Maximally supersymmetric RG flows in 4D and Integrability

Leonardo Rastelli
YITP, Stony Brook

arXiv:2006.04792 with João Caetano and Wolfger Peelaers

String Field Theory Workshop
ICTP-SAIFR, June 112020

Upstream the RG?

In this talk, I will revisit a famous irrelevant deformation of $\mathcal{N}=4 \mathrm{SYM}$,

$$
\mathcal{L}_{\mathrm{SYM}}+h \mathcal{O}_{8}+\ldots
$$

\mathcal{O}_{8} is the leading single-trace irrelevant operator $(E=8)$ that preserves all $16 Q^{\prime}$'s in \mathbb{R}^{4}.
A maximally SUSY RG flow ending in planar $\mathcal{N}=4$ SYM generically takes this form in the IR.
Recent remarkable progress in flowing up the RG in $d=2$:
$T \bar{T}$ deformation appears to be well-defined. The UV theory is not a conventional local QFT.
\mathcal{O}_{8} is in some ways a $d=4, \mathcal{N}=4$ version of $T \bar{T}$. Analogous story in $\mathcal{N}=4 \mathrm{SYM}$?

To preserve SUSY, need to add top component of a multiplet.
Leading irrelevant deformation is $Q^{4} \tilde{Q}^{4} \mathbf{1 0 5}$, top component of the $1 / 2$ BPS multiplet in the four-index symmetric traceless irrep of $S O(6)_{R}$. Unique F-term that preserves full R-symmetry.

Single-trace version:

$$
\begin{aligned}
\mathcal{O}_{8}^{\mathrm{ST}}= & Q^{4} \tilde{Q}^{4} \operatorname{Tr} \Phi^{(I} \Phi^{J} \Phi^{K} \Phi^{L)} \\
= & \operatorname{Tr}\left[F^{4}-\frac{1}{4}\left(F^{2}\right)^{2}+4\left(F_{m p} F^{n p}-\frac{1}{4} F_{p q} F^{p q} \delta_{m}^{n}\right) D^{m} \Phi_{I} D_{n} \Phi_{I}\right. \\
& \left.\quad-\left(D_{m} \Phi_{I}\right)\left(D^{m} \Phi_{I}\right)\left(D_{n} \Phi_{J}\right)\left(D^{n} \Phi_{J}\right)+2\left(D_{m} \Phi_{I}\right)\left(D^{m} \Phi_{J}\right)\left(D_{n} \Phi_{I}\right)\left(D^{n} \Phi_{J}\right)+\ldots\right]
\end{aligned}
$$

Double-trace version:

$$
Q^{4} \tilde{Q}^{4} \operatorname{Tr} \phi^{(I} \phi^{J} \operatorname{Tr} \phi^{K} \phi^{L)}=T_{m n} T_{m n}+\mathcal{O}_{\tau} \mathcal{O}_{\bar{\tau}}+\ldots
$$

A bit like $T \bar{T}$ indeed! But it clearly does not have the same "semi-topological" nature. We will attempt to define the deformation in conformal perturbation theory, not in terms of an evolution equation at finite h.

Most intriguing example of such a flow is the full EFT on N D3 branes, $h \sim\left(\alpha^{\prime}\right)^{2}$.
Long-standing dream to generalize the AdS/CFT duality:
Full D3 brane geometry (asymptotic to flat space) \leftrightarrow full D3 brane effective action?
Intriligator speculated that closed string theory on

$$
d s^{2}=H^{-1 / 2} d x^{m} d x_{m}+H^{1 / 2} d x_{I} d x_{I}, \quad H(r)=\tilde{h}+\frac{R^{4}}{r^{4}}, \quad R^{4}=4 \pi g_{s} N\left(\alpha^{\prime}\right)^{4}
$$

is dual to to

$$
\mathcal{L}_{\mathrm{SYM}}+\tilde{h} R^{4} \mathcal{O}_{8} .
$$

This proposal passes a leading order check. LR van Raamsdonk
An obvious difficulty of this idea is making sense of the field theory side. Full open SFT? Can we now make progress?

On $S^{3} \times \mathbb{R}$

One novelty of our approach is that we will study the deformation on $S^{3} \times \mathbb{R}$.
For $h=0$, map $\mathbb{R}^{4} \rightarrow S^{3} \times \mathbb{R}$ by Weyl transformation. Full $\mathfrak{p s u}(2,2 \mid 4)$ superalgebra is of course preserved.

For $h \neq 0$, we can preserve the subgroup of "rigid" (i.e. non-conformal) superisometries

$$
\mathfrak{p s u}(2 \mid 2) \times \mathfrak{p s u}(2 \mid 2) \ltimes \mathbb{R}^{2}
$$

The preserved bosonic symmetries comprise the isometries

$$
S O(4) \times \mathbb{R}_{\tau} \cong S U(2)_{\alpha} \times S U(2)_{\dot{\alpha}} \times \mathbb{R}_{\tau}
$$

and the R -symmetries

$$
S U(2)_{a} \times S U(2)_{\dot{a}} \times U(1)_{J} \subset S U(4)_{R}
$$

Superalgebra is two copies of $\mathfrak{s u}(2 \mid 2)$, with common central extension $H-J$, where H is the generator of τ translations.

To preserve SUSY on $S^{3} \times \mathbb{R}$, the irrelevant deformation $h \mathcal{O}_{8}$ must be supplemented with curvature corrections $O\left(1 / \ell^{k}\right)$, where ℓ is the radius of S^{3}.

A priori a hard problem, leading to an infinite expansion.
Fortunately, we found an elegant off-shell formalism (following Berkovits, Evans, Pestun). We can linearly realize 8 of the 16 supersymmetries, the ones with say $J=1 / 2$.

Seven auxiliary fields, split as $3+4$: $K^{\hat{\mu}}$ spatial vector on S^{3} and K^{i} vector of $S O(4)_{R}$, preserving the full isometries of $S^{3} \times \mathbb{R}$ and the full $S O(4)_{R} \times U(1)_{J}$ R-symmetry,

The remaining 8 supersymmetries are realized on-shell, provided we turn on an imaginary $U(1)_{J}$ background connection along (Euclidean) time direction τ

$$
V=\frac{i}{\ell} d \tau, \quad D_{\tau} \equiv \partial_{\tau}+\frac{J}{\ell}
$$

It is convenient to rename the six scalar fields as

$$
Z, \quad \bar{Z}, \quad \phi_{a \dot{a}}
$$

with $U(1)_{J}$ assignments $J(Z)=+1, J(\bar{Z})=-1, J\left(\phi_{a \dot{a}}\right)=0$.
It is immediate to set up a superspace formalism, defining the superfield

$$
\bar{Z}\left(\theta_{a \alpha}, \tilde{\theta}^{\dot{\alpha} \dot{\alpha}}\right)=\bar{Z}-2 i \epsilon^{a b} \epsilon^{\alpha \beta} \Psi_{-a \alpha} \theta_{b \beta}-2 i \epsilon_{\dot{a} \dot{b}} \epsilon_{\dot{\alpha} \dot{\beta}} \Psi_{-}^{\dot{\alpha} \dot{\alpha}} \tilde{\theta}^{\dot{b} \dot{\beta}}+\ldots
$$

We now have the full classical action

$$
S\left(g_{\mathrm{YM}}, h\right)=S_{\mathrm{SYM}}+h \int_{S^{3} \times \mathbb{R}} \sqrt{g} d^{4} x \int d^{4} \theta d^{4} \tilde{\theta} \operatorname{Tr} \bar{Z}(\theta, \tilde{\theta})^{4}+\text { h.c. }
$$

Integrating out the auxiliary fields generate an infinite power expansion in h.

To leading order in h, classical Lagrangian

$$
\mathcal{L}=\mathcal{L}_{\mathrm{SYM}}+h\left[\mathcal{O}_{8}+\frac{\mathcal{O}_{7}}{\ell}+\ldots \frac{\mathcal{O}_{4}}{\ell^{4}}\right]+O\left(h^{2}\right)
$$

where \mathcal{O}_{i} are components of the $\mathbf{1 0 5}$ supermultiplet. For example,

$$
\mathcal{O}_{4}=\operatorname{STr}\left(3 Z^{2} \bar{Z}^{2}-6 Z \bar{Z} \phi_{j} \phi_{j}+\phi_{i} \phi_{i} \phi_{j} \phi_{j}\right)
$$

is the $S O(4)_{R} \times U(1)_{J}$ singlet piece of the superprimary.
At the quantum level, must of add counterterms and fine tune. The procedure is intrinsically ambiguous, barring additional input.

Spectral problem and spin chains

State/operator map is lost, but it makes perfect sense to ask how the energy spectrum of states. Usual spin-chain picture.

The spectrum of the planar theory is calculated by a deformation $H\left(g^{2}, h\right)$ of the spin-chain Hamiltonian $H\left(g^{2}\right)$ of $\mathcal{N}=4 \mathrm{SYM}$.

Much of the familiar story goes through.
Our deformation is hermitian and preserve "parity" (in the spin chain sense).

For $h \neq 0$, magnons are not Goldstones, but their dispersion relation and their S-matrix is still constrainted by Beisert's triply centrally extended $\mathfrak{s u}(2 \mid 2)$.

$$
\begin{aligned}
\left\{\mathcal{S}^{\alpha}{ }_{a}, \mathcal{Q}^{b}{ }_{\beta}\right\} & =\delta_{b}^{a} \mathcal{L}^{\alpha}{ }_{\beta}+\delta_{\beta}^{\alpha} \mathcal{R}^{b}{ }_{a}+\frac{1}{2} \delta_{b}^{a} \delta_{\beta}^{\alpha}(H-J) . \\
\left\{\mathcal{Q}_{\alpha}^{a}, \mathcal{Q}_{\beta}^{b}\right\} & =\epsilon^{a b} \epsilon_{\alpha \beta} \mathcal{P}, \quad\left\{\mathcal{S}_{a}^{\alpha}, \mathcal{S}_{\beta}^{b}\right\}=\epsilon_{a b} \epsilon^{\alpha \beta} \mathcal{K}
\end{aligned}
$$

By the same argument, magnon dispersion relation

$$
E(p)-J=\frac{1}{2} \sqrt{1+16 \alpha\left(g^{2}, h / \ell^{4}\right) \sin ^{2}\left(\frac{p}{2}\right)}
$$

The $\mathfrak{s u}(2 \mid 2)$ symmetry also completely fixes the matrix structure of $2 \rightarrow 2$ scattering.
The only freedom in the $2 \rightarrow 2$ S-matrix is thus in the dressing phase.
Of course, still non-trivial to ask whether $n \rightarrow n$ scattering factorizes.
To try and answer this question we turn to explicit calculations.

The $S U(2 \mid 2) \ltimes U(1)$ sector

Impractical to do perturbation theory using the complicated action we derived. But symmetry-based methods are very powerful.

We restrict to the subsector with elementary fields

$$
\phi_{a} \equiv \phi_{a \mathrm{i}}, \quad \psi_{\alpha} \equiv \psi_{\alpha \mathrm{i}} \quad, \quad Z
$$

where $a=1,2$ and $\alpha= \pm$. This subsector is analogous to the $S U(2 \mid 3)$ sector of $\mathcal{N}=4 \mathrm{SYM}$ (with $Z \rightarrow \phi_{3}$), but we have the smaller symmetry $S U(2 \mid 2) \ltimes U(1)$.

We have a double expansion in g^{2} and h, but from the abstract symmetry viewpoint they appear on the same footing. A term $O\left(g^{2 i} h^{j}\right)$ corresponds to $2 i+j$ "loop" order.

Following Beisert, we use symmetry to constrain the action of the generators of $S U(2 \mid 2) \ltimes U(1)$ acting on spin-chain states.
As usual, the symbols

$$
\left\{\begin{array}{c}
A_{1} \ldots A_{n} \\
B_{1} \ldots B_{m}
\end{array}\right\}
$$

represent the tensor structures. At a given "loop" order k the generators should take the form

$$
J_{k} \sim\left\{\begin{array}{l}
A_{1} \ldots A_{n} \\
B_{1} \ldots B_{m}
\end{array}\right\}, \text { with } n+m=k+2
$$

By imposing closure of the algebra, hermiticity and parity we find that at one-loop

$$
\begin{aligned}
H_{2} & =d_{1}\left(\left\{\begin{array}{c}
a b \\
a b
\end{array}\right\}+\left\{\begin{array}{c}
a \beta \\
a \beta
\end{array}\right\}+\left\{\begin{array}{c}
\alpha b \\
\alpha b
\end{array}\right\}+\left\{\begin{array}{c}
\alpha \beta \\
\alpha \beta
\end{array}\right\}-\left\{\begin{array}{c}
a b \\
b a
\end{array}\right\}-\left\{\begin{array}{c}
a \beta \\
\beta a
\end{array}\right\}-\left\{\begin{array}{c}
\alpha b \\
b \alpha
\end{array}\right\}+\left\{\begin{array}{c}
\alpha \beta \\
\beta \alpha
\end{array}\right\}\right. \\
& \left.+\left\{\begin{array}{c}
Z \beta \\
Z \beta
\end{array}\right\}+\left\{\begin{array}{c}
\beta Z \\
\beta Z
\end{array}\right\}+\left\{\begin{array}{c}
Z b \\
Z b
\end{array}\right\}+\left\{\begin{array}{c}
b Z \\
b Z
\end{array}\right\}-\left\{\begin{array}{c}
Z \beta \\
\beta Z
\end{array}\right\}-\left\{\begin{array}{c}
Z b \\
b Z
\end{array}\right\}-\left\{\begin{array}{c}
b Z \\
Z b
\end{array}\right\}-\left\{\begin{array}{c}
\beta Z \\
Z \beta
\end{array}\right\}\right)
\end{aligned}
$$

There is only one overall constant, and this is in fact the familiar one-loop result for the $S U(2 \mid 3)$ chain. Automatic symmetry enhancement to this lowest order.

At two loops, calculation more involved but still feasible.
Closure of the $S U(2 \mid 2) \ltimes U(1)$ algebra, hermiticity and dispersion relation fix H_{4} uniquely, up to similarity and redefinition of the coupling.

The deformation makes no difference even at two loops!
To this order, again automatic symmetry enhancement to $S U(2 \mid 3)$.
Clearly, no dynamical test of integrability yet.

We can however ask more structural questions.
Does there exist an integrable long-range spin-chain which is different from the $\mathcal{N}=4$ case?
Beisert, Fievét, de Leeuw, Loebbert: general analysis of integrable long range XXZ chains. They found a large class of models encoded in the Bethe ansatz

$$
\begin{gathered}
\exp \left(i p\left(u_{k}\right) L\right)=\exp (i \phi L) \prod_{j \neq k} \exp \left(-2 i \theta\left(u_{k}, u_{j}\right)\right) \frac{\sinh \hbar\left(u_{k}-u_{j}+i\right)}{\sinh \hbar\left(u_{k}-u_{j}-i\right)} \\
\theta\left(u_{k}, u_{j}\right)=\sum_{s>r=2}^{\infty} \beta_{r, s}\left(q_{r}\left(u_{k}\right) q_{s}\left(u_{j}\right)-q_{s}\left(u_{k}\right) q_{r}\left(u_{j}\right)\right)+\sum_{r=2}^{\infty} \eta_{r}\left(q_{r}\left(u_{k}\right)-q_{r}\left(u_{j}\right)\right)
\end{gathered}
$$

We should repeat the analysis for the $S U(2 \mid 2) \times U(1)$ chain!
Note that the XXZ chain can be viewed as a closed of subsector of the $S U(2 \mid 2) \ltimes U(1)$ chain. Since the only departure from $\mathcal{N}=4$ can be in the dressing phase, we must take $\hbar=\phi \equiv 0$.

Still, ample freedom is left. Crossing equation gives extra constraints, but a priori no obstacle.

Holographic interpretation?

A natural setting are the "bubbling" geometries of Lin Lunin Maldacena (LLM). Generally, $S U(2 \mid 2) \times S U(2 \mid 2)$ symmetry and one can impose additional $U(1)_{J}$.

LLM geometries describe the backreaction of "additional" D3 branes (giant gravitons) in global $A d S_{5} \times S^{5}$. The extreme UV asymptotics are always $A d S_{5} \times S^{5}$.

An LLM geometry is fully specified by prescribing ± 1 boundary conditions on a two-dimensional plane: bicoloring of the plane.

Dually, it corresponds to considering $\mathcal{N}=4$ in a non-trivial half-BPS state, with $E \sim N^{2}$. In a sense, an $S^{3} \times \mathbb{R}$ version of a Coulomb branch flow.

(a)

(b)
(a) is the LLM picture for $A d S_{5} \times S^{5}$
(b) is the simplest non-trivial LLM geometry with $U(1)_{J}$ isometry. We can identify

$$
\frac{h}{\ell^{4}} \sim \frac{r_{2}^{2}}{r_{1}^{2}}
$$

Chervonyi and Lunin: the classical sigma model for (b) is not integrable.

Outlook

- $S U(2 \mid 2)$ integrable long-range chain? Which RG flow would it describe on field theory side?
- Interesting to explore relation with LLM, regardless of integrability.
- Other geometries: \mathbb{R}^{4}, S^{4}.
- Double-trace version.

