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Relevance of classical solutions in SFT

• SFT equation of motion can give new handles on exact (B)CFT’s which are not 
easily accessible from the standard CFT approach: the “honeycomb” c=2 
BCFT (Kudrna-Schnabl-Vosmera), RR backgrounds in RNS (Cho-Collier-Yin), 
etc… 

• Some backgrounds just don’t have a direct (B)CFT description (e.g. the 
tachyon condensate) and to study their physics one needs field theory-like 
tools. 

• In QFT’s based on a path integral, classical solutions are the saddle points of 
the action and they account for non-perturbative contributions to amplitudes. 
If we want to have a non-perturbative understanding of string theory from SFT it 
is necessary to understand how string theory backgrounds appear as classical 
solutions.



Background independence in string field theory

• We can construct a string field theory on any given exact string background  , 
with a dynamical field variable  and an action  

• Classical solutions  ,  represent other consistent backgrounds   

• Expand : dynamics of fluctuations around the solution 

 

•  Background independence: the expanded action and the action directly formulated 
around  should be related by field redefinition  

 

 

• A Jacobian is also generated from the field redefinition in the path integral measure 
(quantum effect) 
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From now on let us focus on (classical) Witten bosonic Open String Field Theory
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• Solution to the equation of motion    (Erler, C.M. 2014-2019)QΨ + Ψ2 = 0
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• Equation of motion
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• In our construction we have 

ΣΣ = 1 ∈ HBCFT*

ΣΣ = P ∈ HBCFT0

• The emerging star algebra projector  has an interesting role in the proof of 
background independence, as we will see.
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• Other important properties which descend from the previous ones
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Observables
•  Action (it computes the energy for static solutions) 
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• Ellwood Invariants (Boundary State of the new background)
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• To study the physics around the solution we shift

• Fluctuations  can be decomposed according to  and ϕ(0)
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• One-to-one linear field redefinition
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Background Independence
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• However the only perturbative solution around the TV is  χ = χ̄ = t = 0

• In the perturbative expansion around the saddle,  the TV sector can be 
integrated out, setting it to zero. The action of the physical fluctuation  
DOES NOT change.

ϕ(*)

• This is very different from the integration out of the massive fields (  has no 
cohomology, “nothing is left”)

Qtv

• The action can then be rewritten as (see also Kishimoto, Masuda, Takahashi)
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• Amplitudes in the background of the solution are mapped to amplitudes in the 
new BCFT background.



                          Background independence:                                                                       
shift + field redefition + integration out of trivial fields

(expected) (something genuinely new!)

• The constrained TV sector would be absent if . Can this be possible?ΣΣ = 1

• In this case the cohomologies of the two backgrounds would be strictly 
isomorphic but this is something we don’t expect in general (except for special 
exactly marginal deformations)

• So, physically,  is there to allow to connect genuinely different 
backgrounds.

ΣΣ ≠ 1

• Gauge equivalence in  implies gauge equivalence in  and 
viceversa. The extra pure gauge TV sector accounts for that.
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• The intertwining fields can be explicitly constructed from a TV solution and bcc 
operators (“twist fields”) 
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Explicit realization: the flags
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The Flags as surface states with bcc insertion 
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It is possible to map the surfaces obtained by gluing flags  
and wedge states to the UHP: Schwarz-Christoffel map



• Multiplying in the order               : degenerating surface (σ̄ | ⋆ |σ)
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• Multiplying in the order               : new kind of surface state|σ) ⋆ (σ̄ |

BCFT0

It looks like the identity string field towards the midpoint 
but it has a non degenerate boundary  

and it is “left/right” factorized towards the endpoints!
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MULTIBRANES

• Easily realized by orthogonal flags (generation of Chan-Paton’s factors)

Σi Σj = δij
• Obtained by choosing bcc operators as

δij = ⟨I ∘ σ̄i(0)σj(0)⟩

• Universal multibranes: take             in the matter Verma module of the identity 
and diagonalize the Gram matrix.

(σi, σj)

Ψ = Ψtv − ∑
i

ΣiΨtvΣi



• The multi-brane solution can be used to account for multi D-instantons contributions 
to closed string’s scattering in two-dimensional string theory (Sen, Baltazar- 
Rodriguez-Yin) using Ellwood invariants and open string propagators (Witten 
vertex covers all bosonic moduli space). Open-closed amplitudes. Integration on 
moduli space from open string massless states (D-instanton moduli)

Comments on non-perturbative amplitudes

• The 0-instanton sector should be the tachyon vacuum. Scattering of Ellwood 
invariants at the tachyon vacuum should give purely closed string amplitudes 
(Gaiotto-Rastelli-Sen-Zwiebach , et al)

< V1⋯Vn >(1D−Instanton) 2−brane⟶ < V1⋯Vn >(2D−Instantons) 3−brane⟶ etc

< V1⋯Vn >(0D−Instanton) tv⟵ < V1⋯Vn >(1D−Instantons)

• Since  bosonic two-dimensional string theory makes sense at the quantum level, this 
is a concrete arena to test the solution.



EXPLICIT REALIZATION OF THE FLAGS
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FOCK SPACE COEFFICIENTS
• The solution has a Fock space expansion

Ψ = ∑
i

ψi cϕi(0) |0⟩ + ( . . . )

ψi = K(hi, hσ) Ciσσ̄

• K is a universal function which depends on the choice of tachyon vacuum and on 
the details of the Schwarz-Christoffel map

•  is the basic three-point function  Ciσσ̄ ⟨I ∘ σ̄(0) ̂ϕi(1) σ(0)⟩

• We have analysed the gh=0 toy model (gh=1 needs 7-dimensional integral on an 
implicitly defined region, the toy model “only” 3 )
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EXAMPLE: the Cosh Rolling Tachyon
• One of the advantage of this solution is the possibility to describe time 

dependent background (just as any other background)

• Sen’s Rolling tachyon BCFT: exactly marginal deformation of Neumann bc

eλ ∫b
a ds cosh(X0) (s) = σλ(b) σ̄λ(a)

• Periodic moduli space ,  

• : Neumann b.c. for  (perturbative vacuum) 

• : multiple Dirichlet b.c. at imaginary values  

• The boundary state vanishes at  for real time (but non-trivial 
support at imaginary time) : Is it the Tachyon Vacuum?
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OSFT solution for rolling tachyon
• The tachyon profile of   is given asΓ*

= ⟨ϕT toy
n (λ) |Γ*⟩

• The needed input is the three-point function which we computed 



• The obtained tachyon profile displays the well-know oscillations at late times

λ = 0.01 λ = 1/2

• It doesn’t look that  corresponds to the tachyon vacuum. Moreover the marginal 
current would be a physical state at the tachyon vacuum, which is not expected to happen

λ = 1/2

• In fact at   a new branch of moduli space opens up, allowing to traslate the 
(imaginary) D-branes in imaginary time (Gaiotto-Itzhaki-Rastelli). The TV should correspond to 
pushing these D-branes at imaginary infinity.

λ = 1/2

λ = 0
λ = 1/2
a = 2π a → ∞

“True” tachyon vacuum



• To give a new viewpoint on this problem, we can follow the new imaginary branch with our 
solution (multiple imaginary lumps at increasing separation)

• We constructed solutions for increasing value of imaginary separation
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• Now indeed the tachyon profile sits at the tachyon vacuum for larger and larger time

• Notice that these different backgrounds have all vanishing boundary state (in real time). 



• Can we use this solution to account for non-perturbative contributions when the 
bosonic string makes sense at the quantum level?

Conclusions

• It would be very desirable to have a similar solution for open-superstring field theory. 
Field theory understanding of RR charge?  Instanton contributions etc… As of now we 
have it for cubic superstring field theory at picture zero (see Noris talk).

• Can we better understand time-dependent backgrounds with vanishing boundary 
state in OSFT? (closed string radiation expressed in open string variables)

• Ideally we would like to be able to connect closed string backgrounds in a similar 
way. 

• For the first time we have a non perturbative realisation of background independence 
in bosonic open string field theory.


