ is a closed SFT !!

Homological mirror symmetry

$$\{ \text{symplectic mfds. } M \} \quad \stackrel{\text{Mirror Symmetry}}{\iff} \quad \{ \text{complex mfds. } \tilde{M} \}$$

Homological mirror symmetry is a homological (or categorical) formulation of mirror symmetry. This claims an equivalence

 $Tr(Fuk(M)) \simeq D^b(coh(\check{M}))$

(of triangulated categories) where

- Fuk(M) is the Fukaya A_{∞} category of Lagrangians in M,
- $D^b(coh(\check{M}))$ is the derived category of coherent sheaves on \check{M} ,

* Kontsevich-Soibelman'00 's proposal to obtain the equivalence

 $Tr(Fuk(M)) \to D^b(coh(\check{M}))$:

Apply HPT to a DG category \mathcal{C}' ,

$$\mathfrak{f}:\mathcal{C}\ o\ \mathcal{C}'$$
,

so that

- \mathcal{C}' generates $D^b(coh(\check{M}))$
- \mathcal{C} is a full subcategory $\mathcal{C} \subset Fuk(M)$.

Reformulated so that we can proceed this idea explicitly (H.K'09,14)

It actually works well for

- $M = \mathbb{R}^2$ (H.K'09)
- $M = T^2$ (H.K'11, 19 preprint)
- \check{M} for some toric Fano : work in progress