Infinite Derivative Gravity & Resolution of Curvature Singularities

Anupam Mazumdar

Van Swinderen Institute, University of Groningen

Aim: How do we mimic stringy features in Non-local gravity?

2020 Workshop on String Field Theory and Related Aspects, Sao Paolo.

Abel, Buoninfante, AM 1911.06697, Biswas, Gerwick, Koivisto, AM 1110.5249, Biswas, AM, Siegel, 0508194

Locality in space & time : Blackhole to Cosmological Singularities

Cosmological Singularity ! Geodesics are incomplete

Well defined manifold Geodesics are complete

Non-local interactions !

Graviton or Photon (mediator is massless)

Non-locality is one possible way for resolving singularities

hep-th/0508194, JCAP (2006), 1804.08195 [gr-qc]

Witten (1986), Freund, Olson (1987), Frampton, Okada (1988), Siegel (2001), Sen, Zwiebach (1994), Berkovits, Sen, Zwiebach (2000), Pius, Sen (2016), Sen (2002,2017, 2018)

What softens the UV behaviour?

Aim: How do we mimic this feature in a non-local gravity?

Abel, Buoninfante, AM, 1911.06697.pdf

Higher Curvature Action & Gravitational Form Factors $S = \int d^4x \sqrt{-g} \left[\frac{R}{16\pi G} + R\mathcal{F}_1\left(\frac{\Box}{M^2}\right) R + R_{\mu\nu}\mathcal{F}_2\left(\frac{\Box}{M^2}\right) R^{\mu\nu} + R_{\mu\nu\lambda\sigma}\mathcal{F}_3\left(\frac{\Box}{M^2}\right) R^{\mu\nu\lambda\sigma} \right]$ Einstein-Hilbert Recovers IR **Ultra-violet modifications** $M \to \infty$ (Theory reduces to GR)

Infinite Derivative Gravity (IDG)

Biswas, AM, Siegel, <u>hep-th/0508194</u> Biswas, Gerwick, Koivisto, AM, <u>gr-qc/1110.5249</u> Biswas, Koshelev, AM, (extension for de Sitter & Anti-deSitter), <u>arXiv:1602.08475</u>, <u>arXiv:1606.01250</u>

Non-linear, Non-local Equations of Motion

$$\begin{split} P^{\alpha\beta} &= G^{\alpha\beta} + 4G^{\alpha\beta}\mathcal{F}_{1}(\Box)R + g^{\alpha\beta}R\mathcal{F}_{1}(\Box)R - 4\left(\nabla^{\alpha}\nabla^{\beta} - g^{\alpha\beta}\Box\right)\mathcal{F}_{1}(\Box)R \\ &\quad - 2\Omega_{1}^{\alpha\beta} + g^{\alpha\beta}(\Omega_{1\sigma}^{\ \sigma} + \bar{\Omega}_{1}) + 4R_{\mu}^{\alpha}\mathcal{F}_{2}(\Box)R^{\mu\beta} \\ &\quad - g^{\alpha\beta}R_{\nu}^{\mu}\mathcal{F}_{2}(\Box)R_{\mu}^{\nu} - 4\nabla_{\mu}\nabla^{\beta}(\mathcal{F}_{2}(\Box)R^{\mu\alpha}) + 2\Box(\mathcal{F}_{2}(\Box)R^{\alpha\beta}) \\ &\quad + 2g^{\alpha\beta}\nabla_{\mu}\nabla_{\nu}(\mathcal{F}_{2}(\Box)R^{\mu\nu}) - 2\Omega_{2}^{\alpha\beta} + g^{\alpha\beta}(\Omega_{2\sigma}^{\ \sigma} + \bar{\Omega}_{2}) - 4\Delta_{2}^{\alpha\beta} \\ &\quad - g^{\alpha\beta}C^{\mu\nu\lambda\sigma}\mathcal{F}_{3}(\Box)C_{\mu\nu\lambda\sigma} + 4C_{\mu\nu\sigma}^{\alpha}\mathcal{F}_{3}(\Box)C^{\beta\mu\nu\sigma} \\ &\quad - 4(R_{\mu\nu} + 2\nabla_{\mu}\nabla_{\nu})(\mathcal{F}_{3}(\Box)C^{\beta\mu\nu\alpha}) - 2\Omega_{3}^{\alpha\beta} + g^{\alpha\beta}(\Omega_{3\gamma}^{\ \gamma} + \bar{\Omega}_{3}) - 8\Delta_{3}^{\alpha\beta} \\ &\quad = T^{\alpha\beta} \,, \end{split}$$

$$\begin{split} \Omega_{1}^{\alpha\beta} &= \sum_{n=1}^{\infty} f_{1n} \sum_{l=0}^{n-1} \nabla^{\alpha} R^{(l)} \nabla^{\beta} R^{(n-l-1)}, \quad \bar{\Omega}_{1} = \sum_{n=1}^{\infty} f_{1n} \sum_{l=0}^{n-1} R^{(l)} R^{(n-l)}, \\ \Omega_{3}^{\alpha\beta} &= \sum_{n=1}^{\infty} f_{3n} \sum_{l=0}^{n-1} C_{\nu\lambda\sigma}^{\mu;\alpha(l)} C_{\mu}^{\nu\lambda\sigma;\beta(n-l-1)}, \quad \bar{\Omega}_{3} = \sum_{n=1}^{\infty} f_{3n} \sum_{l=0}^{n-1} C_{\nu\lambda\sigma}^{\mu(l)} C_{\mu}^{\nu\lambda\sigma;\beta(n-l-1)}, \\ \Omega_{2}^{\alpha\beta} &= \sum_{n=1}^{\infty} f_{2n} \sum_{l=0}^{n-1} R_{\nu}^{\mu;\alpha(l)} R_{\mu}^{\nu;\beta(n-l-1)}, \quad \bar{\Omega}_{2} = \sum_{n=1}^{\infty} f_{2n} \sum_{l=0}^{n-1} R_{\nu}^{\mu(l)} R_{\mu}^{\nu(n-l)}, \quad \Delta_{3}^{\alpha\beta} &= \frac{1}{2} \sum_{n=1}^{\infty} f_{3n} \sum_{l=0}^{n-1} [C_{\sigma\mu}^{\lambda\nu(l)} C_{\lambda}^{(\beta|\sigma\mu|;\alpha)(n-l-1)} - C_{\sigma\mu}^{\lambda\nu;\alpha(l)} C_{\lambda}^{\beta)\sigma\mu(n-l-1)}]_{;\nu}, \end{split}$$

$$P = -R + 12\Box \mathcal{F}_1(\Box)R + 2\Box (\mathcal{F}_2(\Box)R) + 4\nabla_{\mu}\nabla_{\nu}(\mathcal{F}_2(\Box)R^{\mu\nu}) + 2(\Omega_{1\sigma}^{\sigma} + 2\bar{\Omega}_1) + 2(\Omega_{2\sigma}^{\sigma} + 2\bar{\Omega}_2) + 2(\Omega_{3\sigma}^{\sigma} + 2\bar{\Omega}_3) - 4\Delta_{2\sigma}^{\sigma} - 8\Delta_{3\sigma}^{\sigma} = T \equiv g_{\alpha\beta}T^{\alpha\beta}.$$

Biswas, Conroy, Koshelev, AM. [arXiv:1308.2319 [hep-th]]

First solution of non-linear, non-local equations of motion: non-singular universe $S = \int d^4x \sqrt{-g} \left[\frac{R}{2} + R\mathcal{F}_1(\Box)R - \Lambda \right]$ $\Box R = r_1 R + r_2 \qquad \Box^n R = r_1^n \left(R + \frac{r_2}{r_1} \right)$ deSitter Anti deSitter **No-Ghost criteria No-Ghost criteria** $\mathscr{F}(\Box) = \frac{1}{M_0^6} (\Box - m^2) (\Box - r_1)^2 e^{\gamma(\Box)}$ $\mathscr{F}(\Box) = \frac{1}{M_{\star}^4} (\Box - r_1)^2 e^{\gamma(\Box)}$ $a(t) = a_0 \cosh(\sqrt{r_1/2}t), \ a_0 e^{\lambda t^2}$ ---λ=1, μ=0.01 10 Biswas, AM, Siegel, 0508194 Sravan-Kumar, Maheshwari, AM, Peng, 2005.01762 Biswas, Koivisto, AM, 1005.0590

Perturbative unitarity around minkowski

$$S = \int d^4x \sqrt{-g} \left[\frac{R}{16\pi G} + R\mathcal{F}_1\left(\frac{\Box}{M^2}\right) R + R_{\mu\nu}\mathcal{F}_2\left(\frac{\Box}{M^2}\right) R^{\mu\nu} + R_{\mu\nu\lambda\sigma}\mathcal{F}_3\left(\frac{\Box}{M^2}\right) R^{\mu\nu\lambda\sigma} \right]$$
$$2\mathcal{F}_1 + \mathcal{F}_2 + 2\mathcal{F}_3 = 0 \qquad a(\Box) = 1 - \frac{1}{2}\mathcal{F}_2(\Box)\frac{\Box}{M_s^2} - 2\mathcal{F}_3(\Box)\frac{\Box}{M_s^2}$$

$$\Pi(k^2) = \frac{1}{a(k^2)} \left[\frac{P^{(2)}}{k^2} - \frac{P^0}{2k^2} \right]$$

Demand no extra poles other than massless graviton's, means:

Simplest choice: $a(k^2) = e^{k^2/M_s^2}$

Entire Function

 $a(k^2) = e^{\gamma(k^2)}$

Pius, Sen (2016)

Infinite derivative Gravity action around Minkowski

With the help of the earlier constraints:

Massless Graviton, massless spin-2 and spin-0 components propagate

Biswas, AM, Siegel (2006) JCAP, Biswas, Gerwick, Koivisto, AM (2012) Phy. Rev. Lett.

Non-Local Gravitational Potential

Abel, Buoninfante, AM (2019), Biswas, Gerwick, Koivisto, AM, (gr-qc/1110.5249)

Conformally flat solution

 $r_{sch} = 2Gm$

Schwarzschild's blackhole

Non-local, compact object in infinite derivative gravity Such non-local objects could be BHs provided linear solution is promoted all the way to non-linear level.

Buoninfante, Koshelev, Lambiase, AM [arXiv:1802.00399 [gr-qc]]

Spherically symmetric non-linear, non-local metric

$$\begin{split} P^{\alpha\beta} \approx & \frac{\alpha_c}{8\pi G} \left(4G^{\alpha\beta} \mathcal{F}_1(\Box_s) \mathcal{R} + g^{\alpha\beta} \mathcal{R} \mathcal{F}_1(\Box_s) \mathcal{R} - 4 \left(\nabla^{\alpha} \nabla^{\beta} - g^{\alpha\beta} \Box \right) \mathcal{F}_1(\Box_s) \mathcal{R} & \Omega_1^{\alpha\beta} = \sum_{n=1}^{\infty} f_{1_n} \sum_{l=0}^{n-1} \nabla^{\alpha} \mathcal{R}^{(l)} \nabla^{\beta} \mathcal{R}^{(n-l-1)}, \quad \bar{\Omega}_1 = \sum_{n=1}^{\infty} f_{1_n} \sum_{l=0}^{n-1} \mathcal{R}^{(l)} \mathcal{R}^{(n-l)}, \\ & -2\Omega_1^{\alpha\beta} + g^{\alpha\beta} (\Omega_{1\sigma}^{\sigma} + \bar{\Omega}_1) + 4\mathcal{R}_{\mu}^{\alpha} \mathcal{F}_2(\Box_s) \mathcal{R}^{\mu\beta} \\ & -g^{\alpha\beta} \mathcal{R}_{\nu}^{\mu} \mathcal{F}_2(\Box_s) \mathcal{R}_{\mu}^{\nu} - 4\nabla_{\mu} \nabla^{\beta} (\mathcal{F}_2(\Box_s) \mathcal{R}^{\mu\alpha}) + 2\Box (\mathcal{F}_2(\Box_s) \mathcal{R}^{\alpha\beta}) \\ & + 2g^{\alpha\beta} \nabla_{\mu} \nabla_{\nu} (\mathcal{F}_2(\Box_s) \mathcal{R}^{\mu\nu}) - 2\Omega_2^{\alpha\beta} + g^{\alpha\beta} (\Omega_{2\sigma}^{\sigma} + \bar{\Omega}_2) - 4\Delta_2^{\alpha\beta} \right) \\ & = T^{\alpha\beta} = 0 \,, \end{split}$$

[arXiv:1308.2319 [hep-th]]

$$S = \int d^4x \sqrt{-g} \left[\frac{R}{16\pi G} + R\mathcal{F}_1\left(\frac{\Box}{M^2}\right) R + R_{\mu\nu}\mathcal{F}_2\left(\frac{\Box}{M^2}\right) R^{\mu\nu} + R_{\mu\nu\lambda\sigma}\mathcal{F}_3\left(\frac{\Box}{M^2}\right) R^{\mu\nu\lambda\sigma} \right]$$

$$ds^{2} = \left(\frac{2}{M_{s}r}\right)^{2} \left[-dt^{2} + dr^{2} + r^{2}d\Omega^{2}\right]$$

Buoninfante Koshelev, Lambiase, Marto, AM [arXiv:1803.00309 [gr-qc]]

N- gravitons behave like a condensate

Buoninfante, Ghosh, Lambiase, AM arXiv:1812.01441 [hep-th]

Non-local star: Coherent State of N Gravitons & a Black hole Mimicker

Mass of N gravitons interacting non – locally $E_{\rm tot} = m_{\circ} = N M_{\rm eff} = N \frac{M_s}{\sqrt{N}} = \sqrt{N} M_s$

For a solar mass object : $N \sim 10^{82}$

Forms a gravitationally bound system: a Non-local star!

Buoninfante, AM 1903.01542

Number of Bekenstein states

$$S \sim \hbar \left(\frac{4G^2 m_o^2}{L_p^2} + \frac{L_{\text{eff}}^2}{L_p^2} \right) \equiv \hbar s_1$$

$$s \sim \frac{L_{\text{eff}}^2}{L_p^2} = N \frac{L_s^2}{L_p^2} = N \frac{M_p^2}{M_s^2}$$

$$\mathcal{N} \sim e^{N(L_s/L_p)^2} = e^{N(M_p/M_s)^2}$$

Bekenstein State

For a solar mass object : $\mathcal{N} = e^{10^{82} (M_p/M_s)^2}$

What happens when I throw a chalk, neutrino,, anything.... inside?

$$\tau = \left(\frac{L_s}{L_p}\right)^9 \tau_{bh} = \left(\frac{M_p}{M_s}\right)^9 \tau_{bh} \qquad \text{Longer life time}$$

The Non-local star absorbs everything, even better than a Blackhole!!!

Metric of a Non-Local Star with No-Horizon

Rotating solution with no ring singularity

At non-linear level only solution survives is a conformally flat metric Buoninfante, et. al, [arXiv:1807.08896 [gr-qc]]

Non-Local, Infinite Derivative Gravity

~ Non-local graviton propagator motivated from the UV properties of string amplitude.

~ Non-locality resolves Curvature Singularities

~ Non-singular cosmology with no ghosts.

Non-local stars can mimic black hole without event horizon

~ Non-singular rotating compact objects & NUT-charge in linearised non-local gravity resolve curvature singularities (see: Buoninfante, et,al. 1807.08896, Frolov, et,al. (2020), Kolar, AM <u>2004.07613</u>)

Extra Slides

Extra degrees of freedom & Ghosts

Challenge: How to get rid of the extra dof?

Einstein & Weyl Gravity: Finite Derivative Theories

$$S = \int \sqrt{-g} d^4 x \left(\frac{R}{16\pi G}\right)$$

./

One loop pure gravitational action is renormalizable. But it has a scale. The theory is not scale invariant

$$S = \int \sqrt{-g} d^4 x \left[M_p^2 R + \alpha C^2 \right]$$

Weyl term does not introduce singularities

$$S = \int \sqrt{-g} d^4 x \left[M_p^2 R + \alpha R^2 + \beta R_{\mu\nu} R^{\mu\nu} \right]$$

Quadratic Curvature Gravity is renormalizable, but contains "Ghosts": Vacuum is Unstable

Utiyama (1961), De Witt (1961), Stelle (1977)

t'Hooft, Veltman (1974)

Potential resolution of Ghosts & Classical Instabilities

Higher derivative theories generically carry Ghosts (-ve Risidue)

1

$$\begin{split} S = \int d^4x \ \phi \Box (\Box + m^2) \phi \Rightarrow \Box (\Box + m^2) \phi = 0 \\ \Delta(p^2) \sim \frac{1}{p^2} - \frac{1}{p^2 - m^2} \end{split} \\ \end{split} \\ \begin{array}{l} & \text{Propagator with first} \\ & \text{order poles} \end{split} \end{split}$$

Ghosts cannot be cured order by order, finite terms in perturbative expansion will always lead to Ghosts !!

$$\begin{split} S &= \int d^4x \,\, \phi e^{-\Box/M^2} (\Box + m^2) \phi \Rightarrow e^{-\Box/M^2} (\Box + m^2) \phi = 0 \\ \Delta(p^2) &= \frac{e^{-p^2/M^2}}{p^2 - m^2} \end{split} \text{No extra states other than the original dof.} \end{split}$$

Woodard (1991), Moffat (1991), Tomboulis (1997), Tseytlin (1997), Siegel (2003), Biswas, Grisaru, Siegel (2004), Biswas, Mazumdar, Siegel (2006)

Infinite Derivative Gravity

Biswas, AM, Siegel

Biswas, Gerwick, Koivisto, AM

Bouncing universes in string-inspired gravity, hep-th/0508194, JCAP (2006)

Towards singularity and ghost free theories of gravity, 1110.5249 [gr-qc], PRL (2012)

Non-Local Star as a ClePho

Resolution of Singularity at short distances

Biswas, Gerwick, Koivisto, AM (2012), Edholm, Koshelev, AM (2016), Frolov & Zelnikov (2015, 2016)

Conformally Flat metric, Non-Vacuum Solution, with no event horizon

[arXiv:1802.00399 [gr-qc]]

Local vs Non-Local Field Theory

Moffat Phys.Rev.D (1990), Biswas + Okada, Nucl. Phys. B (2016)

Scale-Free Abelian Higgs Interactions

Ghoshal, AM, Okada, Villalba (2017)