[based on arXiv:2003.05021 & related other works in progress]

Path-integral and quantum A_∞ structure of QFT

Math. Inst., Faculty of Math-Phys., Charles University Prague

& Inst. of Phys., Czech Academy of Sciences

Hiroaki Matsunaga

SFT 2020 June 8

Today's messages Roughly speaking..

- Each quantum field theory that has the path-integral description correlation fnc. $\langle \dots \rangle = \begin{bmatrix} \mu_{\phi}(\dots) & \text{e.g.} & \mu_{\phi} = \mathscr{D}\phi e^{S[\phi]} \end{bmatrix}$ always has own (quantum) A_{∞} structure ν .
 - (For ordinary QFTs, this (quantum) A_{∞} reduces to (quantum) L_{∞} automatically.)
- Path-integral P always gives a morphism of such A_{∞} str.

$$P \nu = \nu' P$$
 (P

[Math aspects]

P: original $A_{\infty} \rightarrow$ effective quantum A_{∞})

Today's messages Roughly speaking..

• So, as long as your original QFT is consistent, all objects obtained by the path-integral also have own A_{∞}/L_{∞} automatically!

 String field theory is a consistent UV finite theory: It gives typical examples to which you can apply these ideas "easily".

[Phys aspects]

(e.g. effective theories, amplitudes, current recursion relations, or symmetries under RG flows)

In this talk, I will explain these meanings more strictly.

Plan of talk

1. Why every path-integrable QFT have A_{∞} / L_{∞}

2. Why the path-integral preserves such A_{∞} / L_{∞}

(In particular, the perturbative path-integral gives A_{∞}/L_{∞} morphisms very explicitly.)

I would like to emphasize that these 1 & 2 are mostly patch-work of known results.

3. Application to perturbative SFT

<u>1. Why every path-integrable QFT have A_{∞} / L_{∞} </u> I told you that...

- Each quantum field theory that has the path-integral description correlation fnc. $\langle \dots \rangle = \begin{bmatrix} \mu_{\phi}(\dots) & \text{e.g.} & \mu_{\phi} = \mathcal{D}\phi e^{S[\phi]} \end{bmatrix}$ always has own (quantum) A_{∞} structure ν .
- Let us explain the meanings of "consistent QFT, path-integrable QFT, or QFT that has the path-integral description" in this talk.

That is "QFT solving the Batalin-Vilkovisky master equation".

<u>1. Why every path-integrable QFT have A_{∞} / L_{∞} </u>

What was BV?

- To define $\int \mathscr{D}\phi(\ldots)$, Δ -exacts vanish $\int \mathscr{D}\phi(\Delta \operatorname{exact}) = 0$ and the integrand must be Δ -closed: Δ (integrand) = 0.
- Then, for each QFT, this consistency condition gives "the BV master equation".

(The BV bracket is defined by $(-)^A(A,B) \equiv \Delta(AB) - (\Delta A)B - (-)^AA(\Delta B)$).

• BV is a powerful and general formalism that enables us to perform the path-integral, even for gauge theory. It is the geometry of the BV odd Laplacian Δ with $(\Delta)^2=0$.

 $\Delta e^{S[\phi]} = 0 \iff \hbar \Delta S + \frac{1}{2}(S,S) = 0$

1. Why every path-integrable QFT have A_{∞} / L_{∞} So, we consider QFT solving BV eq.

- classical action
- . This BV action $S[\phi]$ gives a set of "vertices" $\mu = \{\mu_n\}_{n>1}$ as follows

$$S[\phi] = \frac{1}{2} \langle \phi, \mu_1 \phi \rangle + \frac{1}{3} \langle \phi, \mu_2(\phi, \phi) \rangle + \frac{1}{4} \langle \phi, \mu_3(\phi, \phi) \rangle + \cdots$$

For a given QFT, this BV master action $S[\phi]$ is unique in some sense. Actually, these multi-linear maps $\{\mu_1, \mu_n\}_{n>1}$ satisfy the (quantum) A_w/L_w relations.

. The solution $S[\phi]$ of the BV master equation has the following form: $S[\phi] = S_{c1}[\phi_{c1}] + \phi^*(S[\phi], c) + c^*(S[\phi], ghosts for ghosts) + \cdots$ for gauge degrees for redundancy of gauge degrees

1. Why every path-integrable QFT have A_{∞} / L_{∞} Equivalent rep. of solving BV eq.

We consider the operator $\hbar \Delta_S \equiv \hbar \Delta$

$$\hbar \Delta_S \phi = -\frac{\partial S[\phi]}{\partial \phi} = \mu_1 \phi + \mu_2(\phi, \phi) + \mu_3(\phi, \phi, \phi) + \cdots$$

- . Actually, as we see, $(\hbar \Delta_S)^2 = 0$ is nothing but the quantum A_{∞}/L_{∞} .

$$\Delta + (S,)$$
 with $\Delta \equiv (-)^{\phi} \frac{\partial^2}{\partial \phi \partial \phi^*}$, which gives

• Note that "solving BV eq." equals to "requiring $(\hbar \Delta_S)^2 = 0$ " because of $(\hbar \Delta_S)^2 = (S, \hbar \Delta S + \frac{1}{2}(S, S)).$

1. Why every path-integrable QFT have A_{∞} / L_{∞} Solving BV eq. = requiring quantum A_{∞}/L_{∞} . W

We can expand
$$(\hbar \Delta_S)^2 = 0$$
 acting on $\phi = \sum \phi_g + \sum \phi_g^*$ as follows
 $(\hbar \Delta_S)^2 \phi = \hbar \Delta_S \Big[\mu_1 \phi + \mu_2(\phi, \phi) + \mu_3(\phi, \phi, \phi) + \cdots \Big]$
 $= \sum_n \Big[\hbar \sum_g (-)^g \frac{\partial^2}{\partial \phi_g \partial \phi_g^*} \mu_{n+2}(\phi, \dots, \phi) + \sum_{l+k=n} (-)^{\text{sign}} \mu_{l+1} \Big(\dots, \phi, \mu_k(\phi, \dots, \phi), \phi, \dots \Big) \Big]$

These are nothing but the A_{∞}/L_{∞} relations, which may become more explicit if we use the symbols mimicking "complete basis of the inner product", $e_{-g} \equiv \frac{\partial \phi}{\partial \phi_g}$, $e_{1+g} \equiv \frac{\partial \phi}{\partial \phi_g^*}$, and expand each μ_n with respect to \hbar , such as $\mu_n = \mu_{n,[0]} + \hbar \mu_{n,[1]} + \hbar^2 \mu_{n,[2]} + \hbar^3 \mu_{n,[3]} + \cdots$.

1. Why every path-integrable QFT have A_{∞} / L_{∞}

In summary..

- To have the path-integral, QFT must solve the BV master equation.
- "Solving BV eq. $\Delta e^{S[\phi]} = 0$ " is the same as imposing the quantum A_{∞} on vertices $\mu = {\mu_1, \mu_n}_{n>1}$ of your BV master action, $S[\phi] = \frac{1}{2} \langle \phi, \mu_1 \phi \rangle + \frac{1}{3} \langle \phi, \mu_2 \phi \rangle$

$$u_2(\phi,\phi)\rangle + \frac{1}{4}\langle\phi,\mu_3(\phi,\phi)\rangle + \cdots$$

 So, each QFT has own intrinsic quantum A_∞/L_∞ arising from BV eq. • This A_{∞}/L_{∞} structure is **unique**, as is the proper BV master action.

Next topic..

• We have noticed that every QFT have quantum A_{∞} / L_{∞} .

- But, why does the path-integral preserve it ??
 - That is also because of BV.

• It might be *trivial*, as long as you can split $\phi = \phi' + \phi''$ and $\Delta = \Delta' + \Delta''$.

As is well known...

- Any effective action $A[\phi']$ for "a given QFT $S[\phi' + \phi'']$ solving BV eq." $P: S[\phi' + \phi''] \longmapsto A[\phi'] \equiv \ln \left[\mathscr{D}\phi'' e^{S[\phi' + \phi'']} \right]$
 - also solves the BV master equation : you quickly find $\Im \phi'' \Delta''(...) = 0$ and

$$\Delta' e^{A[\phi']} = \int \mathscr{D} \phi'' (\Delta' +$$

. Hence, your BV effective QFT also has own (quantum) A_{∞}/L_{∞} , $\mu' = \{\mu'_n\}_n$. The path-integral P preserves it in this sense : $P \mu = \mu' P$.

 $(+\Delta'')e^{S[\phi'+\phi'']} = 0$.

Actually, these properties have been well used by experts.

- Flows of exact renormalization group with BV. [K.Costello 2007, R.Zucchini 2018]
- Realization of symmetry in ERG with BV. [Y.Igarashi, K.Itoh, H.Sonoda 2009]
- Combing BV and ERG. [T.Morris 2018, Y.Igarashi, K.Itoh, T.Morris 2019, P.Lavrov 2019] And there are other many earlier works...

Also, there are some works based on the A_{∞}/L_{∞} side of BV

• BJ recursion relations of gluon, scattering amplitudes by using A_{∞}/L_{∞} . [M.Doubek et al 2017, B.Jurco, et al 2018, LT.Macrelli, et al 2019, A.S.Arvanitakis 2019, B.Jurco et al 2019]

reduce a given "covariant SFT" to corresponding "light-cone SFT". [HM. JHEP04(2019)143]

Last year, the speaker studied the classical (tree graphs) part of the above result. He proposed how to

Now, you may notice that effective quantum A_{∞}/L_{∞} is trivial.

- We have learned that the path-integral preserves BV, and thus A_{∞}/L_{∞} .
- So, as long as your original QFT is path-integrable, quantum A_{∞}/L_{∞} structure of your effective QFT is automatic.

But, is there any "explicit" construction of such a morphism ?

— We have it.

"Explicit" construction of such P

- The perturbative path-integral gives such a morphism very explicitly. In other words, the Feynman graph expansion preserves quantum A_{∞}/L_{∞} !!
- We noticed that the (non-perturbative) path-integral gives a morphism of BV, $P: S[\phi' + \phi''] \longmapsto A[\phi'] = \ln \left[\mathscr{D} \phi'' e^{S[\phi' + \phi'']} \right],$

which is often called a ERG transformation, and thus A_{∞}/L_{∞} is automatic.

The Feynman graph expansion of this P also gives a morphism.

Can we obtain P directly in terms of A_{∞}/L_{∞} ?

- We obtained some results in terms of the BV master action $S[\phi] = S_{\text{free}}[\phi] + S_{\text{int}}[\phi]$. We can also obtain corresponding results in terms of A_{∞}/L_{∞} more directly.

effective A_∞/L_∞
$$\mu' = \mu'_1 + i \mu_{int} P$$
 &

- It is the same as the Feynman graph expansion, or applying Wick's theorem, for
 - the ERG transformation $P: S[\phi]$

• It is given by "the homological perturbation $\mu_1 \mapsto \mu_1 + \mu_{int} + \hbar \Delta$ ". By using coalgebra description, we get the effective quantum A_w/L_w and morphism $P \mu = \mu' P$ directly.

morphism
$$P = \frac{1}{1 + \mu_1^{-1}(\mu_{\text{int}} + \hbar \Delta)} p$$

$$\phi' + \phi'' \longmapsto A[\phi'] = \ln \int \mathscr{D} \phi'' e^{S[\phi' + \phi'']}$$

(Sorry, we skip "what the homological perturbation was" now, which is in appendix.)

2. Why the path-integral preserves A_{∞} / L_{∞} Comments on path-integral by homological perturbation

Following perturbations give the Wick's theorem and the perturbative path-integral:

$$(S_{\text{free}},) \mapsto \tilde{\hbar \Delta} + (S_{\text{free}},)$$

Wick's theorem

 \bullet (We may review these facts later, if we have enough time before our cut-off.)

The perturbative path-integral, or the Feynman graph expansion, can be obtained as a result of the homological perturbation of $\hbar \Delta_{S_{int}}$, and thus it preserves BV eq. and A_{∞}/L_{∞}.

$$\longmapsto \hbar \Delta_S \equiv \underbrace{\hbar \Delta + (S_{\text{int}}, \cdot)}_{\text{free}} + (S_{\text{free}}, \cdot)$$

Perturbative path integral

It is the same as the Feynman graph but can give explicit constructions of some quantities.

Some comments

- We considered algebraic aspects only, but now it will be trivial to you. Please note that all physically important informations are in your concrete construction of *"regular" propagators.* (You might learn it from D-instanton.)
- In general, it may be a challenging problem to solve the BV master equation for QFT with finite cut-off, if QFT is not UV finite.

- In general, your BV Laplacian will have cut-off dependence and then ERG flows are given by BV canonical transformations, or morphisms of quantum A_{∞}/L_{∞} . ERG flows shift the cut-off dependence of your BV Laplacian.
- So, application to SFT is easier than other UV divergent QFTs and it is exact.

Solving BV for QFT without cut-off is not difficult, but "regular propagators" will require cut-off dependence. As I know, even for Yang-Mills, we know a 1-loop level BV master action only. [Y.Igarashi, K.Itoh, T.Morris 2019]

3. Application to perturbative SFT

We now consider SFT

- For a given master action $S[\phi] = \frac{1}{2} \langle \phi, \mu_1 \phi \rangle + \frac{1}{3} \langle \phi, \mu_2(\phi, \phi) \rangle + \frac{1}{4} \langle \phi, \mu_3(\phi, \phi, \phi) \rangle + \cdots$, we can consider $\phi = \phi' + \phi''$ and the perturbative path-integral of ϕ'' as follows $P : S[\phi' + \phi''] \longmapsto A$
- Then, thanks to BV, the quantum A_{∞}/L_{∞} of your effective action is automatic

$$A[\phi'] = \frac{1}{2} \langle \phi', \mu'_1 \phi' \rangle + \frac{1}{3} \langle \phi', \mu'_2 (\phi', \phi') \rangle + \frac{1}{4} \langle \phi, \mu_3 (\phi', \phi', \phi') \rangle + \cdots$$

• As is known, SFT is a consistent UV finite QFT, which satisfies $\Delta e^{S[\phi]} = 0$.

$$A[\phi'] = \ln \int \mathscr{D}\phi'' e^{S[\phi' + \phi'']}$$

3. Application to perturbative SFT App.1) Typical Examples of $\phi = \phi' + \phi''$

• Your effective theory $A[\phi']$ has A_{∞}/L_{∞} corresponding to **the splitting** $\phi = \phi' + \phi''$ because it changes the propagators $(\mu_1'')^{-1}$ given by $\mu_1 = \mu_1' + \mu_1''$,

$$A[\phi'] \equiv \ln \int \mathscr{D}\phi'' e^{S[\phi' + \phi'']} = \frac{1}{2} \langle \phi', \mu'_1 \phi' \rangle + \frac{1}{3} \langle \phi', \mu'_2 (\phi', \phi') \rangle + \frac{1}{4} \langle \phi, \mu_3 (\phi', \phi', \phi') \rangle + \cdots$$

• Typical examples : (1) As usual, $\phi = \phi'_{IR} + \phi''_{UV}$ gives Wilsonian with A_{∞}/L_{∞} . (2) $\phi = \phi'_{\text{on shell}} + \phi''_{\text{off shell}}$ gives the S-matrix $A[\phi']$ as a minimal model of A_{∞}/L_{∞} . (3) $\phi = \phi'_{\text{massless}} + \phi''_{\text{masslve}}$ gives A_{∞}/L_{∞} effective QFT $A[\phi']$ with finite α' . (4) $\phi = \phi'_{\text{phys}} + \phi''_{\text{gauge+unphys}}$ gives "gauge-removed" SFT with A_{∞}/L_{∞} .

3. Application to perturbative SFT

App.2) Light-cone reduction : a special choice of $\phi = \phi'_{\text{phys}} + \phi''_{\text{gauge+unphys}}$

- For a given covariant SFT, there exists the corresponding light-cone SFT.
- The BRST operator of (super) strings has the similarity transformation, for example, $Q = e^{-R} \left(\begin{array}{c} \underbrace{\mu'_1}{c_0 L_0} - p^+ \underbrace{\sum_{r=0}^{\mu_1} c_{-r} a_n^+} \\ \end{array} \right) e^R \quad \text{(open strings).}$ [Aisaka, Kazama 2004] for bosonic [Kazama, Yokoi 2011] for super

It induces $\phi_{\text{covariant}} = \phi'_{\text{light cone}} + \phi''_{a^{\pm}, b, c}$ and the A_{∞}/L_{∞} light-cone SFT :

$$A[\phi'] = \frac{1}{2} \langle \phi', c_0 L_0^{\text{lc}} \phi' \rangle + \sum_n \frac{1}{n+1} \langle \phi', \mu_n(\phi', \dots, \phi') \rangle + \sum_{g,n} \frac{\hbar^g}{n+1} \langle \phi, \mu'_{n,[g]}(\phi', \dots, \phi') \rangle$$

"When effective vertices vanish and it reduces to Kaku-Kikkawa's theory" will be reported by [corroboration with Ted Erler].

effective vertices

same form as the covariant SFT

3. Application to perturbative SFT App.3) Realization of symmetry as A_{∞}/L_{∞}

$$\delta_{\rm sym}\phi = \mathcal{O}_{\rm sym}[\phi] \longmapsto \delta_{\rm sym}\phi' = \mathcal{O}_{\rm sym}'[\phi']$$

by a morphism of A_{∞}/L_{∞} : $\mathcal{O}'_{\rm sym}[\phi'] = I$

So, symmetry of the original QFT also exists in your effective QFT in terms of $A \sim /L \sim$, though it may take some highly-nonlinear form. (e.g. Lorentz generators in light-cone SFT.)

• Recall that composite operators of symmetry $\delta_{sym}\phi = \mathcal{O}_{sym}[\phi]$ survive along ERG flows $\int \mathscr{D}\phi \,\mathcal{O}_{\rm sym}[\phi] \,e^{S[\phi]} = \int \mathscr{D}\phi' \,\mathcal{O}_{\rm sym}'[\phi'] \,e^{A[\phi']}$ [Review: Y.Igarashi et al 2009]

and there is no loss of symmetry, although their forms drastically change along flows.

• This is also true for our case. The relation between $\mathcal{O}_{sym}[\phi]$ and $\mathcal{O}'_{sym}[\phi']$ is explicit. It is given

$$P\left(\mathcal{O}_{sym}[\phi] \right)$$
 [work in progress]

Summary

As we saw, in QFT, quantum A_{∞}/L_{∞} is always there..

- QFT has own quantum $A \approx /L \approx$, which is equivalent to solving BV.
- The path-integral preserves it, and thus your effective A_{∞}/L_{∞} is **automatic**.
- Symmetry in effective QFT is also encoded into A_∞/L_∞.

Comments

We learned that QFT and A_{∞}/L_{∞} are in one-to-one, thanks to BV. It may imply that

"deformation of QFT" and "deformation of A_{∞}/L_{∞} " are in one-to-one. — That is given by quantum open-closed homotopy algebra or $IBL \infty$.

Thank you for your attention !!

5-slides Review : Path-integral by Homological perturbation

Review : path-integral = homological perturbation

Let us review this fact in more detail.

The free BV theory $S_{\rm free}[\phi] = \frac{1}{2} \langle \phi, \mu_1 \phi \rangle$

Its equations of motion is, classically, given by $\mu_1 \phi = (S_{\mathrm{free}}, \phi) = 0$.

• This (S_{free}, \cdot) is a nilpotent operator, whose cohomology is the classical on-shell.

The perturbative path-integral, or the Feynman graph expansion, can be obtained as a result of the homological perturbation of $\hbar \Delta_{S_{int}}$, and thus it preserves BV eq. and A_{∞}/L_{∞}.

$$\phi$$
 > solves ($S_{\text{free}}, S_{\text{free}}$) = 0, $\Delta S_{\text{free}} = 0$

Review : path-integral = homological perturbation

homotopy equivalent pairs of (vector space, differential), as follows

$$(\text{state space, } (S_{\text{free}},))$$

- The BV propagator $\hat{\mu}_1^{-1}$ gives a Hodge decomposition : $\hat{\mu}_1 \hat{\mu}_1^{-1} + \hat{\mu}_1^{-1} \hat{\mu}_1 = 1 ip$.
- Now, because of $\Delta S_{\text{free}} = 0$, we can consider the homological perturbation of

$$(S_{\text{free}},) \mapsto \hbar \Delta_{S_{\text{free}}} \equiv$$

The relation of "classical" off-shell and on-shell is described by the deformation retract,

$$\underset{i}{\stackrel{p}{\longleftrightarrow}} \left(\text{ on shell }, 0 \right)$$

differential $\hat{\mu}_1$ cohomology of $\hat{\mu}_1$

$$\underbrace{\hbar\Delta} + (S_{\text{free}},)$$

perturbation

Review : path-integral = homological perturbation

• As a result, we get a new deformation retract

(state space,
$$\hbar \Delta + (S_{\text{free}},$$

new differential

The homological perturbation lemma tells us that the morphism P is given by solving the recursive relation $P = p + \hbar \hat{\mu}_1^{-1} \Delta P$, which gives P explicitly.

Actually, this
$$P = \frac{1}{1 + \hbar \hat{\mu}_1^{-1} \Delta} p$$
 is not

$$\begin{array}{c}) \end{array}) \stackrel{P}{\longleftrightarrow} \quad (\text{ on shell }, 0) \\ \underbrace{I}_{I} \quad \underbrace{(\text{ on shell }, 0)}_{\text{ cohomology of } \hbar \Delta_{\text{S}_{\text{free}}}} \end{array}$$

othing but the Feynman graph expansion.

2. Why the path-integral preserves *Review : path-integral = homological perturbation*

The commutator of
$$\hat{\mu}_1^{-1} \equiv (S_{\text{free}},)^{-1}$$
 as

• You can expand
$$P = \frac{1}{1 + \hbar \hat{\mu}_1^{-1} \Delta} p$$
 actions

$$P e^{S_{\text{int}}[\phi]} = \sum_{n} (\hbar \,\hat{\mu}_{1}^{-1} \Delta)^{n} p \, e^{S_{\text{int}}[\phi]} = \exp\left[\frac{1}{2} \sum_{g} \mu_{1}^{-1} \frac{\partial^{2}}{\partial \phi_{-g} \partial \phi_{g}}\right] e^{S_{\text{int}}[\phi]}$$

e same as the Wick's theorem given by Gaussian $\int \mathcal{D}\phi \, e^{\frac{1}{2}\phi \, \mu_{1}\phi} = 1$.

It is the

$$\underline{s A_{\infty} / L_{\infty}}$$

and $\hbar \Delta$ is proportional to $\mu_1^{-1} \frac{\partial^2}{\partial \phi_g \partial \phi_{-g}}$

ting on $e^{S_{int}[\phi]}$ as follows

2. Why the path-integral preserves A_{∞} / L_{∞} *Review : path-integral = homological perturbation*

• So, the Feynman graph expansion is given by the homological perturbation :

$$(S_{\text{free}},) \mapsto \hbar \Delta_{S_{\text{free}}} \equiv$$

• By the way, what kind of P_{int} does the full perturbation gives ?

$$(S_{\text{free}},) \mapsto \hbar \Delta_{S_{\text{free}}} \mapsto \hbar \Delta_{S} \equiv \hbar \Delta + (S_{\text{int}},) + (S_{\text{free}},)$$

That is the "normalized" perturbative path-

$$\underline{\hbar\Delta} + (S_{\text{free}},)$$

perturbation

full perturbation

-integral
$$P_{\text{int}}(\ldots) = Z^{-1} \int \mathscr{D}\phi(\ldots) e^{S_{\text{free}}[\phi] + S_{\text{int}}[\phi]}$$