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MOTIVATION
(cosmologist biased)
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* We can observe the 
Universe through GWs

* Cosmology with GWs

* Late Universe: Hubble diagram from Binaries 

* Early Universe:   High Energy Particle Physics High Energy Particle Physics

Can we really probe High Energy Physics
using Gravitational Waves (GWs) ? How ?



GWs: probe of the early Universe

Cosmic Defects

Why ?

One and ONLY One reason …
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FIG. 1: Slices of fluid energy density E/T 4
c at t = 400 T−1

c ,
t = 800 T−1

c and t = 1200 T−1
c respectively, for the η = 0.2

simulation. The slices correspond roughly to the end of the
nucleation phase, the end of the initial coalescence phase and
the end of the simulation.

W ε, contracting [∂µT µν ]
fluid

with Uν yields

Ė + ∂i(EV i) + p[Ẇ + ∂i(WV i)]−
∂V

∂φ
W (φ̇+ V i∂iφ)

= ηW 2(φ̇+ V i∂iφ)
2. (5)

The equations of motion for the fluid momentum density
Zi = W (ε+ p)Ui read

Żi+∂j(ZiV
j)+∂ip+

∂V

∂φ
∂iφ = −ηW (φ̇+V j∂jφ)∂iφ. (6)

The principal observable of interest to us is the power
spectrum of gravitational radiation resulting from bub-
ble collisions. One approach is to project Tij at every
timestep and then making use of the Green’s function to
compute the final power spectrum [34, 35]; this is quite
costly in computer time. Instead, we use the procedure
detailed in Ref. [36]. We evolve the equation of motion
for an auxiliary tensor uij ,

üij −∇2uij = 16πG(τφij + τ fij), (7)

where τφij = ∂iφ∂jφ and τ fij = W 2(ε+ p)ViVj . The phys-
ical metric perturbations are recovered in momentum
space by hij(k) = λij,lm(k̂)ulm(t,k), where λij,lm(k̂) is
the projector onto transverse, traceless symmetric rank 2
tensors. We are most interested in the metric perturba-
tions sourced by the fluid, as the fluid shear stresses gen-
erally dominate over those of the scalar field, although it
will be instructive to also consider both sources together.
Having obtained the metric perturbations, the power

spectrum per logarithmic frequency interval is

dρGW(k)

d ln k
=

1

32πGL3

k3

(2π)3

∫

dΩ
∣

∣

∣
ḣlm(t,k)

∣

∣

∣

2

. (8)

We simulate the system on a cubic lattice of N3 = 10243

points, neglecting cosmic expansion which is slow com-
pared with the transition rate. The fluid is imple-
mented as a three dimensional relativistic fluid [37], with
donor cell advection. The scalar and tensor fields are

evolved using a leapfrog algorithm with a minimal sten-
cil for the spatial Laplacian. Principally we used lat-
tice spacing δx = 1T−1

c and time step δt = 0.1T−1
c ,

where Tc is the critical temperature for the phase tran-
sition. We have checked the lattice spacing dependence
by carrying out single bubble self-collision simulations for
L3 = 2563 T−3

c at δx = 0.5T−1
c , for which the value of

ρGW at t = 2000T−1
c increased by 10%, while the final

total fluid kinetic energy increased by 7%. Simulating
with δt = 0.2T−1

c resulted in changes of 0.3% and 0.2%
to ρGW and the kinetic energy respectively.

Starting from a system completely in the symmet-
ric phase, we model the phase transition by nucleat-
ing new bubbles according to the rate per unit volume
P = P0 exp(β(t − t0)). From this distribution we gener-
ate a set of nucleation times and locations (in a suitable
untouched region of the box) at each of which we insert a
static bubble with a gaussian profile for the scalar field.
The bubble expands and quickly approaches an invariant
scaling profile [23].

We first studied a system with g = 34.25, γ = 1/18,
α =

√
10/72, T0 = Tc/

√
2 and λ = 10/648; this allows

comparison with previous (1 + 1) and spherical studies
of a coupled field-fluid system where the same parameter
choices were used [23]. The transition in this case is rela-
tively weak: in terms of αT , the ratio between the latent
heat and the total thermal energy, we have αTN

= 0.012
at the nucleation temperature TN = 0.86Tc. We also
performed simulations with γ = 2/18 and λ = 5/648, for
which αTN

= 0.10 at the nucleation temperature TN =
0.8Tc, which we refer to as an intermediate strength tran-
sition. We note that αTN

∼ 10−2 is generic for a first
order electroweak transition, while αTN

∼ 10−1 would
imply some tuning [38].

For the nucleation process, we took β = 0.0125Tc,
P0 = 0.01 and t0 = tend = 2000T−1

c . The simulation vol-
ume allowed the nucleation of 100-300 bubbles, so that
the mean spacing between bubbles was of order 100T−1

c .
The wall velocity is captured correctly, but the fluid ve-
locity did not quite reach the scaling profile before col-
liding. Typically, the peak velocity prior to collision is
20-30% below the scaling value for the deflagrations.

For the weak transition we chose η = 0.1, 0.2, 0.4 and
0.6. The first gives a detonation with wall speed vw %
0.71, and the others weak deflagrations with vw % 0.44,
0.24, and 0.15 respectively. The shock profiles are found
in Figs. 2 and 3 of Ref. [23]; slices of the total energy
density for one of our simulations are shown in Fig. 1.
The intermediate transition was simulated at η = 0.4,
for which the wall speed is vw % 0.44, very close to the
weak transition with η = 0.2.

Fig. 2 (top) shows the time evolution of two quantities
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Żi+∂j(ZiV
j)+∂ip+

∂V

∂φ
∂iφ = −ηW (φ̇+V j∂jφ)∂iφ. (6)

The principal observable of interest to us is the power
spectrum of gravitational radiation resulting from bub-
ble collisions. One approach is to project Tij at every
timestep and then making use of the Green’s function to
compute the final power spectrum [34, 35]; this is quite
costly in computer time. Instead, we use the procedure
detailed in Ref. [36]. We evolve the equation of motion
for an auxiliary tensor uij ,
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static bubble with a gaussian profile for the scalar field.
The bubble expands and quickly approaches an invariant
scaling profile [23].

We first studied a system with g = 34.25, γ = 1/18,
α =
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10/72, T0 = Tc/

√
2 and λ = 10/648; this allows

comparison with previous (1 + 1) and spherical studies
of a coupled field-fluid system where the same parameter
choices were used [23]. The transition in this case is rela-
tively weak: in terms of αT , the ratio between the latent
heat and the total thermal energy, we have αTN

= 0.012
at the nucleation temperature TN = 0.86Tc. We also
performed simulations with γ = 2/18 and λ = 5/648, for
which αTN

= 0.10 at the nucleation temperature TN =
0.8Tc, which we refer to as an intermediate strength tran-
sition. We note that αTN

∼ 10−2 is generic for a first
order electroweak transition, while αTN

∼ 10−1 would
imply some tuning [38].

For the nucleation process, we took β = 0.0125Tc,
P0 = 0.01 and t0 = tend = 2000T−1

c . The simulation vol-
ume allowed the nucleation of 100-300 bubbles, so that
the mean spacing between bubbles was of order 100T−1

c .
The wall velocity is captured correctly, but the fluid ve-
locity did not quite reach the scaling profile before col-
liding. Typically, the peak velocity prior to collision is
20-30% below the scaling value for the deflagrations.

For the weak transition we chose η = 0.1, 0.2, 0.4 and
0.6. The first gives a detonation with wall speed vw %
0.71, and the others weak deflagrations with vw % 0.44,
0.24, and 0.15 respectively. The shock profiles are found
in Figs. 2 and 3 of Ref. [23]; slices of the total energy
density for one of our simulations are shown in Fig. 1.
The intermediate transition was simulated at η = 0.4,
for which the wall speed is vw % 0.44, very close to the
weak transition with η = 0.2.
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c respectively, for the η = 0.2

simulation. The slices correspond roughly to the end of the
nucleation phase, the end of the initial coalescence phase and
the end of the simulation.
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erally dominate over those of the scalar field, although it
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ing new bubbles according to the rate per unit volume
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ate a set of nucleation times and locations (in a suitable
untouched region of the box) at each of which we insert a
static bubble with a gaussian profile for the scalar field.
The bubble expands and quickly approaches an invariant
scaling profile [23].
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α =
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10/72, T0 = Tc/
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2 and λ = 10/648; this allows
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of a coupled field-fluid system where the same parameter
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tively weak: in terms of αT , the ratio between the latent
heat and the total thermal energy, we have αTN

= 0.012
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performed simulations with γ = 2/18 and λ = 5/648, for
which αTN

= 0.10 at the nucleation temperature TN =
0.8Tc, which we refer to as an intermediate strength tran-
sition. We note that αTN

∼ 10−2 is generic for a first
order electroweak transition, while αTN

∼ 10−1 would
imply some tuning [38].

For the nucleation process, we took β = 0.0125Tc,
P0 = 0.01 and t0 = tend = 2000T−1

c . The simulation vol-
ume allowed the nucleation of 100-300 bubbles, so that
the mean spacing between bubbles was of order 100T−1
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The wall velocity is captured correctly, but the fluid ve-
locity did not quite reach the scaling profile before col-
liding. Typically, the peak velocity prior to collision is
20-30% below the scaling value for the deflagrations.

For the weak transition we chose η = 0.1, 0.2, 0.4 and
0.6. The first gives a detonation with wall speed vw %
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Ė + ∂i(EV i) + p[Ẇ + ∂i(WV i)]−
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ate a set of nucleation times and locations (in a suitable
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The Equivalence Principle
Einstein understood like this…

light bending,
light red/blue-shifting, 

gravitational time dilation,
…



The Equivalence Principle
Einstein understood like this…

a mathematical formulation was needed !
…
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General Relativity Equations

g Acceleration      Gravity⌘⌘

curved space-time 
trajectory

F = G
m1m2

r212

m1

m2

r12

gL = 9.81 m/s2

= m2 · gL
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x

t

u = const.

�x

�t

(�x,�t) (�x0,�t0)

0

0

6=

Lorentz
Transformations

(v = const.)
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General Relativity Equations

u = const.

(�x,�t) (�x0,�t0)6=

s2 ⌘ (c�t)2 � (�x)2 s02 = (c�t0)2 � (�x0)2=

ds2 = c2dt2 �
X

j

dxjdx
j

Space-time interval invariant 

Special 
Relativity
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ds2 = �c2dt2 +
X
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Minkowski Metric 
diag(�,+,+,+)

ds2 = ⌘µ⌫dx
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Space-time invariant  
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ds2 = gµ⌫(x)dx
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General Relativity: Generalisation of Special Relativity
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change of 
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space-time 
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(energy/p)

x0µ = x0µ({x↵})
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0)dx0↵dx0�

gµ⌫(x) =
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dxµ
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8⇡G

c4
⌘ 1

m2
p

mp = 2.44 · 1018 GeV; ;
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1
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gµ� (g�↵,� + g��,↵ � g↵�,�)

R↵� = �µ
↵�,µ � �µ
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�µ�

�
↵� � �µ

���
�
↵µ Ricci tensor

Christoffel Symbol⇠ (metric)2
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Extremely difficult to solve ! 
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General Relativity Equations

One example: Cosmology Universe ?

T [U ]
µ⌫

g[U ]
µ⌫
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Cosmological Principle

Gµ⌫ = 1
m2

p
Tµ⌫

geometry of  
the Universe

matter within  
the Universe

Principle of Symmetry:
The Universe is

Homogeneous & Isotropic

g[U ]
µ⌫ ⌘ diag

✓
�1,

a2(t)

1� kr3
, a2(t)r2, a2(t)r2 sin2 ✓

◆
FLRW

Friedmann-Lemaître
-Robertson-Walker

ds2 = gµ⌫dx
µdx⌫ = �dt2 + a2(t)

⇢
dr2

1� kr2
+ r2(d✓2 + sin2 ✓d'2)

�

Scale Factor Curvature
(dynamical) (const.)

{ k < 0,Open

k = 0,Flat

k > 0,Close

2



Cosmological Principle

Gµ⌫ = 1
m2

p
Tµ⌫

geometry of  
the Universe

matter within  
the Universe

Principle of Symmetry:
The Universe is

Homogeneous & Isotropic

ds2 = gµ⌫dx
µdx⌫ = �dt2 + a2(t)

⇢
dr2

1� kr2
+ r2(d✓2 + sin2 ✓d'2)

�

invariant:{ k ! k/c2

r ! c · r
a ! a/c(c = const.)

a, r, k unphysical

k

a2
, a · r, kr2 physical{

g[U ]
µ⌫ ⌘ diag

✓
�1,

a2(t)

1� kr3
, a2(t)r2, a2(t)r2 sin2 ✓

◆

2
FLRW

Friedmann-Lemaître
-Robertson-Walker
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Lectures 
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Rosenfeld



Cosmological Principle

Gµ⌫ = 1
m2

p
Tµ⌫

geometry of  
the Universe

matter within  
the Universe

Principle of Symmetry:
The Universe is

Homogeneous & Isotropic

l1 lo ⌘
✓
a(to)

a(t1)

◆
l1

/ a(t)

/ a(t)

t1

to > t1

Redshift

z1 ⌘ ao � a1
a1

1 + z ⌘ a(to)

a(t)



END of digression on
GENERAL RELATIVITY
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Let’s continue with
PRIMER ON

GRAVITATIONAL  WAVES



Gravitational Framework

General Relativity (GR) Gµ⌫ = 1
m2

p
Tµ⌫

geometry matter

ds2 = gµ⌫(x)dxµdx⌫

DIFF : xµ ! x0µ(x)

symmetry

h
mp = (8⇡G)�1/2 = 2.44 · 1018 GeV

i
Reduced 

Planck mass
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Gravitational Framework

General Relativity (GR) Gµ⌫ = 1
m2

p
Tµ⌫

geometry matter

Gµ⌫ ⌘ D[g↵� ] m�2
p Tµ⌫(Matt,Rad,Top.Defects,DarkEnergy, ...)=

metric

source of GWs

How do we define GWs ?

expand in perturbations
g↵� = ḡ↵� + �g↵�
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this approach…

g↵� = ḡ↵� + �g↵�



But not before …
coffee breaking!

Let’s continue
this approach…

g↵� = ḡ↵� + �g↵�



Definition of GWs
1st approach 
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and where I am a fellow since January 2015; the University of Geneva (UNIGE, Geneva), which I visited for
4 months during my PhD and where I did my second postdoctoral position during 2 years; the University
of Helsinki (HU/HIP, Helsinki), where I did my first postdoctoral position during 2 years; the University of
Columbia in New York (Columbia U., NYC), which I visited for 3.5 months in fall 2014; and finally the Imperial
College in London and the University of Sussex in Brighton, UK, both of which I visit regularly (few times
a year) since 2010. Of course, I also have strong links to the Instituto de Fisica Teorica in the Autonoma
University of Madrid, where I did my PhD. My large network of international collaborators and contacts is an
important achievement in my career, and I am sure that this will be of great benefit for the group. Currently, I
maintain the following international collaborations: i) Imperial College (London, Great Britain), where I work
regularly with Prof. Arttu Rajantie; ii) Sussex University (Brigthon, Great Britain), where I work with with Prof.
Mark Hindmarsh and faculty member Dr. Chris Byrnes; iii) Columbia University (New York City, US), where
thanks to an International Short Visit grant I obtained from the Swiss National Science Foundation, I initiated
a collaboration with Prof. Lam Hui; iv) EPFL (Ecole Polytechnique Federale de Lausanne), Switzerland,
where I am currently doing a long term project with Prof. M. Shaposhnikov; v) Geneva University (Geneva,
Switzerland), where I regularly collaborate with Prof. Ruth Durrer and Prof. Antonio. W. Riotto, and vi) IFAE
(Baercelona, Spain), where I have recently started a long term collaboration with Prof. J. R. Espinosa. My
large network of international collaborators and contacts is an important achievement in my career, and I am
sure that this will be of great benefit for the group.
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GWs are characterised by only two physical degrees of freedom, corresponding to two polari-
sation states. However, this must be true in general, not only in globally vacuum space-times. 
In this section we develop a formalism that renders this fact manifest.

We thus maintain, in the following, the conditions of linearised gravity over a Minkowski 
background (gµν = ηµν + hµν, |hµν | ! 1), but consider the more realistic situation where a 
non-vanishing stress-energy tensor is present, Tµν != 0. The rest of this section is based on 
[25] (see also [26]), which presents the "at space-time limit of Bardeen’s cosmological gauge-
invariant perturbation theory [27]. We follow standard notations in cosmology (that deviate 
somewhat from those of the previous section): the background metric is ḡµν = ηµν, and we 
denote the #rst order metric perturbation as δgµν (this corresponds to hµν in the previous sec-
tion). The main difference with the cosmological setting of [27] is that our metric background 
is Minkowski, and hence the energy momentum tensor Tµν at the background level, must 
vanish.

We begin by decomposing the metric perturbation and the energy-momentum tensor into 
irreducible parts with respect to spatial rotations,

δg00 = −2φ, (21)

δg0i = δgi0 = (∂iB + Si) , (22)

δgij = δgji = −2ψδij + (∂i∂j −
1
3
δij∇2)E + ∂iFj + ∂jFi + hij, (23)

and

T00 = ρ, (24)

T0i = Ti0 = ∂iu + ui, (25)

Tij = Tji = p δij + (∂i∂j −
1
3
δij∇2)σ + ∂ivj + ∂jvi +Πij. (26)

By construction, the above functions can be classi#ed as scalars, vectors and tensors, accord-
ing to how they transform under the 3-dimensional Euclidean rotation group,

 δgµν Tµν

Scalar(s) φ, B, ψ, E ρ, u, p, σ
Vector(s) Si, Fi ui, vi
Tensor(s) hij Πij

In order not to overcount degrees of freedom, the vector and tensor parts must satisfy the fol-
lowing conditions

∂iSi = 0 (1 constraint), ∂iFi = 0 (1 constraint), (27)

∂ihij = 0 (3 constraints), hii = 0 (1 constraint) (28)

and

∂iui = 0 (1 constraint), ∂ivi = 0 (1 constraint), (29)

∂iΠij = 0 (3 constraints), Πii = 0 (1 constraint), (30)

Class. Quantum Grav. 35 (2018) 163001

gµ⌫ = ⌘µ⌫ + �gµ⌫ (|�gµ⌫ | ⌧ 1)

(svt decomposition)
s: scalar 
v: vector 
t: tensor



Gravitational Wave Definition

2nd approach to GWs
(gauge invariant def.)

Minkowski

Topical Review

8

GWs are characterised by only two physical degrees of freedom, corresponding to two polari-
sation states. However, this must be true in general, not only in globally vacuum space-times. 
In this section we develop a formalism that renders this fact manifest.

We thus maintain, in the following, the conditions of linearised gravity over a Minkowski 
background (gµν = ηµν + hµν, |hµν | ! 1), but consider the more realistic situation where a 
non-vanishing stress-energy tensor is present, Tµν != 0. The rest of this section is based on 
[25] (see also [26]), which presents the "at space-time limit of Bardeen’s cosmological gauge-
invariant perturbation theory [27]. We follow standard notations in cosmology (that deviate 
somewhat from those of the previous section): the background metric is ḡµν = ηµν, and we 
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denote the #rst order metric perturbation as δgµν (this corresponds to hµν in the previous sec-
tion). The main difference with the cosmological setting of [27] is that our metric background 
is Minkowski, and hence the energy momentum tensor Tµν at the background level, must 
vanish.

We begin by decomposing the metric perturbation and the energy-momentum tensor into 
irreducible parts with respect to spatial rotations,

δg00 = −2φ, (21)

δg0i = δgi0 = (∂iB + Si) , (22)

δgij = δgji = −2ψδij + (∂i∂j −
1
3
δij∇2)E + ∂iFj + ∂jFi + hij, (23)

and

T00 = ρ, (24)

T0i = Ti0 = ∂iu + ui, (25)

Tij = Tji = p δij + (∂i∂j −
1
3
δij∇2)σ + ∂ivj + ∂jvi +Πij. (26)

By construction, the above functions can be classi#ed as scalars, vectors and tensors, accord-
ing to how they transform under the 3-dimensional Euclidean rotation group,

 δgµν Tµν

Scalar(s) φ, B, ψ, E ρ, u, p, σ
Vector(s) Si, Fi ui, vi
Tensor(s) hij Πij

In order not to overcount degrees of freedom, the vector and tensor parts must satisfy the fol-
lowing conditions

∂iSi = 0 (1 constraint), ∂iFi = 0 (1 constraint), (27)

∂ihij = 0 (3 constraints), hii = 0 (1 constraint) (28)

and

∂iui = 0 (1 constraint), ∂ivi = 0 (1 constraint), (29)

∂iΠij = 0 (3 constraints), Πii = 0 (1 constraint), (30)

Class. Quantum Grav. 35 (2018) 163001

Topical Review

8

GWs are characterised by only two physical degrees of freedom, corresponding to two polari-
sation states. However, this must be true in general, not only in globally vacuum space-times. 
In this section we develop a formalism that renders this fact manifest.

We thus maintain, in the following, the conditions of linearised gravity over a Minkowski 
background (gµν = ηµν + hµν, |hµν | ! 1), but consider the more realistic situation where a 
non-vanishing stress-energy tensor is present, Tµν != 0. The rest of this section is based on 
[25] (see also [26]), which presents the "at space-time limit of Bardeen’s cosmological gauge-
invariant perturbation theory [27]. We follow standard notations in cosmology (that deviate 
somewhat from those of the previous section): the background metric is ḡµν = ηµν, and we 
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denote the #rst order metric perturbation as δgµν (this corresponds to hµν in the previous sec-
tion). The main difference with the cosmological setting of [27] is that our metric background 
is Minkowski, and hence the energy momentum tensor Tµν at the background level, must 
vanish.

We begin by decomposing the metric perturbation and the energy-momentum tensor into 
irreducible parts with respect to spatial rotations,

δg00 = −2φ, (21)

δg0i = δgi0 = (∂iB + Si) , (22)

δgij = δgji = −2ψδij + (∂i∂j −
1
3
δij∇2)E + ∂iFj + ∂jFi + hij, (23)

and

T00 = ρ, (24)

T0i = Ti0 = ∂iu + ui, (25)

Tij = Tji = p δij + (∂i∂j −
1
3
δij∇2)σ + ∂ivj + ∂jvi +Πij. (26)

By construction, the above functions can be classi#ed as scalars, vectors and tensors, accord-
ing to how they transform under the 3-dimensional Euclidean rotation group,

 δgµν Tµν

Scalar(s) φ, B, ψ, E ρ, u, p, σ
Vector(s) Si, Fi ui, vi
Tensor(s) hij Πij

In order not to overcount degrees of freedom, the vector and tensor parts must satisfy the fol-
lowing conditions

∂iSi = 0 (1 constraint), ∂iFi = 0 (1 constraint), (27)

∂ihij = 0 (3 constraints), hii = 0 (1 constraint) (28)

and

∂iui = 0 (1 constraint), ∂ivi = 0 (1 constraint), (29)

∂iΠij = 0 (3 constraints), Πii = 0 (1 constraint), (30)

Class. Quantum Grav. 35 (2018) 163001

(svt metric perturbations)

(svt E/p-tensor components)

{

2 <3



Gravitational Wave Definition

Topical Review

8

GWs are characterised by only two physical degrees of freedom, corresponding to two polari-
sation states. However, this must be true in general, not only in globally vacuum space-times. 
In this section we develop a formalism that renders this fact manifest.

We thus maintain, in the following, the conditions of linearised gravity over a Minkowski 
background (gµν = ηµν + hµν, |hµν | ! 1), but consider the more realistic situation where a 
non-vanishing stress-energy tensor is present, Tµν != 0. The rest of this section is based on 
[25] (see also [26]), which presents the "at space-time limit of Bardeen’s cosmological gauge-
invariant perturbation theory [27]. We follow standard notations in cosmology (that deviate 
somewhat from those of the previous section): the background metric is ḡµν = ηµν, and we 
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denote the #rst order metric perturbation as δgµν (this corresponds to hµν in the previous sec-
tion). The main difference with the cosmological setting of [27] is that our metric background 
is Minkowski, and hence the energy momentum tensor Tµν at the background level, must 
vanish.

We begin by decomposing the metric perturbation and the energy-momentum tensor into 
irreducible parts with respect to spatial rotations,

δg00 = −2φ, (21)

δg0i = δgi0 = (∂iB + Si) , (22)

δgij = δgji = −2ψδij + (∂i∂j −
1
3
δij∇2)E + ∂iFj + ∂jFi + hij, (23)

and

T00 = ρ, (24)

T0i = Ti0 = ∂iu + ui, (25)

Tij = Tji = p δij + (∂i∂j −
1
3
δij∇2)σ + ∂ivj + ∂jvi +Πij. (26)

By construction, the above functions can be classi#ed as scalars, vectors and tensors, accord-
ing to how they transform under the 3-dimensional Euclidean rotation group,

 δgµν Tµν

Scalar(s) φ, B, ψ, E ρ, u, p, σ
Vector(s) Si, Fi ui, vi
Tensor(s) hij Πij

In order not to overcount degrees of freedom, the vector and tensor parts must satisfy the fol-
lowing conditions

∂iSi = 0 (1 constraint), ∂iFi = 0 (1 constraint), (27)

∂ihij = 0 (3 constraints), hii = 0 (1 constraint) (28)

and

∂iui = 0 (1 constraint), ∂ivi = 0 (1 constraint), (29)

∂iΠij = 0 (3 constraints), Πii = 0 (1 constraint), (30)

Class. Quantum Grav. 35 (2018) 163001

Topical Review

8

GWs are characterised by only two physical degrees of freedom, corresponding to two polari-
sation states. However, this must be true in general, not only in globally vacuum space-times. 
In this section we develop a formalism that renders this fact manifest.

We thus maintain, in the following, the conditions of linearised gravity over a Minkowski 
background (gµν = ηµν + hµν, |hµν | ! 1), but consider the more realistic situation where a 
non-vanishing stress-energy tensor is present, Tµν != 0. The rest of this section is based on 
[25] (see also [26]), which presents the "at space-time limit of Bardeen’s cosmological gauge-
invariant perturbation theory [27]. We follow standard notations in cosmology (that deviate 
somewhat from those of the previous section): the background metric is ḡµν = ηµν, and we 
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denote the #rst order metric perturbation as δgµν (this corresponds to hµν in the previous sec-
tion). The main difference with the cosmological setting of [27] is that our metric background 
is Minkowski, and hence the energy momentum tensor Tµν at the background level, must 
vanish.

We begin by decomposing the metric perturbation and the energy-momentum tensor into 
irreducible parts with respect to spatial rotations,

δg00 = −2φ, (21)

δg0i = δgi0 = (∂iB + Si) , (22)

δgij = δgji = −2ψδij + (∂i∂j −
1
3
δij∇2)E + ∂iFj + ∂jFi + hij, (23)

and

T00 = ρ, (24)

T0i = Ti0 = ∂iu + ui, (25)

Tij = Tji = p δij + (∂i∂j −
1
3
δij∇2)σ + ∂ivj + ∂jvi +Πij. (26)

By construction, the above functions can be classi#ed as scalars, vectors and tensors, accord-
ing to how they transform under the 3-dimensional Euclidean rotation group,

 δgµν Tµν

Scalar(s) φ, B, ψ, E ρ, u, p, σ
Vector(s) Si, Fi ui, vi
Tensor(s) hij Πij

In order not to overcount degrees of freedom, the vector and tensor parts must satisfy the fol-
lowing conditions

∂iSi = 0 (1 constraint), ∂iFi = 0 (1 constraint), (27)

∂ihij = 0 (3 constraints), hii = 0 (1 constraint) (28)

and

∂iui = 0 (1 constraint), ∂ivi = 0 (1 constraint), (29)

∂iΠij = 0 (3 constraints), Πii = 0 (1 constraint), (30)

Class. Quantum Grav. 35 (2018) 163001

Topical Review

8

GWs are characterised by only two physical degrees of freedom, corresponding to two polari-
sation states. However, this must be true in general, not only in globally vacuum space-times. 
In this section we develop a formalism that renders this fact manifest.

We thus maintain, in the following, the conditions of linearised gravity over a Minkowski 
background (gµν = ηµν + hµν, |hµν | ! 1), but consider the more realistic situation where a 
non-vanishing stress-energy tensor is present, Tµν != 0. The rest of this section is based on 
[25] (see also [26]), which presents the "at space-time limit of Bardeen’s cosmological gauge-
invariant perturbation theory [27]. We follow standard notations in cosmology (that deviate 
somewhat from those of the previous section): the background metric is ḡµν = ηµν, and we 
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denote the #rst order metric perturbation as δgµν (this corresponds to hµν in the previous sec-
tion). The main difference with the cosmological setting of [27] is that our metric background 
is Minkowski, and hence the energy momentum tensor Tµν at the background level, must 
vanish.

We begin by decomposing the metric perturbation and the energy-momentum tensor into 
irreducible parts with respect to spatial rotations,

δg00 = −2φ, (21)

δg0i = δgi0 = (∂iB + Si) , (22)

δgij = δgji = −2ψδij + (∂i∂j −
1
3
δij∇2)E + ∂iFj + ∂jFi + hij, (23)

and

T00 = ρ, (24)

T0i = Ti0 = ∂iu + ui, (25)

Tij = Tji = p δij + (∂i∂j −
1
3
δij∇2)σ + ∂ivj + ∂jvi +Πij. (26)

By construction, the above functions can be classi#ed as scalars, vectors and tensors, accord-
ing to how they transform under the 3-dimensional Euclidean rotation group,

 δgµν Tµν

Scalar(s) φ, B, ψ, E ρ, u, p, σ
Vector(s) Si, Fi ui, vi
Tensor(s) hij Πij

In order not to overcount degrees of freedom, the vector and tensor parts must satisfy the fol-
lowing conditions

∂iSi = 0 (1 constraint), ∂iFi = 0 (1 constraint), (27)

∂ihij = 0 (3 constraints), hii = 0 (1 constraint) (28)

and

∂iui = 0 (1 constraint), ∂ivi = 0 (1 constraint), (29)

∂iΠij = 0 (3 constraints), Πii = 0 (1 constraint), (30)

Class. Quantum Grav. 35 (2018) 163001

Topical Review

8

GWs are characterised by only two physical degrees of freedom, corresponding to two polari-
sation states. However, this must be true in general, not only in globally vacuum space-times. 
In this section we develop a formalism that renders this fact manifest.

We thus maintain, in the following, the conditions of linearised gravity over a Minkowski 
background (gµν = ηµν + hµν, |hµν | ! 1), but consider the more realistic situation where a 
non-vanishing stress-energy tensor is present, Tµν != 0. The rest of this section is based on 
[25] (see also [26]), which presents the "at space-time limit of Bardeen’s cosmological gauge-
invariant perturbation theory [27]. We follow standard notations in cosmology (that deviate 
somewhat from those of the previous section): the background metric is ḡµν = ηµν, and we 
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denote the #rst order metric perturbation as δgµν (this corresponds to hµν in the previous sec-
tion). The main difference with the cosmological setting of [27] is that our metric background 
is Minkowski, and hence the energy momentum tensor Tµν at the background level, must 
vanish.

We begin by decomposing the metric perturbation and the energy-momentum tensor into 
irreducible parts with respect to spatial rotations,

δg00 = −2φ, (21)

δg0i = δgi0 = (∂iB + Si) , (22)

δgij = δgji = −2ψδij + (∂i∂j −
1
3
δij∇2)E + ∂iFj + ∂jFi + hij, (23)

and

T00 = ρ, (24)

T0i = Ti0 = ∂iu + ui, (25)

Tij = Tji = p δij + (∂i∂j −
1
3
δij∇2)σ + ∂ivj + ∂jvi +Πij. (26)

By construction, the above functions can be classi#ed as scalars, vectors and tensors, accord-
ing to how they transform under the 3-dimensional Euclidean rotation group,

 δgµν Tµν

Scalar(s) φ, B, ψ, E ρ, u, p, σ
Vector(s) Si, Fi ui, vi
Tensor(s) hij Πij

In order not to overcount degrees of freedom, the vector and tensor parts must satisfy the fol-
lowing conditions

∂iSi = 0 (1 constraint), ∂iFi = 0 (1 constraint), (27)

∂ihij = 0 (3 constraints), hii = 0 (1 constraint) (28)

and

∂iui = 0 (1 constraint), ∂ivi = 0 (1 constraint), (29)

∂iΠij = 0 (3 constraints), Πii = 0 (1 constraint), (30)

Class. Quantum Grav. 35 (2018) 163001

Topical Review

8

GWs are characterised by only two physical degrees of freedom, corresponding to two polari-
sation states. However, this must be true in general, not only in globally vacuum space-times. 
In this section we develop a formalism that renders this fact manifest.

We thus maintain, in the following, the conditions of linearised gravity over a Minkowski 
background (gµν = ηµν + hµν, |hµν | ! 1), but consider the more realistic situation where a 
non-vanishing stress-energy tensor is present, Tµν != 0. The rest of this section is based on 
[25] (see also [26]), which presents the "at space-time limit of Bardeen’s cosmological gauge-
invariant perturbation theory [27]. We follow standard notations in cosmology (that deviate 
somewhat from those of the previous section): the background metric is ḡµν = ηµν, and we 
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GWs are characterised by only two physical degrees of freedom, corresponding to two polari-
sation states. However, this must be true in general, not only in globally vacuum space-times. 
In this section we develop a formalism that renders this fact manifest.

We thus maintain, in the following, the conditions of linearised gravity over a Minkowski 
background (gµν = ηµν + hµν, |hµν | ! 1), but consider the more realistic situation where a 
non-vanishing stress-energy tensor is present, Tµν != 0. The rest of this section is based on 
[25] (see also [26]), which presents the "at space-time limit of Bardeen’s cosmological gauge-
invariant perturbation theory [27]. We follow standard notations in cosmology (that deviate 
somewhat from those of the previous section): the background metric is ḡµν = ηµν, and we 
denote the #rst order metric perturbation as δgµν (this corresponds to hµν in the previous sec-
tion). The main difference with the cosmological setting of [27] is that our metric background 
is Minkowski, and hence the energy momentum tensor Tµν at the background level, must 
vanish.

We begin by decomposing the metric perturbation and the energy-momentum tensor into 
irreducible parts with respect to spatial rotations,

δg00 = −2φ, (21)

δg0i = δgi0 = (∂iB + Si) , (22)

δgij = δgji = −2ψδij + (∂i∂j −
1
3
δij∇2)E + ∂iFj + ∂jFi + hij, (23)

and

T00 = ρ, (24)

T0i = Ti0 = ∂iu + ui, (25)

Tij = Tji = p δij + (∂i∂j −
1
3
δij∇2)σ + ∂ivj + ∂jvi +Πij. (26)

By construction, the above functions can be classi#ed as scalars, vectors and tensors, accord-
ing to how they transform under the 3-dimensional Euclidean rotation group,

 δgµν Tµν

Scalar(s) φ, B, ψ, E ρ, u, p, σ
Vector(s) Si, Fi ui, vi
Tensor(s) hij Πij

In order not to overcount degrees of freedom, the vector and tensor parts must satisfy the fol-
lowing conditions

∂iSi = 0 (1 constraint), ∂iFi = 0 (1 constraint), (27)

∂ihij = 0 (3 constraints), hii = 0 (1 constraint) (28)

and

∂iui = 0 (1 constraint), ∂ivi = 0 (1 constraint), (29)

∂iΠij = 0 (3 constraints), Πii = 0 (1 constraint), (30)
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where we have implicitly assumed that all terms vanish ρ, u, ui, p,σ, vi,Πij −→ 0 at in!nity. 
The total number of degrees of freedom is as follows. For the metric perturbation, the total 
number of functions introduced in equations (21)–(23) is 16  =  4 scalars (φ, B, ψ, E)  +  6 vec-
tor components (Si, Fi)  +  6 tensor components of the 3 × 3 symmetric tensor hij. The total 
number of constraints in equations (27), (28) is 6, so the number of independent functions 
in the decomposition de!ned by equations (21)–(23) is 10  =  16  −  6, as expected for a 4 × 4 
symmetric tensor. Analogous consistent counting follows for the energy-momentum tensor, 
decomposed in equations (24)–(26), and subject to the constraint equations (29) and (30).

Given our assumptions about metric perturbations over a #at background ηµν, and asymp-
totic #atness δgµν −→ 0, the decomposition of the metric perturbation into scalar, vector and 
tensor pieces, de!ned by equations (21)–(23), is actually unique. Given a metric perturbation 
δgµν, one can always solve unequivocally for φ, B, ψ, E, Si, Fi and hij, as a function of δgµν. 
Similarly, the decomposition of the energy-momentum tensor by equations (24)–(26) is also 
unique.

All functions introduced so far (scalars, vectors and tensors) are assumed to be arbitrary 
functions of space-time coordinates and, in general, they are not independent from each other. 
For instance, from the conservation of the stress-energy tensor ∂µTµν = 0, it follows that the 
functions introduced in equations (24)–(26), must satisfy

∇2u = ρ̇ (1 constraint), (31)

∇2σ =
3
2
(u̇ − p) (1 constraint), (32)

∇2vi = 2u̇i (2 constraints). (33)

Therefore, considering these 4 extra constraints, in the case of the energy-momentum tensor, 
out of the 10 seemingly independent functions ρ, u, ui, p,σ, vi,Πij, there are in reality only 
6  =  10  −  4 independent degrees of freedom. For instance ρ, ui, p,Πij can be set arbitrarily, 
whereas the remaining functions u,σ, vi can be derived from the latter, by solving the system 
of equations (31)–(33).

Similarly, from the conservation of the Einstein tensor ∂µGµν = 0 (which amounts to 4 
constraints), it follows that out of the 10 metric functions φ, B, Si, ψ, E, Fi, hij in the metric 
decomposition equations (21)–(23), only 6  =  10  −  4 functions are truly independent degrees 
of freedom. The relation among metric components is however more complicated than in the 
case of the stress-energy tensor components equations (31)–(33), as it is the metric perturba-
tion δgµν (and not the Einstein tensor Gµν), that we have decomposed into scalar, vector, 
and tensor parts. In order to reduce the number of independent degrees of freedom in equa-
tions (21)–(23) from 10 to 6, it is more practical to exploit the invariance of linearised gravity, 
under arbitrary in!nitesimal coordinate transformations xµ −→ xµ + ξµ. Following the logic 
of the metric decomposition in equations (21)–(23), let us !rst express an arbitrary in!nitesi-
mal 4-vector displacement as

ξµ = (ξ0, ξi) ≡ (d0, ∂id + di) with ∂idi = 0, (34)

where d, d0, di are general functions of the space-time coordinates (t, x). As the metric perturbation 
transforms under an arbitrary in!nitesimal diffeomorphism as δgµν −→ δgµν − ∂µξν − ∂νξµ, 
see equation (4), one obtains that scalar parts of the metric perturbation in equations (21)–
(23), transform as

φ −→ φ− ḋ0, B −→ B − d0 − ḋ, (35)
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In order not to overcount degrees of freedom, the vector and tensor parts must satisfy the fol-
lowing conditions

∂iSi = 0 (1 constraint), ∂iFi = 0 (1 constraint), (27)
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where we have implicitly assumed that all terms vanish ρ, u, ui, p,σ, vi,Πij −→ 0 at in!nity. 
The total number of degrees of freedom is as follows. For the metric perturbation, the total 
number of functions introduced in equations (21)–(23) is 16  =  4 scalars (φ, B, ψ, E)  +  6 vec-
tor components (Si, Fi)  +  6 tensor components of the 3 × 3 symmetric tensor hij. The total 
number of constraints in equations (27), (28) is 6, so the number of independent functions 
in the decomposition de!ned by equations (21)–(23) is 10  =  16  −  6, as expected for a 4 × 4 
symmetric tensor. Analogous consistent counting follows for the energy-momentum tensor, 
decomposed in equations (24)–(26), and subject to the constraint equations (29) and (30).

Given our assumptions about metric perturbations over a #at background ηµν, and asymp-
totic #atness δgµν −→ 0, the decomposition of the metric perturbation into scalar, vector and 
tensor pieces, de!ned by equations (21)–(23), is actually unique. Given a metric perturbation 
δgµν, one can always solve unequivocally for φ, B, ψ, E, Si, Fi and hij, as a function of δgµν. 
Similarly, the decomposition of the energy-momentum tensor by equations (24)–(26) is also 
unique.

All functions introduced so far (scalars, vectors and tensors) are assumed to be arbitrary 
functions of space-time coordinates and, in general, they are not independent from each other. 
For instance, from the conservation of the stress-energy tensor ∂µTµν = 0, it follows that the 
functions introduced in equations (24)–(26), must satisfy

∇2u = ρ̇ (1 constraint), (31)

∇2σ =
3
2
(u̇ − p) (1 constraint), (32)

∇2vi = 2u̇i (2 constraints). (33)

Therefore, considering these 4 extra constraints, in the case of the energy-momentum tensor, 
out of the 10 seemingly independent functions ρ, u, ui, p,σ, vi,Πij, there are in reality only 
6  =  10  −  4 independent degrees of freedom. For instance ρ, ui, p,Πij can be set arbitrarily, 
whereas the remaining functions u,σ, vi can be derived from the latter, by solving the system 
of equations (31)–(33).

Similarly, from the conservation of the Einstein tensor ∂µGµν = 0 (which amounts to 4 
constraints), it follows that out of the 10 metric functions φ, B, Si, ψ, E, Fi, hij in the metric 
decomposition equations (21)–(23), only 6  =  10  −  4 functions are truly independent degrees 
of freedom. The relation among metric components is however more complicated than in the 
case of the stress-energy tensor components equations (31)–(33), as it is the metric perturba-
tion δgµν (and not the Einstein tensor Gµν), that we have decomposed into scalar, vector, 
and tensor parts. In order to reduce the number of independent degrees of freedom in equa-
tions (21)–(23) from 10 to 6, it is more practical to exploit the invariance of linearised gravity, 
under arbitrary in!nitesimal coordinate transformations xµ −→ xµ + ξµ. Following the logic 
of the metric decomposition in equations (21)–(23), let us !rst express an arbitrary in!nitesi-
mal 4-vector displacement as

ξµ = (ξ0, ξi) ≡ (d0, ∂id + di) with ∂idi = 0, (34)

where d, d0, di are general functions of the space-time coordinates (t, x). As the metric perturbation 
transforms under an arbitrary in!nitesimal diffeomorphism as δgµν −→ δgµν − ∂µξν − ∂νξµ, 
see equation (4), one obtains that scalar parts of the metric perturbation in equations (21)–
(23), transform as

φ −→ φ− ḋ0, B −→ B − d0 − ḋ, (35)
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see equation (4), one obtains that scalar parts of the metric perturbation in equations (21)–
(23), transform as
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GWs are characterised by only two physical degrees of freedom, corresponding to two polari-
sation states. However, this must be true in general, not only in globally vacuum space-times. 
In this section we develop a formalism that renders this fact manifest.

We thus maintain, in the following, the conditions of linearised gravity over a Minkowski 
background (gµν = ηµν + hµν, |hµν | ! 1), but consider the more realistic situation where a 
non-vanishing stress-energy tensor is present, Tµν != 0. The rest of this section is based on 
[25] (see also [26]), which presents the "at space-time limit of Bardeen’s cosmological gauge-
invariant perturbation theory [27]. We follow standard notations in cosmology (that deviate 
somewhat from those of the previous section): the background metric is ḡµν = ηµν, and we 
denote the #rst order metric perturbation as δgµν (this corresponds to hµν in the previous sec-
tion). The main difference with the cosmological setting of [27] is that our metric background 
is Minkowski, and hence the energy momentum tensor Tµν at the background level, must 
vanish.

We begin by decomposing the metric perturbation and the energy-momentum tensor into 
irreducible parts with respect to spatial rotations,

δg00 = −2φ, (21)

δg0i = δgi0 = (∂iB + Si) , (22)

δgij = δgji = −2ψδij + (∂i∂j −
1
3
δij∇2)E + ∂iFj + ∂jFi + hij, (23)

and

T00 = ρ, (24)

T0i = Ti0 = ∂iu + ui, (25)

Tij = Tji = p δij + (∂i∂j −
1
3
δij∇2)σ + ∂ivj + ∂jvi +Πij. (26)

By construction, the above functions can be classi#ed as scalars, vectors and tensors, accord-
ing to how they transform under the 3-dimensional Euclidean rotation group,

 δgµν Tµν

Scalar(s) φ, B, ψ, E ρ, u, p, σ
Vector(s) Si, Fi ui, vi
Tensor(s) hij Πij

In order not to overcount degrees of freedom, the vector and tensor parts must satisfy the fol-
lowing conditions

∂iSi = 0 (1 constraint), ∂iFi = 0 (1 constraint), (27)

∂ihij = 0 (3 constraints), hii = 0 (1 constraint) (28)

and

∂iui = 0 (1 constraint), ∂ivi = 0 (1 constraint), (29)

∂iΠij = 0 (3 constraints), Πii = 0 (1 constraint), (30)
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where we have implicitly assumed that all terms vanish ρ, u, ui, p,σ, vi,Πij −→ 0 at in!nity. 
The total number of degrees of freedom is as follows. For the metric perturbation, the total 
number of functions introduced in equations (21)–(23) is 16  =  4 scalars (φ, B, ψ, E)  +  6 vec-
tor components (Si, Fi)  +  6 tensor components of the 3 × 3 symmetric tensor hij. The total 
number of constraints in equations (27), (28) is 6, so the number of independent functions 
in the decomposition de!ned by equations (21)–(23) is 10  =  16  −  6, as expected for a 4 × 4 
symmetric tensor. Analogous consistent counting follows for the energy-momentum tensor, 
decomposed in equations (24)–(26), and subject to the constraint equations (29) and (30).

Given our assumptions about metric perturbations over a #at background ηµν, and asymp-
totic #atness δgµν −→ 0, the decomposition of the metric perturbation into scalar, vector and 
tensor pieces, de!ned by equations (21)–(23), is actually unique. Given a metric perturbation 
δgµν, one can always solve unequivocally for φ, B, ψ, E, Si, Fi and hij, as a function of δgµν. 
Similarly, the decomposition of the energy-momentum tensor by equations (24)–(26) is also 
unique.

All functions introduced so far (scalars, vectors and tensors) are assumed to be arbitrary 
functions of space-time coordinates and, in general, they are not independent from each other. 
For instance, from the conservation of the stress-energy tensor ∂µTµν = 0, it follows that the 
functions introduced in equations (24)–(26), must satisfy

∇2u = ρ̇ (1 constraint), (31)

∇2σ =
3
2
(u̇ − p) (1 constraint), (32)

∇2vi = 2u̇i (2 constraints). (33)

Therefore, considering these 4 extra constraints, in the case of the energy-momentum tensor, 
out of the 10 seemingly independent functions ρ, u, ui, p,σ, vi,Πij, there are in reality only 
6  =  10  −  4 independent degrees of freedom. For instance ρ, ui, p,Πij can be set arbitrarily, 
whereas the remaining functions u,σ, vi can be derived from the latter, by solving the system 
of equations (31)–(33).

Similarly, from the conservation of the Einstein tensor ∂µGµν = 0 (which amounts to 4 
constraints), it follows that out of the 10 metric functions φ, B, Si, ψ, E, Fi, hij in the metric 
decomposition equations (21)–(23), only 6  =  10  −  4 functions are truly independent degrees 
of freedom. The relation among metric components is however more complicated than in the 
case of the stress-energy tensor components equations (31)–(33), as it is the metric perturba-
tion δgµν (and not the Einstein tensor Gµν), that we have decomposed into scalar, vector, 
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under arbitrary in!nitesimal coordinate transformations xµ −→ xµ + ξµ. Following the logic 
of the metric decomposition in equations (21)–(23), let us !rst express an arbitrary in!nitesi-
mal 4-vector displacement as

ξµ = (ξ0, ξi) ≡ (d0, ∂id + di) with ∂idi = 0, (34)

where d, d0, di are general functions of the space-time coordinates (t, x). As the metric perturbation 
transforms under an arbitrary in!nitesimal diffeomorphism as δgµν −→ δgµν − ∂µξν − ∂νξµ, 
see equation (4), one obtains that scalar parts of the metric perturbation in equations (21)–
(23), transform as

φ −→ φ− ḋ0, B −→ B − d0 − ḋ, (35)
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where we have implicitly assumed that all terms vanish ρ, u, ui, p,σ, vi,Πij −→ 0 at in!nity. 
The total number of degrees of freedom is as follows. For the metric perturbation, the total 
number of functions introduced in equations (21)–(23) is 16  =  4 scalars (φ, B, ψ, E)  +  6 vec-
tor components (Si, Fi)  +  6 tensor components of the 3 × 3 symmetric tensor hij. The total 
number of constraints in equations (27), (28) is 6, so the number of independent functions 
in the decomposition de!ned by equations (21)–(23) is 10  =  16  −  6, as expected for a 4 × 4 
symmetric tensor. Analogous consistent counting follows for the energy-momentum tensor, 
decomposed in equations (24)–(26), and subject to the constraint equations (29) and (30).

Given our assumptions about metric perturbations over a #at background ηµν, and asymp-
totic #atness δgµν −→ 0, the decomposition of the metric perturbation into scalar, vector and 
tensor pieces, de!ned by equations (21)–(23), is actually unique. Given a metric perturbation 
δgµν, one can always solve unequivocally for φ, B, ψ, E, Si, Fi and hij, as a function of δgµν. 
Similarly, the decomposition of the energy-momentum tensor by equations (24)–(26) is also 
unique.

All functions introduced so far (scalars, vectors and tensors) are assumed to be arbitrary 
functions of space-time coordinates and, in general, they are not independent from each other. 
For instance, from the conservation of the stress-energy tensor ∂µTµν = 0, it follows that the 
functions introduced in equations (24)–(26), must satisfy

∇2u = ρ̇ (1 constraint), (31)

∇2σ =
3
2
(u̇ − p) (1 constraint), (32)

∇2vi = 2u̇i (2 constraints). (33)

Therefore, considering these 4 extra constraints, in the case of the energy-momentum tensor, 
out of the 10 seemingly independent functions ρ, u, ui, p,σ, vi,Πij, there are in reality only 
6  =  10  −  4 independent degrees of freedom. For instance ρ, ui, p,Πij can be set arbitrarily, 
whereas the remaining functions u,σ, vi can be derived from the latter, by solving the system 
of equations (31)–(33).

Similarly, from the conservation of the Einstein tensor ∂µGµν = 0 (which amounts to 4 
constraints), it follows that out of the 10 metric functions φ, B, Si, ψ, E, Fi, hij in the metric 
decomposition equations (21)–(23), only 6  =  10  −  4 functions are truly independent degrees 
of freedom. The relation among metric components is however more complicated than in the 
case of the stress-energy tensor components equations (31)–(33), as it is the metric perturba-
tion δgµν (and not the Einstein tensor Gµν), that we have decomposed into scalar, vector, 
and tensor parts. In order to reduce the number of independent degrees of freedom in equa-
tions (21)–(23) from 10 to 6, it is more practical to exploit the invariance of linearised gravity, 
under arbitrary in!nitesimal coordinate transformations xµ −→ xµ + ξµ. Following the logic 
of the metric decomposition in equations (21)–(23), let us !rst express an arbitrary in!nitesi-
mal 4-vector displacement as

ξµ = (ξ0, ξi) ≡ (d0, ∂id + di) with ∂idi = 0, (34)

where d, d0, di are general functions of the space-time coordinates (t, x). As the metric perturbation 
transforms under an arbitrary in!nitesimal diffeomorphism as δgµν −→ δgµν − ∂µξν − ∂νξµ, 
see equation (4), one obtains that scalar parts of the metric perturbation in equations (21)–
(23), transform as

φ −→ φ− ḋ0, B −→ B − d0 − ḋ, (35)
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GWs are characterised by only two physical degrees of freedom, corresponding to two polari-
sation states. However, this must be true in general, not only in globally vacuum space-times. 
In this section we develop a formalism that renders this fact manifest.

We thus maintain, in the following, the conditions of linearised gravity over a Minkowski 
background (gµν = ηµν + hµν, |hµν | ! 1), but consider the more realistic situation where a 
non-vanishing stress-energy tensor is present, Tµν != 0. The rest of this section is based on 
[25] (see also [26]), which presents the "at space-time limit of Bardeen’s cosmological gauge-
invariant perturbation theory [27]. We follow standard notations in cosmology (that deviate 
somewhat from those of the previous section): the background metric is ḡµν = ηµν, and we 
denote the #rst order metric perturbation as δgµν (this corresponds to hµν in the previous sec-
tion). The main difference with the cosmological setting of [27] is that our metric background 
is Minkowski, and hence the energy momentum tensor Tµν at the background level, must 
vanish.

We begin by decomposing the metric perturbation and the energy-momentum tensor into 
irreducible parts with respect to spatial rotations,

δg00 = −2φ, (21)

δg0i = δgi0 = (∂iB + Si) , (22)

δgij = δgji = −2ψδij + (∂i∂j −
1
3
δij∇2)E + ∂iFj + ∂jFi + hij, (23)

and

T00 = ρ, (24)

T0i = Ti0 = ∂iu + ui, (25)

Tij = Tji = p δij + (∂i∂j −
1
3
δij∇2)σ + ∂ivj + ∂jvi +Πij. (26)

By construction, the above functions can be classi#ed as scalars, vectors and tensors, accord-
ing to how they transform under the 3-dimensional Euclidean rotation group,

 δgµν Tµν

Scalar(s) φ, B, ψ, E ρ, u, p, σ
Vector(s) Si, Fi ui, vi
Tensor(s) hij Πij

In order not to overcount degrees of freedom, the vector and tensor parts must satisfy the fol-
lowing conditions

∂iSi = 0 (1 constraint), ∂iFi = 0 (1 constraint), (27)

∂ihij = 0 (3 constraints), hii = 0 (1 constraint) (28)

and

∂iui = 0 (1 constraint), ∂ivi = 0 (1 constraint), (29)

∂iΠij = 0 (3 constraints), Πii = 0 (1 constraint), (30)
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where we have implicitly assumed that all terms vanish ρ, u, ui, p,σ, vi,Πij −→ 0 at in!nity. 
The total number of degrees of freedom is as follows. For the metric perturbation, the total 
number of functions introduced in equations (21)–(23) is 16  =  4 scalars (φ, B, ψ, E)  +  6 vec-
tor components (Si, Fi)  +  6 tensor components of the 3 × 3 symmetric tensor hij. The total 
number of constraints in equations (27), (28) is 6, so the number of independent functions 
in the decomposition de!ned by equations (21)–(23) is 10  =  16  −  6, as expected for a 4 × 4 
symmetric tensor. Analogous consistent counting follows for the energy-momentum tensor, 
decomposed in equations (24)–(26), and subject to the constraint equations (29) and (30).

Given our assumptions about metric perturbations over a #at background ηµν, and asymp-
totic #atness δgµν −→ 0, the decomposition of the metric perturbation into scalar, vector and 
tensor pieces, de!ned by equations (21)–(23), is actually unique. Given a metric perturbation 
δgµν, one can always solve unequivocally for φ, B, ψ, E, Si, Fi and hij, as a function of δgµν. 
Similarly, the decomposition of the energy-momentum tensor by equations (24)–(26) is also 
unique.

All functions introduced so far (scalars, vectors and tensors) are assumed to be arbitrary 
functions of space-time coordinates and, in general, they are not independent from each other. 
For instance, from the conservation of the stress-energy tensor ∂µTµν = 0, it follows that the 
functions introduced in equations (24)–(26), must satisfy

∇2u = ρ̇ (1 constraint), (31)

∇2σ =
3
2
(u̇ − p) (1 constraint), (32)

∇2vi = 2u̇i (2 constraints). (33)

Therefore, considering these 4 extra constraints, in the case of the energy-momentum tensor, 
out of the 10 seemingly independent functions ρ, u, ui, p,σ, vi,Πij, there are in reality only 
6  =  10  −  4 independent degrees of freedom. For instance ρ, ui, p,Πij can be set arbitrarily, 
whereas the remaining functions u,σ, vi can be derived from the latter, by solving the system 
of equations (31)–(33).

Similarly, from the conservation of the Einstein tensor ∂µGµν = 0 (which amounts to 4 
constraints), it follows that out of the 10 metric functions φ, B, Si, ψ, E, Fi, hij in the metric 
decomposition equations (21)–(23), only 6  =  10  −  4 functions are truly independent degrees 
of freedom. The relation among metric components is however more complicated than in the 
case of the stress-energy tensor components equations (31)–(33), as it is the metric perturba-
tion δgµν (and not the Einstein tensor Gµν), that we have decomposed into scalar, vector, 
and tensor parts. In order to reduce the number of independent degrees of freedom in equa-
tions (21)–(23) from 10 to 6, it is more practical to exploit the invariance of linearised gravity, 
under arbitrary in!nitesimal coordinate transformations xµ −→ xµ + ξµ. Following the logic 
of the metric decomposition in equations (21)–(23), let us !rst express an arbitrary in!nitesi-
mal 4-vector displacement as

ξµ = (ξ0, ξi) ≡ (d0, ∂id + di) with ∂idi = 0, (34)

where d, d0, di are general functions of the space-time coordinates (t, x). As the metric perturbation 
transforms under an arbitrary in!nitesimal diffeomorphism as δgµν −→ δgµν − ∂µξν − ∂νξµ, 
see equation (4), one obtains that scalar parts of the metric perturbation in equations (21)–
(23), transform as

φ −→ φ− ḋ0, B −→ B − d0 − ḋ, (35)
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where we have implicitly assumed that all terms vanish ρ, u, ui, p,σ, vi,Πij −→ 0 at in!nity. 
The total number of degrees of freedom is as follows. For the metric perturbation, the total 
number of functions introduced in equations (21)–(23) is 16  =  4 scalars (φ, B, ψ, E)  +  6 vec-
tor components (Si, Fi)  +  6 tensor components of the 3 × 3 symmetric tensor hij. The total 
number of constraints in equations (27), (28) is 6, so the number of independent functions 
in the decomposition de!ned by equations (21)–(23) is 10  =  16  −  6, as expected for a 4 × 4 
symmetric tensor. Analogous consistent counting follows for the energy-momentum tensor, 
decomposed in equations (24)–(26), and subject to the constraint equations (29) and (30).

Given our assumptions about metric perturbations over a #at background ηµν, and asymp-
totic #atness δgµν −→ 0, the decomposition of the metric perturbation into scalar, vector and 
tensor pieces, de!ned by equations (21)–(23), is actually unique. Given a metric perturbation 
δgµν, one can always solve unequivocally for φ, B, ψ, E, Si, Fi and hij, as a function of δgµν. 
Similarly, the decomposition of the energy-momentum tensor by equations (24)–(26) is also 
unique.

All functions introduced so far (scalars, vectors and tensors) are assumed to be arbitrary 
functions of space-time coordinates and, in general, they are not independent from each other. 
For instance, from the conservation of the stress-energy tensor ∂µTµν = 0, it follows that the 
functions introduced in equations (24)–(26), must satisfy

∇2u = ρ̇ (1 constraint), (31)

∇2σ =
3
2
(u̇ − p) (1 constraint), (32)

∇2vi = 2u̇i (2 constraints). (33)

Therefore, considering these 4 extra constraints, in the case of the energy-momentum tensor, 
out of the 10 seemingly independent functions ρ, u, ui, p,σ, vi,Πij, there are in reality only 
6  =  10  −  4 independent degrees of freedom. For instance ρ, ui, p,Πij can be set arbitrarily, 
whereas the remaining functions u,σ, vi can be derived from the latter, by solving the system 
of equations (31)–(33).

Similarly, from the conservation of the Einstein tensor ∂µGµν = 0 (which amounts to 4 
constraints), it follows that out of the 10 metric functions φ, B, Si, ψ, E, Fi, hij in the metric 
decomposition equations (21)–(23), only 6  =  10  −  4 functions are truly independent degrees 
of freedom. The relation among metric components is however more complicated than in the 
case of the stress-energy tensor components equations (31)–(33), as it is the metric perturba-
tion δgµν (and not the Einstein tensor Gµν), that we have decomposed into scalar, vector, 
and tensor parts. In order to reduce the number of independent degrees of freedom in equa-
tions (21)–(23) from 10 to 6, it is more practical to exploit the invariance of linearised gravity, 
under arbitrary in!nitesimal coordinate transformations xµ −→ xµ + ξµ. Following the logic 
of the metric decomposition in equations (21)–(23), let us !rst express an arbitrary in!nitesi-
mal 4-vector displacement as

ξµ = (ξ0, ξi) ≡ (d0, ∂id + di) with ∂idi = 0, (34)

where d, d0, di are general functions of the space-time coordinates (t, x). As the metric perturbation 
transforms under an arbitrary in!nitesimal diffeomorphism as δgµν −→ δgµν − ∂µξν − ∂νξµ, 
see equation (4), one obtains that scalar parts of the metric perturbation in equations (21)–
(23), transform as

φ −→ φ− ḋ0, B −→ B − d0 − ḋ, (35)
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GWs are characterised by only two physical degrees of freedom, corresponding to two polari-
sation states. However, this must be true in general, not only in globally vacuum space-times. 
In this section we develop a formalism that renders this fact manifest.

We thus maintain, in the following, the conditions of linearised gravity over a Minkowski 
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non-vanishing stress-energy tensor is present, Tµν != 0. The rest of this section is based on 
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invariant perturbation theory [27]. We follow standard notations in cosmology (that deviate 
somewhat from those of the previous section): the background metric is ḡµν = ηµν, and we 
denote the #rst order metric perturbation as δgµν (this corresponds to hµν in the previous sec-
tion). The main difference with the cosmological setting of [27] is that our metric background 
is Minkowski, and hence the energy momentum tensor Tµν at the background level, must 
vanish.

We begin by decomposing the metric perturbation and the energy-momentum tensor into 
irreducible parts with respect to spatial rotations,

δg00 = −2φ, (21)

δg0i = δgi0 = (∂iB + Si) , (22)

δgij = δgji = −2ψδij + (∂i∂j −
1
3
δij∇2)E + ∂iFj + ∂jFi + hij, (23)

and

T00 = ρ, (24)

T0i = Ti0 = ∂iu + ui, (25)

Tij = Tji = p δij + (∂i∂j −
1
3
δij∇2)σ + ∂ivj + ∂jvi +Πij. (26)

By construction, the above functions can be classi#ed as scalars, vectors and tensors, accord-
ing to how they transform under the 3-dimensional Euclidean rotation group,

 δgµν Tµν

Scalar(s) φ, B, ψ, E ρ, u, p, σ
Vector(s) Si, Fi ui, vi
Tensor(s) hij Πij

In order not to overcount degrees of freedom, the vector and tensor parts must satisfy the fol-
lowing conditions

∂iSi = 0 (1 constraint), ∂iFi = 0 (1 constraint), (27)

∂ihij = 0 (3 constraints), hii = 0 (1 constraint) (28)

and

∂iui = 0 (1 constraint), ∂ivi = 0 (1 constraint), (29)

∂iΠij = 0 (3 constraints), Πii = 0 (1 constraint), (30)
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where we have implicitly assumed that all terms vanish ρ, u, ui, p,σ, vi,Πij −→ 0 at in!nity. 
The total number of degrees of freedom is as follows. For the metric perturbation, the total 
number of functions introduced in equations (21)–(23) is 16  =  4 scalars (φ, B, ψ, E)  +  6 vec-
tor components (Si, Fi)  +  6 tensor components of the 3 × 3 symmetric tensor hij. The total 
number of constraints in equations (27), (28) is 6, so the number of independent functions 
in the decomposition de!ned by equations (21)–(23) is 10  =  16  −  6, as expected for a 4 × 4 
symmetric tensor. Analogous consistent counting follows for the energy-momentum tensor, 
decomposed in equations (24)–(26), and subject to the constraint equations (29) and (30).

Given our assumptions about metric perturbations over a #at background ηµν, and asymp-
totic #atness δgµν −→ 0, the decomposition of the metric perturbation into scalar, vector and 
tensor pieces, de!ned by equations (21)–(23), is actually unique. Given a metric perturbation 
δgµν, one can always solve unequivocally for φ, B, ψ, E, Si, Fi and hij, as a function of δgµν. 
Similarly, the decomposition of the energy-momentum tensor by equations (24)–(26) is also 
unique.

All functions introduced so far (scalars, vectors and tensors) are assumed to be arbitrary 
functions of space-time coordinates and, in general, they are not independent from each other. 
For instance, from the conservation of the stress-energy tensor ∂µTµν = 0, it follows that the 
functions introduced in equations (24)–(26), must satisfy

∇2u = ρ̇ (1 constraint), (31)

∇2σ =
3
2
(u̇ − p) (1 constraint), (32)

∇2vi = 2u̇i (2 constraints). (33)

Therefore, considering these 4 extra constraints, in the case of the energy-momentum tensor, 
out of the 10 seemingly independent functions ρ, u, ui, p,σ, vi,Πij, there are in reality only 
6  =  10  −  4 independent degrees of freedom. For instance ρ, ui, p,Πij can be set arbitrarily, 
whereas the remaining functions u,σ, vi can be derived from the latter, by solving the system 
of equations (31)–(33).

Similarly, from the conservation of the Einstein tensor ∂µGµν = 0 (which amounts to 4 
constraints), it follows that out of the 10 metric functions φ, B, Si, ψ, E, Fi, hij in the metric 
decomposition equations (21)–(23), only 6  =  10  −  4 functions are truly independent degrees 
of freedom. The relation among metric components is however more complicated than in the 
case of the stress-energy tensor components equations (31)–(33), as it is the metric perturba-
tion δgµν (and not the Einstein tensor Gµν), that we have decomposed into scalar, vector, 
and tensor parts. In order to reduce the number of independent degrees of freedom in equa-
tions (21)–(23) from 10 to 6, it is more practical to exploit the invariance of linearised gravity, 
under arbitrary in!nitesimal coordinate transformations xµ −→ xµ + ξµ. Following the logic 
of the metric decomposition in equations (21)–(23), let us !rst express an arbitrary in!nitesi-
mal 4-vector displacement as

ξµ = (ξ0, ξi) ≡ (d0, ∂id + di) with ∂idi = 0, (34)

where d, d0, di are general functions of the space-time coordinates (t, x). As the metric perturbation 
transforms under an arbitrary in!nitesimal diffeomorphism as δgµν −→ δgµν − ∂µξν − ∂νξµ, 
see equation (4), one obtains that scalar parts of the metric perturbation in equations (21)–
(23), transform as

φ −→ φ− ḋ0, B −→ B − d0 − ḋ, (35)
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φ −→ φ− ḋ0, B −→ B − d0 − ḋ, (35)
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GWs are characterised by only two physical degrees of freedom, corresponding to two polari-
sation states. However, this must be true in general, not only in globally vacuum space-times. 
In this section we develop a formalism that renders this fact manifest.

We thus maintain, in the following, the conditions of linearised gravity over a Minkowski 
background (gµν = ηµν + hµν, |hµν | ! 1), but consider the more realistic situation where a 
non-vanishing stress-energy tensor is present, Tµν != 0. The rest of this section is based on 
[25] (see also [26]), which presents the "at space-time limit of Bardeen’s cosmological gauge-
invariant perturbation theory [27]. We follow standard notations in cosmology (that deviate 
somewhat from those of the previous section): the background metric is ḡµν = ηµν, and we 
denote the #rst order metric perturbation as δgµν (this corresponds to hµν in the previous sec-
tion). The main difference with the cosmological setting of [27] is that our metric background 
is Minkowski, and hence the energy momentum tensor Tµν at the background level, must 
vanish.

We begin by decomposing the metric perturbation and the energy-momentum tensor into 
irreducible parts with respect to spatial rotations,

δg00 = −2φ, (21)

δg0i = δgi0 = (∂iB + Si) , (22)

δgij = δgji = −2ψδij + (∂i∂j −
1
3
δij∇2)E + ∂iFj + ∂jFi + hij, (23)

and

T00 = ρ, (24)

T0i = Ti0 = ∂iu + ui, (25)

Tij = Tji = p δij + (∂i∂j −
1
3
δij∇2)σ + ∂ivj + ∂jvi +Πij. (26)

By construction, the above functions can be classi#ed as scalars, vectors and tensors, accord-
ing to how they transform under the 3-dimensional Euclidean rotation group,

 δgµν Tµν

Scalar(s) φ, B, ψ, E ρ, u, p, σ
Vector(s) Si, Fi ui, vi
Tensor(s) hij Πij

In order not to overcount degrees of freedom, the vector and tensor parts must satisfy the fol-
lowing conditions

∂iSi = 0 (1 constraint), ∂iFi = 0 (1 constraint), (27)

∂ihij = 0 (3 constraints), hii = 0 (1 constraint) (28)

and

∂iui = 0 (1 constraint), ∂ivi = 0 (1 constraint), (29)

∂iΠij = 0 (3 constraints), Πii = 0 (1 constraint), (30)
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where we have implicitly assumed that all terms vanish ρ, u, ui, p,σ, vi,Πij −→ 0 at in!nity. 
The total number of degrees of freedom is as follows. For the metric perturbation, the total 
number of functions introduced in equations (21)–(23) is 16  =  4 scalars (φ, B, ψ, E)  +  6 vec-
tor components (Si, Fi)  +  6 tensor components of the 3 × 3 symmetric tensor hij. The total 
number of constraints in equations (27), (28) is 6, so the number of independent functions 
in the decomposition de!ned by equations (21)–(23) is 10  =  16  −  6, as expected for a 4 × 4 
symmetric tensor. Analogous consistent counting follows for the energy-momentum tensor, 
decomposed in equations (24)–(26), and subject to the constraint equations (29) and (30).

Given our assumptions about metric perturbations over a #at background ηµν, and asymp-
totic #atness δgµν −→ 0, the decomposition of the metric perturbation into scalar, vector and 
tensor pieces, de!ned by equations (21)–(23), is actually unique. Given a metric perturbation 
δgµν, one can always solve unequivocally for φ, B, ψ, E, Si, Fi and hij, as a function of δgµν. 
Similarly, the decomposition of the energy-momentum tensor by equations (24)–(26) is also 
unique.

All functions introduced so far (scalars, vectors and tensors) are assumed to be arbitrary 
functions of space-time coordinates and, in general, they are not independent from each other. 
For instance, from the conservation of the stress-energy tensor ∂µTµν = 0, it follows that the 
functions introduced in equations (24)–(26), must satisfy

∇2u = ρ̇ (1 constraint), (31)

∇2σ =
3
2
(u̇ − p) (1 constraint), (32)

∇2vi = 2u̇i (2 constraints). (33)

Therefore, considering these 4 extra constraints, in the case of the energy-momentum tensor, 
out of the 10 seemingly independent functions ρ, u, ui, p,σ, vi,Πij, there are in reality only 
6  =  10  −  4 independent degrees of freedom. For instance ρ, ui, p,Πij can be set arbitrarily, 
whereas the remaining functions u,σ, vi can be derived from the latter, by solving the system 
of equations (31)–(33).

Similarly, from the conservation of the Einstein tensor ∂µGµν = 0 (which amounts to 4 
constraints), it follows that out of the 10 metric functions φ, B, Si, ψ, E, Fi, hij in the metric 
decomposition equations (21)–(23), only 6  =  10  −  4 functions are truly independent degrees 
of freedom. The relation among metric components is however more complicated than in the 
case of the stress-energy tensor components equations (31)–(33), as it is the metric perturba-
tion δgµν (and not the Einstein tensor Gµν), that we have decomposed into scalar, vector, 
and tensor parts. In order to reduce the number of independent degrees of freedom in equa-
tions (21)–(23) from 10 to 6, it is more practical to exploit the invariance of linearised gravity, 
under arbitrary in!nitesimal coordinate transformations xµ −→ xµ + ξµ. Following the logic 
of the metric decomposition in equations (21)–(23), let us !rst express an arbitrary in!nitesi-
mal 4-vector displacement as

ξµ = (ξ0, ξi) ≡ (d0, ∂id + di) with ∂idi = 0, (34)

where d, d0, di are general functions of the space-time coordinates (t, x). As the metric perturbation 
transforms under an arbitrary in!nitesimal diffeomorphism as δgµν −→ δgµν − ∂µξν − ∂νξµ, 
see equation (4), one obtains that scalar parts of the metric perturbation in equations (21)–
(23), transform as

φ −→ φ− ḋ0, B −→ B − d0 − ḋ, (35)
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φ −→ φ− ḋ0, B −→ B − d0 − ḋ, (35)
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Class. Quantum Grav. 35 (2018) 163001

( 4 d.o.f. 
spurious )



Gravitational Wave Definition

Topical Review

8

GWs are characterised by only two physical degrees of freedom, corresponding to two polari-
sation states. However, this must be true in general, not only in globally vacuum space-times. 
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background (gµν = ηµν + hµν, |hµν | ! 1), but consider the more realistic situation where a 
non-vanishing stress-energy tensor is present, Tµν != 0. The rest of this section is based on 
[25] (see also [26]), which presents the "at space-time limit of Bardeen’s cosmological gauge-
invariant perturbation theory [27]. We follow standard notations in cosmology (that deviate 
somewhat from those of the previous section): the background metric is ḡµν = ηµν, and we 
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1
3
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and
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Tij = Tji = p δij + (∂i∂j −
1
3
δij∇2)σ + ∂ivj + ∂jvi +Πij. (26)

By construction, the above functions can be classi#ed as scalars, vectors and tensors, accord-
ing to how they transform under the 3-dimensional Euclidean rotation group,

 δgµν Tµν

Scalar(s) φ, B, ψ, E ρ, u, p, σ
Vector(s) Si, Fi ui, vi
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In order not to overcount degrees of freedom, the vector and tensor parts must satisfy the fol-
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∂iΠij = 0 (3 constraints), Πii = 0 (1 constraint), (30)
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where we have implicitly assumed that all terms vanish ρ, u, ui, p,σ, vi,Πij −→ 0 at in!nity. 
The total number of degrees of freedom is as follows. For the metric perturbation, the total 
number of functions introduced in equations (21)–(23) is 16  =  4 scalars (φ, B, ψ, E)  +  6 vec-
tor components (Si, Fi)  +  6 tensor components of the 3 × 3 symmetric tensor hij. The total 
number of constraints in equations (27), (28) is 6, so the number of independent functions 
in the decomposition de!ned by equations (21)–(23) is 10  =  16  −  6, as expected for a 4 × 4 
symmetric tensor. Analogous consistent counting follows for the energy-momentum tensor, 
decomposed in equations (24)–(26), and subject to the constraint equations (29) and (30).

Given our assumptions about metric perturbations over a #at background ηµν, and asymp-
totic #atness δgµν −→ 0, the decomposition of the metric perturbation into scalar, vector and 
tensor pieces, de!ned by equations (21)–(23), is actually unique. Given a metric perturbation 
δgµν, one can always solve unequivocally for φ, B, ψ, E, Si, Fi and hij, as a function of δgµν. 
Similarly, the decomposition of the energy-momentum tensor by equations (24)–(26) is also 
unique.

All functions introduced so far (scalars, vectors and tensors) are assumed to be arbitrary 
functions of space-time coordinates and, in general, they are not independent from each other. 
For instance, from the conservation of the stress-energy tensor ∂µTµν = 0, it follows that the 
functions introduced in equations (24)–(26), must satisfy

∇2u = ρ̇ (1 constraint), (31)

∇2σ =
3
2
(u̇ − p) (1 constraint), (32)

∇2vi = 2u̇i (2 constraints). (33)

Therefore, considering these 4 extra constraints, in the case of the energy-momentum tensor, 
out of the 10 seemingly independent functions ρ, u, ui, p,σ, vi,Πij, there are in reality only 
6  =  10  −  4 independent degrees of freedom. For instance ρ, ui, p,Πij can be set arbitrarily, 
whereas the remaining functions u,σ, vi can be derived from the latter, by solving the system 
of equations (31)–(33).

Similarly, from the conservation of the Einstein tensor ∂µGµν = 0 (which amounts to 4 
constraints), it follows that out of the 10 metric functions φ, B, Si, ψ, E, Fi, hij in the metric 
decomposition equations (21)–(23), only 6  =  10  −  4 functions are truly independent degrees 
of freedom. The relation among metric components is however more complicated than in the 
case of the stress-energy tensor components equations (31)–(33), as it is the metric perturba-
tion δgµν (and not the Einstein tensor Gµν), that we have decomposed into scalar, vector, 
and tensor parts. In order to reduce the number of independent degrees of freedom in equa-
tions (21)–(23) from 10 to 6, it is more practical to exploit the invariance of linearised gravity, 
under arbitrary in!nitesimal coordinate transformations xµ −→ xµ + ξµ. Following the logic 
of the metric decomposition in equations (21)–(23), let us !rst express an arbitrary in!nitesi-
mal 4-vector displacement as

ξµ = (ξ0, ξi) ≡ (d0, ∂id + di) with ∂idi = 0, (34)

where d, d0, di are general functions of the space-time coordinates (t, x). As the metric perturbation 
transforms under an arbitrary in!nitesimal diffeomorphism as δgµν −→ δgµν − ∂µξν − ∂νξµ, 
see equation (4), one obtains that scalar parts of the metric perturbation in equations (21)–
(23), transform as

φ −→ φ− ḋ0, B −→ B − d0 − ḋ, (35)
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where we have implicitly assumed that all terms vanish ρ, u, ui, p,σ, vi,Πij −→ 0 at in!nity. 
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case of the stress-energy tensor components equations (31)–(33), as it is the metric perturba-
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δgµν, one can always solve unequivocally for φ, B, ψ, E, Si, Fi and hij, as a function of δgµν. 
Similarly, the decomposition of the energy-momentum tensor by equations (24)–(26) is also 
unique.

All functions introduced so far (scalars, vectors and tensors) are assumed to be arbitrary 
functions of space-time coordinates and, in general, they are not independent from each other. 
For instance, from the conservation of the stress-energy tensor ∂µTµν = 0, it follows that the 
functions introduced in equations (24)–(26), must satisfy

∇2u = ρ̇ (1 constraint), (31)

∇2σ =
3
2
(u̇ − p) (1 constraint), (32)

∇2vi = 2u̇i (2 constraints). (33)

Therefore, considering these 4 extra constraints, in the case of the energy-momentum tensor, 
out of the 10 seemingly independent functions ρ, u, ui, p,σ, vi,Πij, there are in reality only 
6  =  10  −  4 independent degrees of freedom. For instance ρ, ui, p,Πij can be set arbitrarily, 
whereas the remaining functions u,σ, vi can be derived from the latter, by solving the system 
of equations (31)–(33).

Similarly, from the conservation of the Einstein tensor ∂µGµν = 0 (which amounts to 4 
constraints), it follows that out of the 10 metric functions φ, B, Si, ψ, E, Fi, hij in the metric 
decomposition equations (21)–(23), only 6  =  10  −  4 functions are truly independent degrees 
of freedom. The relation among metric components is however more complicated than in the 
case of the stress-energy tensor components equations (31)–(33), as it is the metric perturba-
tion δgµν (and not the Einstein tensor Gµν), that we have decomposed into scalar, vector, 
and tensor parts. In order to reduce the number of independent degrees of freedom in equa-
tions (21)–(23) from 10 to 6, it is more practical to exploit the invariance of linearised gravity, 
under arbitrary in!nitesimal coordinate transformations xµ −→ xµ + ξµ. Following the logic 
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constraints), it follows that out of the 10 metric functions φ, B, Si, ψ, E, Fi, hij in the metric 
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ψ −→ ψ +
1
3
∇2d, E −→ E − 2d, (36)

the vector parts as

Si −→ Si − ḋi, Fi −→ Fi − 2di, (37)

and the tensor part as

hij −→ hij. (38)

The 2 degrees of freedom encoded in the tensor perturbation hij are therefore gauge invariant, 
i.e. independent of the system of coordinates (as long as we preserve the in!nitesimal condi-
tion |δgµν | ! 1). Since we know that there should be only 6 (= 10 − 4) physical degrees of 
freedom, it must be possible to reduce the above scalar and vector perturbations (8 functions) 
to only 4 (= 6 − 2) degrees of freedom. In light of equations (35)–(37), one can build new 
scalar and vector perturbations

Φ ≡ −φ+ Ḃ − 1
2

Ë, (39)

Θ ≡ −2ψ − 1
3
∇2E, (40)

Σi ≡ Si −
1
2

Ḟi, with ∂iΣi = 0, (41)

which are directly invariant under arbitrary in!nitesimal coordinate transformations.
Note that for the energy momentum tensor, we did not need to perform a coordinate trans-

formation to exhibit the gauge-invariant independent degrees of freedom, as we just did 
for the metric perturbations: they followed simply after imposing energy-momentum con-
servation, see discussion after equations  (31)–(33). This is a consequence of the fact that, 
in our approach, the energy momentum tensor must be zero in the background, because of 
the assumption of linearisation around Minkowski. In fact, the !rst-order perturbation of a 
generic tensor Tµν = T̄µν + δTµν transforms under an in!nitesimal coordinate transforma-
tion as δTµν −→ δTµν + LξT̄µν, where LξT̄µν denotes the Lie derivative of the background 
component T̄µν, along the vector !eld ξµ (which reduces to equation (4) in #at spacetime and 
for the metric tensor). Therefore, a tensor with T̄µν = 0 is automatically gauge invariant, i.e. 
it is invariant under arbitrary in!nitesimal coordinate transformations. This is the so-called 
Stewart Walker lemma [28, 29].

As the set of variables Φ,Θ,Σi and hij are gauge invariant, and all together represent in total 
6 degrees of freedom (=1 (Φ)  +  1 (Θ)  +  2 (Σi)  +  2 (hij)), we are certain that these variables 
represent the truly physical degrees of freedom of the metric. It must be possible therefore, 
to express the Einstein equations as a function exclusively of these variables. As a matter of 
fact, the Einstein tensor can be written purely in terms of such gauge invariant quantities, as

G00 = −∇2Θ, (42)

G0i = −1
2
∇2Σi − ∂iΘ̇, (43)

Gij = −1
2
!hij − ∂(iΣ̇j) −

1
2
∂i∂j (2Φ+Θ) + δij

[
1
2
∇2 (2Φ+Θ)− Θ̈

]
. (44)
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1
2
∂i∂j (2Φ+Θ) + δij

[
1
2
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]
. (44)
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ψ −→ ψ +
1
3
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Note that for the energy momentum tensor, we did not need to perform a coordinate trans-

formation to exhibit the gauge-invariant independent degrees of freedom, as we just did 
for the metric perturbations: they followed simply after imposing energy-momentum con-
servation, see discussion after equations  (31)–(33). This is a consequence of the fact that, 
in our approach, the energy momentum tensor must be zero in the background, because of 
the assumption of linearisation around Minkowski. In fact, the !rst-order perturbation of a 
generic tensor Tµν = T̄µν + δTµν transforms under an in!nitesimal coordinate transforma-
tion as δTµν −→ δTµν + LξT̄µν, where LξT̄µν denotes the Lie derivative of the background 
component T̄µν, along the vector !eld ξµ (which reduces to equation (4) in #at spacetime and 
for the metric tensor). Therefore, a tensor with T̄µν = 0 is automatically gauge invariant, i.e. 
it is invariant under arbitrary in!nitesimal coordinate transformations. This is the so-called 
Stewart Walker lemma [28, 29].

As the set of variables Φ,Θ,Σi and hij are gauge invariant, and all together represent in total 
6 degrees of freedom (=1 (Φ)  +  1 (Θ)  +  2 (Σi)  +  2 (hij)), we are certain that these variables 
represent the truly physical degrees of freedom of the metric. It must be possible therefore, 
to express the Einstein equations as a function exclusively of these variables. As a matter of 
fact, the Einstein tensor can be written purely in terms of such gauge invariant quantities, as

G00 = −∇2Θ, (42)

G0i = −1
2
∇2Σi − ∂iΘ̇, (43)

Gij = −1
2
!hij − ∂(iΣ̇j) −

1
2
∂i∂j (2Φ+Θ) + δij

[
1
2
∇2 (2Φ+Θ)− Θ̈

]
. (44)

Class. Quantum Grav. 35 (2018) 163001

( 4 d.o.f. 
spurious )



Gravitational Wave Definition

Topical Review

8

GWs are characterised by only two physical degrees of freedom, corresponding to two polari-
sation states. However, this must be true in general, not only in globally vacuum space-times. 
In this section we develop a formalism that renders this fact manifest.

We thus maintain, in the following, the conditions of linearised gravity over a Minkowski 
background (gµν = ηµν + hµν, |hµν | ! 1), but consider the more realistic situation where a 
non-vanishing stress-energy tensor is present, Tµν != 0. The rest of this section is based on 
[25] (see also [26]), which presents the "at space-time limit of Bardeen’s cosmological gauge-
invariant perturbation theory [27]. We follow standard notations in cosmology (that deviate 
somewhat from those of the previous section): the background metric is ḡµν = ηµν, and we 
denote the #rst order metric perturbation as δgµν (this corresponds to hµν in the previous sec-
tion). The main difference with the cosmological setting of [27] is that our metric background 
is Minkowski, and hence the energy momentum tensor Tµν at the background level, must 
vanish.

We begin by decomposing the metric perturbation and the energy-momentum tensor into 
irreducible parts with respect to spatial rotations,

δg00 = −2φ, (21)

δg0i = δgi0 = (∂iB + Si) , (22)

δgij = δgji = −2ψδij + (∂i∂j −
1
3
δij∇2)E + ∂iFj + ∂jFi + hij, (23)

and

T00 = ρ, (24)

T0i = Ti0 = ∂iu + ui, (25)

Tij = Tji = p δij + (∂i∂j −
1
3
δij∇2)σ + ∂ivj + ∂jvi +Πij. (26)

By construction, the above functions can be classi#ed as scalars, vectors and tensors, accord-
ing to how they transform under the 3-dimensional Euclidean rotation group,

 δgµν Tµν

Scalar(s) φ, B, ψ, E ρ, u, p, σ
Vector(s) Si, Fi ui, vi
Tensor(s) hij Πij

In order not to overcount degrees of freedom, the vector and tensor parts must satisfy the fol-
lowing conditions

∂iSi = 0 (1 constraint), ∂iFi = 0 (1 constraint), (27)

∂ihij = 0 (3 constraints), hii = 0 (1 constraint) (28)

and

∂iui = 0 (1 constraint), ∂ivi = 0 (1 constraint), (29)

∂iΠij = 0 (3 constraints), Πii = 0 (1 constraint), (30)
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where we have implicitly assumed that all terms vanish ρ, u, ui, p,σ, vi,Πij −→ 0 at in!nity. 
The total number of degrees of freedom is as follows. For the metric perturbation, the total 
number of functions introduced in equations (21)–(23) is 16  =  4 scalars (φ, B, ψ, E)  +  6 vec-
tor components (Si, Fi)  +  6 tensor components of the 3 × 3 symmetric tensor hij. The total 
number of constraints in equations (27), (28) is 6, so the number of independent functions 
in the decomposition de!ned by equations (21)–(23) is 10  =  16  −  6, as expected for a 4 × 4 
symmetric tensor. Analogous consistent counting follows for the energy-momentum tensor, 
decomposed in equations (24)–(26), and subject to the constraint equations (29) and (30).

Given our assumptions about metric perturbations over a #at background ηµν, and asymp-
totic #atness δgµν −→ 0, the decomposition of the metric perturbation into scalar, vector and 
tensor pieces, de!ned by equations (21)–(23), is actually unique. Given a metric perturbation 
δgµν, one can always solve unequivocally for φ, B, ψ, E, Si, Fi and hij, as a function of δgµν. 
Similarly, the decomposition of the energy-momentum tensor by equations (24)–(26) is also 
unique.

All functions introduced so far (scalars, vectors and tensors) are assumed to be arbitrary 
functions of space-time coordinates and, in general, they are not independent from each other. 
For instance, from the conservation of the stress-energy tensor ∂µTµν = 0, it follows that the 
functions introduced in equations (24)–(26), must satisfy

∇2u = ρ̇ (1 constraint), (31)

∇2σ =
3
2
(u̇ − p) (1 constraint), (32)

∇2vi = 2u̇i (2 constraints). (33)

Therefore, considering these 4 extra constraints, in the case of the energy-momentum tensor, 
out of the 10 seemingly independent functions ρ, u, ui, p,σ, vi,Πij, there are in reality only 
6  =  10  −  4 independent degrees of freedom. For instance ρ, ui, p,Πij can be set arbitrarily, 
whereas the remaining functions u,σ, vi can be derived from the latter, by solving the system 
of equations (31)–(33).

Similarly, from the conservation of the Einstein tensor ∂µGµν = 0 (which amounts to 4 
constraints), it follows that out of the 10 metric functions φ, B, Si, ψ, E, Fi, hij in the metric 
decomposition equations (21)–(23), only 6  =  10  −  4 functions are truly independent degrees 
of freedom. The relation among metric components is however more complicated than in the 
case of the stress-energy tensor components equations (31)–(33), as it is the metric perturba-
tion δgµν (and not the Einstein tensor Gµν), that we have decomposed into scalar, vector, 
and tensor parts. In order to reduce the number of independent degrees of freedom in equa-
tions (21)–(23) from 10 to 6, it is more practical to exploit the invariance of linearised gravity, 
under arbitrary in!nitesimal coordinate transformations xµ −→ xµ + ξµ. Following the logic 
of the metric decomposition in equations (21)–(23), let us !rst express an arbitrary in!nitesi-
mal 4-vector displacement as

ξµ = (ξ0, ξi) ≡ (d0, ∂id + di) with ∂idi = 0, (34)

where d, d0, di are general functions of the space-time coordinates (t, x). As the metric perturbation 
transforms under an arbitrary in!nitesimal diffeomorphism as δgµν −→ δgµν − ∂µξν − ∂νξµ, 
see equation (4), one obtains that scalar parts of the metric perturbation in equations (21)–
(23), transform as

φ −→ φ− ḋ0, B −→ B − d0 − ḋ, (35)
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ψ −→ ψ +
1
3
∇2d, E −→ E − 2d, (36)

the vector parts as

Si −→ Si − ḋi, Fi −→ Fi − 2di, (37)

and the tensor part as

hij −→ hij. (38)

The 2 degrees of freedom encoded in the tensor perturbation hij are therefore gauge invariant, 
i.e. independent of the system of coordinates (as long as we preserve the in!nitesimal condi-
tion |δgµν | ! 1). Since we know that there should be only 6 (= 10 − 4) physical degrees of 
freedom, it must be possible to reduce the above scalar and vector perturbations (8 functions) 
to only 4 (= 6 − 2) degrees of freedom. In light of equations (35)–(37), one can build new 
scalar and vector perturbations

Φ ≡ −φ+ Ḃ − 1
2

Ë, (39)

Θ ≡ −2ψ − 1
3
∇2E, (40)

Σi ≡ Si −
1
2

Ḟi, with ∂iΣi = 0, (41)

which are directly invariant under arbitrary in!nitesimal coordinate transformations.
Note that for the energy momentum tensor, we did not need to perform a coordinate trans-

formation to exhibit the gauge-invariant independent degrees of freedom, as we just did 
for the metric perturbations: they followed simply after imposing energy-momentum con-
servation, see discussion after equations  (31)–(33). This is a consequence of the fact that, 
in our approach, the energy momentum tensor must be zero in the background, because of 
the assumption of linearisation around Minkowski. In fact, the !rst-order perturbation of a 
generic tensor Tµν = T̄µν + δTµν transforms under an in!nitesimal coordinate transforma-
tion as δTµν −→ δTµν + LξT̄µν, where LξT̄µν denotes the Lie derivative of the background 
component T̄µν, along the vector !eld ξµ (which reduces to equation (4) in #at spacetime and 
for the metric tensor). Therefore, a tensor with T̄µν = 0 is automatically gauge invariant, i.e. 
it is invariant under arbitrary in!nitesimal coordinate transformations. This is the so-called 
Stewart Walker lemma [28, 29].

As the set of variables Φ,Θ,Σi and hij are gauge invariant, and all together represent in total 
6 degrees of freedom (=1 (Φ)  +  1 (Θ)  +  2 (Σi)  +  2 (hij)), we are certain that these variables 
represent the truly physical degrees of freedom of the metric. It must be possible therefore, 
to express the Einstein equations as a function exclusively of these variables. As a matter of 
fact, the Einstein tensor can be written purely in terms of such gauge invariant quantities, as

G00 = −∇2Θ, (42)

G0i = −1
2
∇2Σi − ∂iΘ̇, (43)

Gij = −1
2
!hij − ∂(iΣ̇j) −

1
2
∂i∂j (2Φ+Θ) + δij

[
1
2
∇2 (2Φ+Θ)− Θ̈

]
. (44)

Class. Quantum Grav. 35 (2018) 163001

Topical Review

10

ψ −→ ψ +
1
3
∇2d, E −→ E − 2d, (36)

the vector parts as
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GWs are characterised by only two physical degrees of freedom, corresponding to two polari-
sation states. However, this must be true in general, not only in globally vacuum space-times. 
In this section we develop a formalism that renders this fact manifest.

We thus maintain, in the following, the conditions of linearised gravity over a Minkowski 
background (gµν = ηµν + hµν, |hµν | ! 1), but consider the more realistic situation where a 
non-vanishing stress-energy tensor is present, Tµν != 0. The rest of this section is based on 
[25] (see also [26]), which presents the "at space-time limit of Bardeen’s cosmological gauge-
invariant perturbation theory [27]. We follow standard notations in cosmology (that deviate 
somewhat from those of the previous section): the background metric is ḡµν = ηµν, and we 
denote the #rst order metric perturbation as δgµν (this corresponds to hµν in the previous sec-
tion). The main difference with the cosmological setting of [27] is that our metric background 
is Minkowski, and hence the energy momentum tensor Tµν at the background level, must 
vanish.

We begin by decomposing the metric perturbation and the energy-momentum tensor into 
irreducible parts with respect to spatial rotations,

δg00 = −2φ, (21)

δg0i = δgi0 = (∂iB + Si) , (22)

δgij = δgji = −2ψδij + (∂i∂j −
1
3
δij∇2)E + ∂iFj + ∂jFi + hij, (23)

and

T00 = ρ, (24)

T0i = Ti0 = ∂iu + ui, (25)

Tij = Tji = p δij + (∂i∂j −
1
3
δij∇2)σ + ∂ivj + ∂jvi +Πij. (26)

By construction, the above functions can be classi#ed as scalars, vectors and tensors, accord-
ing to how they transform under the 3-dimensional Euclidean rotation group,

 δgµν Tµν

Scalar(s) φ, B, ψ, E ρ, u, p, σ
Vector(s) Si, Fi ui, vi
Tensor(s) hij Πij

In order not to overcount degrees of freedom, the vector and tensor parts must satisfy the fol-
lowing conditions

∂iSi = 0 (1 constraint), ∂iFi = 0 (1 constraint), (27)

∂ihij = 0 (3 constraints), hii = 0 (1 constraint) (28)

and

∂iui = 0 (1 constraint), ∂ivi = 0 (1 constraint), (29)

∂iΠij = 0 (3 constraints), Πii = 0 (1 constraint), (30)
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where we have implicitly assumed that all terms vanish ρ, u, ui, p,σ, vi,Πij −→ 0 at in!nity. 
The total number of degrees of freedom is as follows. For the metric perturbation, the total 
number of functions introduced in equations (21)–(23) is 16  =  4 scalars (φ, B, ψ, E)  +  6 vec-
tor components (Si, Fi)  +  6 tensor components of the 3 × 3 symmetric tensor hij. The total 
number of constraints in equations (27), (28) is 6, so the number of independent functions 
in the decomposition de!ned by equations (21)–(23) is 10  =  16  −  6, as expected for a 4 × 4 
symmetric tensor. Analogous consistent counting follows for the energy-momentum tensor, 
decomposed in equations (24)–(26), and subject to the constraint equations (29) and (30).

Given our assumptions about metric perturbations over a #at background ηµν, and asymp-
totic #atness δgµν −→ 0, the decomposition of the metric perturbation into scalar, vector and 
tensor pieces, de!ned by equations (21)–(23), is actually unique. Given a metric perturbation 
δgµν, one can always solve unequivocally for φ, B, ψ, E, Si, Fi and hij, as a function of δgµν. 
Similarly, the decomposition of the energy-momentum tensor by equations (24)–(26) is also 
unique.

All functions introduced so far (scalars, vectors and tensors) are assumed to be arbitrary 
functions of space-time coordinates and, in general, they are not independent from each other. 
For instance, from the conservation of the stress-energy tensor ∂µTµν = 0, it follows that the 
functions introduced in equations (24)–(26), must satisfy

∇2u = ρ̇ (1 constraint), (31)

∇2σ =
3
2
(u̇ − p) (1 constraint), (32)

∇2vi = 2u̇i (2 constraints). (33)

Therefore, considering these 4 extra constraints, in the case of the energy-momentum tensor, 
out of the 10 seemingly independent functions ρ, u, ui, p,σ, vi,Πij, there are in reality only 
6  =  10  −  4 independent degrees of freedom. For instance ρ, ui, p,Πij can be set arbitrarily, 
whereas the remaining functions u,σ, vi can be derived from the latter, by solving the system 
of equations (31)–(33).

Similarly, from the conservation of the Einstein tensor ∂µGµν = 0 (which amounts to 4 
constraints), it follows that out of the 10 metric functions φ, B, Si, ψ, E, Fi, hij in the metric 
decomposition equations (21)–(23), only 6  =  10  −  4 functions are truly independent degrees 
of freedom. The relation among metric components is however more complicated than in the 
case of the stress-energy tensor components equations (31)–(33), as it is the metric perturba-
tion δgµν (and not the Einstein tensor Gµν), that we have decomposed into scalar, vector, 
and tensor parts. In order to reduce the number of independent degrees of freedom in equa-
tions (21)–(23) from 10 to 6, it is more practical to exploit the invariance of linearised gravity, 
under arbitrary in!nitesimal coordinate transformations xµ −→ xµ + ξµ. Following the logic 
of the metric decomposition in equations (21)–(23), let us !rst express an arbitrary in!nitesi-
mal 4-vector displacement as

ξµ = (ξ0, ξi) ≡ (d0, ∂id + di) with ∂idi = 0, (34)

where d, d0, di are general functions of the space-time coordinates (t, x). As the metric perturbation 
transforms under an arbitrary in!nitesimal diffeomorphism as δgµν −→ δgµν − ∂µξν − ∂νξµ, 
see equation (4), one obtains that scalar parts of the metric perturbation in equations (21)–
(23), transform as

φ −→ φ− ḋ0, B −→ B − d0 − ḋ, (35)
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ψ −→ ψ +
1
3
∇2d, E −→ E − 2d, (36)

the vector parts as

Si −→ Si − ḋi, Fi −→ Fi − 2di, (37)

and the tensor part as

hij −→ hij. (38)

The 2 degrees of freedom encoded in the tensor perturbation hij are therefore gauge invariant, 
i.e. independent of the system of coordinates (as long as we preserve the in!nitesimal condi-
tion |δgµν | ! 1). Since we know that there should be only 6 (= 10 − 4) physical degrees of 
freedom, it must be possible to reduce the above scalar and vector perturbations (8 functions) 
to only 4 (= 6 − 2) degrees of freedom. In light of equations (35)–(37), one can build new 
scalar and vector perturbations

Φ ≡ −φ+ Ḃ − 1
2

Ë, (39)

Θ ≡ −2ψ − 1
3
∇2E, (40)

Σi ≡ Si −
1
2

Ḟi, with ∂iΣi = 0, (41)

which are directly invariant under arbitrary in!nitesimal coordinate transformations.
Note that for the energy momentum tensor, we did not need to perform a coordinate trans-

formation to exhibit the gauge-invariant independent degrees of freedom, as we just did 
for the metric perturbations: they followed simply after imposing energy-momentum con-
servation, see discussion after equations  (31)–(33). This is a consequence of the fact that, 
in our approach, the energy momentum tensor must be zero in the background, because of 
the assumption of linearisation around Minkowski. In fact, the !rst-order perturbation of a 
generic tensor Tµν = T̄µν + δTµν transforms under an in!nitesimal coordinate transforma-
tion as δTµν −→ δTµν + LξT̄µν, where LξT̄µν denotes the Lie derivative of the background 
component T̄µν, along the vector !eld ξµ (which reduces to equation (4) in #at spacetime and 
for the metric tensor). Therefore, a tensor with T̄µν = 0 is automatically gauge invariant, i.e. 
it is invariant under arbitrary in!nitesimal coordinate transformations. This is the so-called 
Stewart Walker lemma [28, 29].

As the set of variables Φ,Θ,Σi and hij are gauge invariant, and all together represent in total 
6 degrees of freedom (=1 (Φ)  +  1 (Θ)  +  2 (Σi)  +  2 (hij)), we are certain that these variables 
represent the truly physical degrees of freedom of the metric. It must be possible therefore, 
to express the Einstein equations as a function exclusively of these variables. As a matter of 
fact, the Einstein tensor can be written purely in terms of such gauge invariant quantities, as

G00 = −∇2Θ, (42)

G0i = −1
2
∇2Σi − ∂iΘ̇, (43)

Gij = −1
2
!hij − ∂(iΣ̇j) −

1
2
∂i∂j (2Φ+Θ) + δij

[
1
2
∇2 (2Φ+Θ)− Θ̈

]
. (44)
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 δgµν Tµν

Scalar(s) φ, B, ψ, E ρ, u, p, σ
Vector(s) Si, Fi ui, vi
Tensor(s) hij Πij

In order not to overcount degrees of freedom, the vector and tensor parts must satisfy the fol-
lowing conditions

∂iSi = 0 (1 constraint), ∂iFi = 0 (1 constraint), (27)

∂ihij = 0 (3 constraints), hii = 0 (1 constraint) (28)

and

∂iui = 0 (1 constraint), ∂ivi = 0 (1 constraint), (29)

∂iΠij = 0 (3 constraints), Πii = 0 (1 constraint), (30)
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GWs are characterised by only two physical degrees of freedom, corresponding to two polari-
sation states. However, this must be true in general, not only in globally vacuum space-times. 
In this section we develop a formalism that renders this fact manifest.
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where we have implicitly assumed that all terms vanish ρ, u, ui, p,σ, vi,Πij −→ 0 at in!nity. 
The total number of degrees of freedom is as follows. For the metric perturbation, the total 
number of functions introduced in equations (21)–(23) is 16  =  4 scalars (φ, B, ψ, E)  +  6 vec-
tor components (Si, Fi)  +  6 tensor components of the 3 × 3 symmetric tensor hij. The total 
number of constraints in equations (27), (28) is 6, so the number of independent functions 
in the decomposition de!ned by equations (21)–(23) is 10  =  16  −  6, as expected for a 4 × 4 
symmetric tensor. Analogous consistent counting follows for the energy-momentum tensor, 
decomposed in equations (24)–(26), and subject to the constraint equations (29) and (30).

Given our assumptions about metric perturbations over a #at background ηµν, and asymp-
totic #atness δgµν −→ 0, the decomposition of the metric perturbation into scalar, vector and 
tensor pieces, de!ned by equations (21)–(23), is actually unique. Given a metric perturbation 
δgµν, one can always solve unequivocally for φ, B, ψ, E, Si, Fi and hij, as a function of δgµν. 
Similarly, the decomposition of the energy-momentum tensor by equations (24)–(26) is also 
unique.

All functions introduced so far (scalars, vectors and tensors) are assumed to be arbitrary 
functions of space-time coordinates and, in general, they are not independent from each other. 
For instance, from the conservation of the stress-energy tensor ∂µTµν = 0, it follows that the 
functions introduced in equations (24)–(26), must satisfy

∇2u = ρ̇ (1 constraint), (31)

∇2σ =
3
2
(u̇ − p) (1 constraint), (32)

∇2vi = 2u̇i (2 constraints). (33)

Therefore, considering these 4 extra constraints, in the case of the energy-momentum tensor, 
out of the 10 seemingly independent functions ρ, u, ui, p,σ, vi,Πij, there are in reality only 
6  =  10  −  4 independent degrees of freedom. For instance ρ, ui, p,Πij can be set arbitrarily, 
whereas the remaining functions u,σ, vi can be derived from the latter, by solving the system 
of equations (31)–(33).

Similarly, from the conservation of the Einstein tensor ∂µGµν = 0 (which amounts to 4 
constraints), it follows that out of the 10 metric functions φ, B, Si, ψ, E, Fi, hij in the metric 
decomposition equations (21)–(23), only 6  =  10  −  4 functions are truly independent degrees 
of freedom. The relation among metric components is however more complicated than in the 
case of the stress-energy tensor components equations (31)–(33), as it is the metric perturba-
tion δgµν (and not the Einstein tensor Gµν), that we have decomposed into scalar, vector, 
and tensor parts. In order to reduce the number of independent degrees of freedom in equa-
tions (21)–(23) from 10 to 6, it is more practical to exploit the invariance of linearised gravity, 
under arbitrary in!nitesimal coordinate transformations xµ −→ xµ + ξµ. Following the logic 
of the metric decomposition in equations (21)–(23), let us !rst express an arbitrary in!nitesi-
mal 4-vector displacement as

ξµ = (ξ0, ξi) ≡ (d0, ∂id + di) with ∂idi = 0, (34)

where d, d0, di are general functions of the space-time coordinates (t, x). As the metric perturbation 
transforms under an arbitrary in!nitesimal diffeomorphism as δgµν −→ δgµν − ∂µξν − ∂νξµ, 
see equation (4), one obtains that scalar parts of the metric perturbation in equations (21)–
(23), transform as

φ −→ φ− ḋ0, B −→ B − d0 − ḋ, (35)
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ψ −→ ψ +
1
3
∇2d, E −→ E − 2d, (36)

the vector parts as

Si −→ Si − ḋi, Fi −→ Fi − 2di, (37)

and the tensor part as

hij −→ hij. (38)

The 2 degrees of freedom encoded in the tensor perturbation hij are therefore gauge invariant, 
i.e. independent of the system of coordinates (as long as we preserve the in!nitesimal condi-
tion |δgµν | ! 1). Since we know that there should be only 6 (= 10 − 4) physical degrees of 
freedom, it must be possible to reduce the above scalar and vector perturbations (8 functions) 
to only 4 (= 6 − 2) degrees of freedom. In light of equations (35)–(37), one can build new 
scalar and vector perturbations

Φ ≡ −φ+ Ḃ − 1
2

Ë, (39)

Θ ≡ −2ψ − 1
3
∇2E, (40)

Σi ≡ Si −
1
2

Ḟi, with ∂iΣi = 0, (41)

which are directly invariant under arbitrary in!nitesimal coordinate transformations.
Note that for the energy momentum tensor, we did not need to perform a coordinate trans-

formation to exhibit the gauge-invariant independent degrees of freedom, as we just did 
for the metric perturbations: they followed simply after imposing energy-momentum con-
servation, see discussion after equations  (31)–(33). This is a consequence of the fact that, 
in our approach, the energy momentum tensor must be zero in the background, because of 
the assumption of linearisation around Minkowski. In fact, the !rst-order perturbation of a 
generic tensor Tµν = T̄µν + δTµν transforms under an in!nitesimal coordinate transforma-
tion as δTµν −→ δTµν + LξT̄µν, where LξT̄µν denotes the Lie derivative of the background 
component T̄µν, along the vector !eld ξµ (which reduces to equation (4) in #at spacetime and 
for the metric tensor). Therefore, a tensor with T̄µν = 0 is automatically gauge invariant, i.e. 
it is invariant under arbitrary in!nitesimal coordinate transformations. This is the so-called 
Stewart Walker lemma [28, 29].

As the set of variables Φ,Θ,Σi and hij are gauge invariant, and all together represent in total 
6 degrees of freedom (=1 (Φ)  +  1 (Θ)  +  2 (Σi)  +  2 (hij)), we are certain that these variables 
represent the truly physical degrees of freedom of the metric. It must be possible therefore, 
to express the Einstein equations as a function exclusively of these variables. As a matter of 
fact, the Einstein tensor can be written purely in terms of such gauge invariant quantities, as

G00 = −∇2Θ, (42)

G0i = −1
2
∇2Σi − ∂iΘ̇, (43)

Gij = −1
2
!hij − ∂(iΣ̇j) −

1
2
∂i∂j (2Φ+Θ) + δij

[
1
2
∇2 (2Φ+Θ)− Θ̈

]
. (44)
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GWs are characterised by only two physical degrees of freedom, corresponding to two polari-
sation states. However, this must be true in general, not only in globally vacuum space-times. 
In this section we develop a formalism that renders this fact manifest.

We thus maintain, in the following, the conditions of linearised gravity over a Minkowski 
background (gµν = ηµν + hµν, |hµν | ! 1), but consider the more realistic situation where a 
non-vanishing stress-energy tensor is present, Tµν != 0. The rest of this section is based on 
[25] (see also [26]), which presents the "at space-time limit of Bardeen’s cosmological gauge-
invariant perturbation theory [27]. We follow standard notations in cosmology (that deviate 
somewhat from those of the previous section): the background metric is ḡµν = ηµν, and we 
denote the #rst order metric perturbation as δgµν (this corresponds to hµν in the previous sec-
tion). The main difference with the cosmological setting of [27] is that our metric background 
is Minkowski, and hence the energy momentum tensor Tµν at the background level, must 
vanish.

We begin by decomposing the metric perturbation and the energy-momentum tensor into 
irreducible parts with respect to spatial rotations,

δg00 = −2φ, (21)

δg0i = δgi0 = (∂iB + Si) , (22)

δgij = δgji = −2ψδij + (∂i∂j −
1
3
δij∇2)E + ∂iFj + ∂jFi + hij, (23)

and

T00 = ρ, (24)

T0i = Ti0 = ∂iu + ui, (25)

Tij = Tji = p δij + (∂i∂j −
1
3
δij∇2)σ + ∂ivj + ∂jvi +Πij. (26)

By construction, the above functions can be classi#ed as scalars, vectors and tensors, accord-
ing to how they transform under the 3-dimensional Euclidean rotation group,

 δgµν Tµν

Scalar(s) φ, B, ψ, E ρ, u, p, σ
Vector(s) Si, Fi ui, vi
Tensor(s) hij Πij

In order not to overcount degrees of freedom, the vector and tensor parts must satisfy the fol-
lowing conditions

∂iSi = 0 (1 constraint), ∂iFi = 0 (1 constraint), (27)

∂ihij = 0 (3 constraints), hii = 0 (1 constraint) (28)

and

∂iui = 0 (1 constraint), ∂ivi = 0 (1 constraint), (29)

∂iΠij = 0 (3 constraints), Πii = 0 (1 constraint), (30)
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where we have implicitly assumed that all terms vanish ρ, u, ui, p,σ, vi,Πij −→ 0 at in!nity. 
The total number of degrees of freedom is as follows. For the metric perturbation, the total 
number of functions introduced in equations (21)–(23) is 16  =  4 scalars (φ, B, ψ, E)  +  6 vec-
tor components (Si, Fi)  +  6 tensor components of the 3 × 3 symmetric tensor hij. The total 
number of constraints in equations (27), (28) is 6, so the number of independent functions 
in the decomposition de!ned by equations (21)–(23) is 10  =  16  −  6, as expected for a 4 × 4 
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of the metric decomposition in equations (21)–(23), let us !rst express an arbitrary in!nitesi-
mal 4-vector displacement as

ξµ = (ξ0, ξi) ≡ (d0, ∂id + di) with ∂idi = 0, (34)
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transforms under an arbitrary in!nitesimal diffeomorphism as δgµν −→ δgµν − ∂µξν − ∂νξµ, 
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(23), transform as
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ψ −→ ψ +
1
3
∇2d, E −→ E − 2d, (36)

the vector parts as

Si −→ Si − ḋi, Fi −→ Fi − 2di, (37)

and the tensor part as

hij −→ hij. (38)

The 2 degrees of freedom encoded in the tensor perturbation hij are therefore gauge invariant, 
i.e. independent of the system of coordinates (as long as we preserve the in!nitesimal condi-
tion |δgµν | ! 1). Since we know that there should be only 6 (= 10 − 4) physical degrees of 
freedom, it must be possible to reduce the above scalar and vector perturbations (8 functions) 
to only 4 (= 6 − 2) degrees of freedom. In light of equations (35)–(37), one can build new 
scalar and vector perturbations

Φ ≡ −φ+ Ḃ − 1
2

Ë, (39)

Θ ≡ −2ψ − 1
3
∇2E, (40)

Σi ≡ Si −
1
2

Ḟi, with ∂iΣi = 0, (41)

which are directly invariant under arbitrary in!nitesimal coordinate transformations.
Note that for the energy momentum tensor, we did not need to perform a coordinate trans-

formation to exhibit the gauge-invariant independent degrees of freedom, as we just did 
for the metric perturbations: they followed simply after imposing energy-momentum con-
servation, see discussion after equations  (31)–(33). This is a consequence of the fact that, 
in our approach, the energy momentum tensor must be zero in the background, because of 
the assumption of linearisation around Minkowski. In fact, the !rst-order perturbation of a 
generic tensor Tµν = T̄µν + δTµν transforms under an in!nitesimal coordinate transforma-
tion as δTµν −→ δTµν + LξT̄µν, where LξT̄µν denotes the Lie derivative of the background 
component T̄µν, along the vector !eld ξµ (which reduces to equation (4) in #at spacetime and 
for the metric tensor). Therefore, a tensor with T̄µν = 0 is automatically gauge invariant, i.e. 
it is invariant under arbitrary in!nitesimal coordinate transformations. This is the so-called 
Stewart Walker lemma [28, 29].

As the set of variables Φ,Θ,Σi and hij are gauge invariant, and all together represent in total 
6 degrees of freedom (=1 (Φ)  +  1 (Θ)  +  2 (Σi)  +  2 (hij)), we are certain that these variables 
represent the truly physical degrees of freedom of the metric. It must be possible therefore, 
to express the Einstein equations as a function exclusively of these variables. As a matter of 
fact, the Einstein tensor can be written purely in terms of such gauge invariant quantities, as

G00 = −∇2Θ, (42)

G0i = −1
2
∇2Σi − ∂iΘ̇, (43)

Gij = −1
2
!hij − ∂(iΣ̇j) −

1
2
∂i∂j (2Φ+Θ) + δij

[
1
2
∇2 (2Φ+Θ)− Θ̈

]
. (44)
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Si −→ Si − ḋi, Fi −→ Fi − 2di, (37)

and the tensor part as

hij −→ hij. (38)

The 2 degrees of freedom encoded in the tensor perturbation hij are therefore gauge invariant, 
i.e. independent of the system of coordinates (as long as we preserve the in!nitesimal condi-
tion |δgµν | ! 1). Since we know that there should be only 6 (= 10 − 4) physical degrees of 
freedom, it must be possible to reduce the above scalar and vector perturbations (8 functions) 
to only 4 (= 6 − 2) degrees of freedom. In light of equations (35)–(37), one can build new 
scalar and vector perturbations

Φ ≡ −φ+ Ḃ − 1
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Si −→ Si − ḋi, Fi −→ Fi − 2di, (37)

and the tensor part as

hij −→ hij. (38)

The 2 degrees of freedom encoded in the tensor perturbation hij are therefore gauge invariant, 
i.e. independent of the system of coordinates (as long as we preserve the in!nitesimal condi-
tion |δgµν | ! 1). Since we know that there should be only 6 (= 10 − 4) physical degrees of 
freedom, it must be possible to reduce the above scalar and vector perturbations (8 functions) 
to only 4 (= 6 − 2) degrees of freedom. In light of equations (35)–(37), one can build new 
scalar and vector perturbations

Φ ≡ −φ+ Ḃ − 1
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tion |δgµν | ! 1). Since we know that there should be only 6 (= 10 − 4) physical degrees of 
freedom, it must be possible to reduce the above scalar and vector perturbations (8 functions) 
to only 4 (= 6 − 2) degrees of freedom. In light of equations (35)–(37), one can build new 
scalar and vector perturbations

Φ ≡ −φ+ Ḃ − 1
2

Ë, (39)

Θ ≡ −2ψ − 1
3
∇2E, (40)

Σi ≡ Si −
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Ḟi, with ∂iΣi = 0, (41)

which are directly invariant under arbitrary in!nitesimal coordinate transformations.
Note that for the energy momentum tensor, we did not need to perform a coordinate trans-

formation to exhibit the gauge-invariant independent degrees of freedom, as we just did 
for the metric perturbations: they followed simply after imposing energy-momentum con-
servation, see discussion after equations  (31)–(33). This is a consequence of the fact that, 
in our approach, the energy momentum tensor must be zero in the background, because of 
the assumption of linearisation around Minkowski. In fact, the !rst-order perturbation of a 
generic tensor Tµν = T̄µν + δTµν transforms under an in!nitesimal coordinate transforma-
tion as δTµν −→ δTµν + LξT̄µν, where LξT̄µν denotes the Lie derivative of the background 
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it is invariant under arbitrary in!nitesimal coordinate transformations. This is the so-called 
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Introducing now equations  (42)–(44) in the left hand side of the Einstein equa-
tions Gµν = 1

m2
p
Tµν , and equations (24)–(26) in the right hand side, one "nds, with the help of 

equations (31)–(33), that

∇2Θ = − 1
m2

p
ρ, ∇2Φ = 1

2m2
p
(ρ+ 3p − 3u̇) ,

∇2Σi = − 2
m2

p
Si, !hij = − 2

m2
p
Πij.

 (45)

It appears that only the tensor part of the metric hij obeys a wave equation. The other variables 
Θ, Φ and Σi , obey Poisson-like equations. Indeed, in a globally vacuum space-time, the above 
equations reduce to "ve Laplace equations and a wave equation,

∇2Θ = 0, ∇2Φ = 0,

∇2Σi = 0, !hij = 0.
 (46)

This demonstrates explicitly that, among the gauge-invariant degrees of freedom of the metric 
perturbation Θ,Φ,Σi and hij, only the tensor part hij (which has two independent components) 
represents radiative degrees of freedom that can propagate in vacuum.

The above statement is actually independent of the system of reference, as long as the met-
ric perturbation remains as such, i.e. a perturbation |δgµν | ! 1. In section 2.1 we found that 
the invariance under in"nitesimal coordinate transformations of the linearised theory, allows 
to saturate the gauge freedom once one reduces the metric perturbations to only 2 degrees of 
freedom, in the transverse-traceless gauge and in vacuum. However, identifying correctly the 
truly gauge invariant and radiative degrees of freedom is not just a matter of a gauge choice. 
In some gauges, as e.g. the Lorentz one, it is possible to have all metric components satisfying 
a wave equation, but this is only a ‘gauge artefact’, arising due to the choice of coordinates. 
Such gauge choices, although useful for calculations, may mistakenly led to identify pure 
gauge modes, with truly physical gravitational radiation.

To summarise, in general, a metric perturbation δgµν contains: (i) gauge spurious degrees 
of freedom, (ii) physical but non-radiative degrees of freedom, and (iii) physical radiative 
degrees of freedom. We have found that, using in"nitesimal coordinate transformations, 
one can arrive to the result that only two physical radiative degrees of freedom are relevant. 
However, due to the presence of the physical non-radiative degrees of freedom, these cannot 
be made explicit, unless in vacuum: it is not possible in general to write the metric perturba-
tion in the TT gauge, since usually we cannot eliminate the temporal comp onents of the stress-
energy tensor that do not vanish T00, T0i != 0. Nonetheless, here we have demonstrated that 
the linearised metric perturbation can be split up uniquely into scalar, vector and tensor parts, 
as in equations (21)–(23). This decomposition contains all type of degrees of freedom (i)–(iii). 
From Einstein equations it appears clearly that the physical radiative degrees of freedom cor-
respond only to the tensor piece of the metric perturbation, i.e. to the piece that satis"es a wave 
equation and veri"es the TT gauge conditions (often referred to as the TT piece), irrespective 
of the gauge choice. In vacuum, the TT-gauge happens to correspond to the set of coordinate 
systems where the whole metric perturbation reduces to the physical radiative degrees of 
freedom. In the presence of matter, there are instead four physical degrees of freedom on top 
of the TT ones. Yet, the latter are—unmistakably—the only physical degrees of freedom truly 
representing gravitational radiation, independently of the gauge choice, and/or the presence 
of matter.
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It appears that only the tensor part of the metric hij obeys a wave equation. The other variables 
Θ, Φ and Σi , obey Poisson-like equations. Indeed, in a globally vacuum space-time, the above 
equations reduce to "ve Laplace equations and a wave equation,

∇2Θ = 0, ∇2Φ = 0,

∇2Σi = 0, !hij = 0.
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This demonstrates explicitly that, among the gauge-invariant degrees of freedom of the metric 
perturbation Θ,Φ,Σi and hij, only the tensor part hij (which has two independent components) 
represents radiative degrees of freedom that can propagate in vacuum.

The above statement is actually independent of the system of reference, as long as the met-
ric perturbation remains as such, i.e. a perturbation |δgµν | ! 1. In section 2.1 we found that 
the invariance under in"nitesimal coordinate transformations of the linearised theory, allows 
to saturate the gauge freedom once one reduces the metric perturbations to only 2 degrees of 
freedom, in the transverse-traceless gauge and in vacuum. However, identifying correctly the 
truly gauge invariant and radiative degrees of freedom is not just a matter of a gauge choice. 
In some gauges, as e.g. the Lorentz one, it is possible to have all metric components satisfying 
a wave equation, but this is only a ‘gauge artefact’, arising due to the choice of coordinates. 
Such gauge choices, although useful for calculations, may mistakenly led to identify pure 
gauge modes, with truly physical gravitational radiation.

To summarise, in general, a metric perturbation δgµν contains: (i) gauge spurious degrees 
of freedom, (ii) physical but non-radiative degrees of freedom, and (iii) physical radiative 
degrees of freedom. We have found that, using in"nitesimal coordinate transformations, 
one can arrive to the result that only two physical radiative degrees of freedom are relevant. 
However, due to the presence of the physical non-radiative degrees of freedom, these cannot 
be made explicit, unless in vacuum: it is not possible in general to write the metric perturba-
tion in the TT gauge, since usually we cannot eliminate the temporal comp onents of the stress-
energy tensor that do not vanish T00, T0i != 0. Nonetheless, here we have demonstrated that 
the linearised metric perturbation can be split up uniquely into scalar, vector and tensor parts, 
as in equations (21)–(23). This decomposition contains all type of degrees of freedom (i)–(iii). 
From Einstein equations it appears clearly that the physical radiative degrees of freedom cor-
respond only to the tensor piece of the metric perturbation, i.e. to the piece that satis"es a wave 
equation and veri"es the TT gauge conditions (often referred to as the TT piece), irrespective 
of the gauge choice. In vacuum, the TT-gauge happens to correspond to the set of coordinate 
systems where the whole metric perturbation reduces to the physical radiative degrees of 
freedom. In the presence of matter, there are instead four physical degrees of freedom on top 
of the TT ones. Yet, the latter are—unmistakably—the only physical degrees of freedom truly 
representing gravitational radiation, independently of the gauge choice, and/or the presence 
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From Einstein equations it appears clearly that the physical radiative degrees of freedom cor-
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degrees of freedom. We have found that, using in"nitesimal coordinate transformations, 
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