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Upstream the RG?

In this talk, I will revisit a famous irrelevant deformation of N “ 4 SYM,

LSYM ` hO8 ` . . .

O8 is the leading single-trace irrelevant operator pE “ 8q that preserves all 16 Q’s in R4.

A maximally SUSY RG flow ending in planar N “ 4 SYM generically takes this form in the IR.

Recent remarkable progress in flowing up the RG in d “ 2:
T T̄ deformation appears to be well-defined. The UV theory is not a conventional local QFT.

O8 is in some ways a d “ 4, N “ 4 version of T T̄ . Analogous story in N “ 4 SYM?



To preserve SUSY, need to add top component of a multiplet.

Leading irrelevant deformation is Q4Q̃4105, top component of the 1/2 BPS multiplet in the
four-index symmetric traceless irrep of SOp6qR. Unique F-term that preserves full R-symmetry.

Single-trace version:

OST
8 “ Q4Q̃4 Tr ΦpIΦJΦKΦLq

“ Tr
”

F 4 ´
1

4
pF 2q2 ` 4

`

FmpF
np ´ 1

4FpqF
pqδnm

˘

DmΦIDnΦI

´pDmΦIqpD
mΦIqpDnΦJqpD

nΦJq ` 2pDmΦIqpD
mΦJqpDnΦIqpD

nΦJq ` ...
ı

Double-trace version:

Q4Q̃4 TrφpIφJ TrφKφLq “ TmnTmn `OτOτ̄ ` . . .

A bit like T T̄ indeed! But it clearly does not have the same “semi-topological” nature.
We will attempt to define the deformation in conformal perturbation theory, not in terms of an
evolution equation at finite h.



Most intriguing example of such a flow is the full EFT on N D3 branes, h „ pα1q2.

Long-standing dream to generalize the AdS/CFT duality:
Full D3 brane geometry (asymptotic to flat space) Ø full D3 brane effective action?

Intriligator speculated that closed string theory on

ds2 “ H´1{2dxmdxm `H
1{2dxIdxI , Hprq “ h̃`

R4

r4
, R4 “ 4πgsNpα

1q4

is dual to to
LSYM ` h̃R

4O8 .

This proposal passes a leading order check. LR van Raamsdonk

An obvious difficulty of this idea is making sense of the field theory side. Full open SFT?
Can we now make progress?



On S3 ˆ R

One novelty of our approach is that we will study the deformation on S3 ˆ R.

For h “ 0, map R4 Ñ S3 ˆ R by Weyl transformation. Full psup2, 2|4q superalgebra is of
course preserved.

For h ‰ 0, we can preserve the subgroup of “rigid” (i.e. non-conformal) superisometries

psup2|2q ˆ psup2|2q ˙ R2

The preserved bosonic symmetries comprise the isometries

SOp4q ˆ Rτ – SUp2qα ˆ SUp2q 9α ˆ Rτ

and the R-symmetries
SUp2qa ˆ SUp2q 9a ˆ Up1qJ Ă SUp4qR

Superalgebra is two copies of sup2|2q, with common central extension H ´ J ,

where H is the generator of τ translations.



To preserve SUSY on S3 ˆ R, the irrelevant deformation hO8 must be supplemented with
curvature corrections Op1{`kq, where ` is the radius of S3.

A priori a hard problem, leading to an infinite expansion.

Fortunately, we found an elegant off-shell formalism (following Berkovits, Evans, Pestun).
We can linearly realize 8 of the 16 supersymmetries, the ones with say J “ 1{2.

Seven auxiliary fields, split as 3+4: Kµ̂ spatial vector on S3 and Ki vector of SOp4qR,
preserving the full isometries of S3 ˆ R and the full SOp4qR ˆ Up1qJ R-symmetry,

The remaining 8 supersymmetries are realized on-shell, provided we turn on an imaginary
Up1qJ background connection along (Euclidean) time direction τ

V “
i

`
dτ , Dτ ” Bτ `

J

`



It is convenient to rename the six scalar fields as

Z , Z̄ , φa 9a ,

with Up1qJ assignments JpZq “ `1, JpZ̄q “ ´1, Jpφa 9aq “ 0.

It is immediate to set up a superspace formalism, defining the superfield

Z̄pθaα, θ̃
9a 9αq “ Z̄ ´ 2iεabεαβΨ´aα θbβ ´ 2iε

9a9bε 9α 9βΨ 9a 9α
´ θ̃

9b 9β ` . . .

We now have the full classical action

SpgYM, hq “ SSYM ` h

ż

S3ˆR

?
g d4x

ż

d4θd4θ̃Tr Z̄pθ, θ̃q4 ` h.c.

Integrating out the auxiliary fields generate an infinite power expansion in h.



To leading order in h, classical Lagrangian

L “ LSYM ` h

„

O8 `
O7

`
` . . .

O4

`4



`Oph2q

where Oi are components of the 105 supermultiplet. For example,

O4 “ STrp3Z2Z̄2 ´ 6ZZ̄φjφj ` φiφiφjφjq

is the SOp4qR ˆ Up1qJ singlet piece of the superprimary.

At the quantum level, must of add counterterms and fine tune.
The procedure is intrinsically ambiguous, barring additional input.



Spectral problem and spin chains

State/operator map is lost, but it makes perfect sense to ask how the energy spectrum of
states. Usual spin-chain picture.

The spectrum of the planar theory is calculated by a deformation Hpg2, hq of the spin-chain
Hamiltonian Hpg2q of N “ 4 SYM.

Much of the familiar story goes through.
Our deformation is hermitian and preserve “parity” (in the spin chain sense).



For h ‰ 0, magnons are not Goldstones, but their dispersion relation and their S-matrix is still
constrainted by Beisert’s triply centrally extended sup2|2q.

tSαa,Qb
βu “ δabLαβ ` δαβRb

a `
1

2
δab δ

α
β pH ´ Jq .

tQa
α ,Qb

βu “ εabεαβ P , tSαa ,Sbβu “ εabε
αβ K ,

By the same argument, magnon dispersion relation

Eppq ´ J “
1

2

c

1` 16αpg2, h{`4q sin2
´p

2

¯

The sup2|2q symmetry also completely fixes the matrix structure of 2 Ñ 2 scattering.

The only freedom in the 2 Ñ 2 S-matrix is thus in the dressing phase.

Of course, still non-trivial to ask whether nÑ n scattering factorizes.
To try and answer this question we turn to explicit calculations.



The SUp2|2q ˙ Up1q sector

Impractical to do perturbation theory using the complicated action we derived.
But symmetry-based methods are very powerful.

We restrict to the subsector with elementary fields

φa ” φa 91 , ψα ” ψα 91 , Z .

where a “ 1, 2 and α “ ˘. This subsector is analogous to the SUp2|3q sector of N “ 4 SYM
(with Z Ñ φ3), but we have the smaller symmetry SUp2|2q ˙ Up1q.

We have a double expansion in g2 and h, but from the abstract symmetry viewpoint they
appear on the same footing. A term Opg2ihjq corresponds to 2i` j “loop” order.



Following Beisert, we use symmetry to constrain the action of the generators of
SUp2|2q ˙ Up1q acting on spin-chain states.
As usual, the symbols

 

A1...An

B1...Bm

(

represent the tensor structures. At a given “loop” order k the generators should take the form

Jk „
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B1...Bm

(

, with n`m “ k ` 2

By imposing closure of the algebra, hermiticity and parity we find that at one-loop
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There is only one overall constant, and this is in fact the familiar one-loop result for the
SUp2|3q chain. Automatic symmetry enhancement to this lowest order.



At two loops, calculation more involved but still feasible.

Closure of the SUp2|2q ˙ Up1q algebra, hermiticity and dispersion relation fix H4 uniquely,
up to similarity and redefinition of the coupling.

The deformation makes no difference even at two loops!
To this order, again automatic symmetry enhancement to SUp2|3q.

Clearly, no dynamical test of integrability yet.



We can however ask more structural questions.
Does there exist an integrable long-range spin-chain which is different from the N “ 4 case?

Beisert, Fievét, de Leeuw, Loebbert: general analysis of integrable long range XXZ chains.
They found a large class of models encoded in the Bethe ansatz

exppippukqLq “ exppiφLq
ź

j‰k

expp´2iθpuk, ujqq
sinh ~puk ´ uj ` iq
sinh ~puk ´ uj ´ iq

θpuk, ujq “
8
ÿ

sąr“2

βr,spqrpukqqspujq ´ qspukqqrpujqq `
8
ÿ

r“2

ηrpqrpukq ´ qrpujqq

We should repeat the analysis for the SUp2|2q ˆ Up1q chain!

Note that the XXZ chain can be viewed as a closed of subsector of the SUp2|2q ˙ Up1q chain.
Since the only departure from N “ 4 can be in the dressing phase, we must take ~ “ φ ” 0.

Still, ample freedom is left. Crossing equation gives extra constraints, but a priori no obstacle.



Holographic interpretation?

A natural setting are the “bubbling” geometries of Lin Lunin Maldacena (LLM).
Generally, SUp2|2q ˆ SUp2|2q symmetry and one can impose additional Up1qJ .

LLM geometries describe the backreaction of “additional” D3 branes (giant gravitons) in global
AdS5 ˆ S

5. The extreme UV asymptotics are always AdS5 ˆ S
5.

An LLM geometry is fully specified by prescribing ˘1 boundary conditions on a
two-dimensional plane: bicoloring of the plane.

Dually, it corresponds to considering N “ 4 in a non-trivial half-BPS state, with E „ N2.
In a sense, an S3 ˆ R version of a Coulomb branch flow.
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(a) (b)

r2r1

(a) is the LLM picture for AdS5 ˆ S
5

(b) is the simplest non-trivial LLM geometry with Up1qJ isometry. We can identify

h

`4
„
r2
2

r2
1

Chervonyi and Lunin: the classical sigma model for (b) is not integrable.



Outlook

§ SUp2|2q integrable long-range chain?
Which RG flow would it describe on field theory side?

§ Interesting to explore relation with LLM, regardless of integrability.

§ Other geometries: R4, S4.

§ Double-trace version.


