

Andrea Romanino, SISSA, romanino@sissa.it

Particle physics in three lines

The SM describes the Strong, Electromagnetic, and Weak interactions of the known elementary particles

$$\bar{\Psi}_i i \gamma^\mu D_\mu \Psi_i - \frac{1}{4} F^a_{\mu\nu} F^{a\mu\nu} \qquad \text{gauge} \qquad ~\%$$

$$\mathcal{L}_{\text{SM}}^{\text{ren}} = \qquad + \lambda_{ij} \Psi_i \Psi_j H + \text{h.c.} \qquad \text{flavor} \qquad ~\%$$

$$+ |D_\mu H|^2 - V(H) \qquad \text{symmetry breaking} \qquad ~10\%$$

+ gravity: all known phenomena (with few notable exceptions)

Outline

- Preliminaries
- The SM
 - Gauge sector
 - Higgs sector
 - Flavour sector
- in a new physics perspective

the SM as a relativistic renormalisable gauge QFT

Preliminaries (I)

Relativistic Quantum Field Theory (QFT)

- $\hbar = c = 1$
- Degrees of freedom: fields. S = 0 (scalar) S = 1/2 (spinor) S = 1 (vector)
- Dynamics: $S = \int d^4x \, \mathcal{L}(x)$ $[\mathcal{L}] = 4$ $\mathcal{L}(x) = \sum_i c_i \mathcal{O}_i(x)$ Lorentz Scalar
- $\mathcal{L} = \mathcal{L}_{\text{free}} + \mathcal{L}_{\text{int}}$
 - $\mathcal{L}_{\text{free}}$ 2-linear in the fields
 - $\mathcal{L}_{int} \geq 3$ -linear in the fields
- Linear terms (scalars) can be reabsorbed by shifting fields (SSB)
- Constant term not physical without gravity

Renormalisability and relevance

- $\mathcal{L}(x) = \sum_i c_i \mathcal{O}_i(x)$ dimension **D** of **O(x)**:
 - D = 0 constant terms, not physical without gravity
 - D = 1 linear (scalar) terms, reabsorbed by shifting fields (SSB)
 - D = 2,3 "relevant" operators $[c] = M^2, M$
 - D = 4 "marginal" operators [c] = g
 - $D \ge 5$ "irrelevant" operators [c] = $1/M^{D-4}$
- Irrelevant operators: effect suppressed by (E/M)^{D-4} at E « M
 - any theory looks renormalizable at sufficiently low scales

renormalisable theory (SM) finite # of c.t.

Gauge theories

- Specific form of QFT

 - necessary to consistently describe vector fields
 - extremely successful (QED & photons, QCD & gluons)
- Defined by
 - Gauge (compact) Lie group G
 - A massless vector field to each generator of G: t_A ↔ v^A_µ
 - Action on "matter" fields (commuting with Lorentz)
 - Globally invariant $\mathcal{L}_0(\phi,\partial\phi)$

$$\mathcal{L} = \mathcal{L}_0(\phi, D_{\mu}\phi) - \frac{1}{4} v_{\mu\nu}^A v_A^{\mu\nu}$$

$$\partial_{\mu} \to D_{\mu} = \partial_{\mu} + ig_A v_{\mu}^A T_A$$

$$t_A \to T_A$$

$$v_{\mu\nu}^A = \partial_\mu v_\nu^A - \partial_\nu v_\mu^A - g f_{BC}^A v_\mu^B v_\nu^C$$

$$[t_A, t_B] = if_{AB}^C t_C$$

$$\overline{\psi}i\gamma^{\mu}D_{\mu}\psi = \overline{\psi}i\gamma^{\mu}\partial_{\mu}\psi - g_{A}\overline{\psi}_{i}\gamma^{\mu}T_{A}^{ij}\psi_{j}v_{\mu}^{A}$$

digression on L and R spinors

Preliminaries (II)

QED and QCD written in terms of Dirac spinors

$$\mathcal{L}_{\text{QED}} = -\frac{1}{4} F^{\mu\nu} F_{\mu\nu} + \overline{\psi} (i\gamma^{\mu} D_{\mu} - m) \psi$$

$$\psi(x) = \begin{pmatrix} \psi_1(x) \\ \psi_2(x) \\ \psi_3(x) \\ \psi_4(x) \end{pmatrix}$$

A Dirac spinor is not "elementary"

$$\Psi(x) = \begin{pmatrix} \Psi_1(x) \\ \Psi_2(x) \\ \Psi_3(x) \\ \Psi_4(x) \end{pmatrix} \rightarrow \begin{pmatrix} L^{\dagger - 1} \\ \hline L \end{pmatrix} \begin{pmatrix} \Psi_1(x) \\ \Psi_2(x) \\ \Psi_3(x) \\ \Psi_4(x) \end{pmatrix} \quad (\det L = 1)$$

$$\Psi_{\mathbf{R}}(x) = \begin{pmatrix} \Psi_1(x) \\ \Psi_2(x) \\ 0 \\ 0 \end{pmatrix} \qquad \Psi_{\mathbf{L}}(x) = \begin{pmatrix} 0 \\ 0 \\ \Psi_3(x) \\ \Psi_4(x) \end{pmatrix} \qquad \Psi = \Psi_{\mathbf{L}} + \Psi_{\mathbf{R}}$$

inequivalent, conjugated representations of SL(2,C)

Left- and Right-handed

Most general gauge transformation can mix all L

The gauge sector of the SM lagrangian

$$\begin{split} \bar{\Psi}_i i \gamma^\mu D_\mu \Psi_i - \frac{1}{4} F^a_{\mu\nu} F^{a\mu\nu} & \text{gauge} \\ \mathcal{L}^{\text{ren}}_{\text{SM}} = & + \lambda_{ij} \Psi_i \Psi_j H + \text{h.c.} & \text{flavor} \\ & + |D_\mu H|^2 - V(H) & \text{symmetry breaking} \end{split}$$

Gauge sector

$$G_{SM} = SU(3)_c \times SU(2)_L \times U(1)_Y$$

$$SU(3) \quad SU(2) \quad U(1)$$

$$L_{i} \quad 1 \quad 2 \quad -1/2$$

$$\overline{e}_{iR} \quad 1 \quad 1 \quad 1 \quad \text{L-handed spinors}$$

$$L_{i} = \begin{pmatrix} \nu_{iL} \\ e_{iL} \end{pmatrix} \qquad \overline{q}_{iR} \qquad 3 \quad 2 \quad 1/6 \qquad \qquad i = 1,2,3$$

$$\overline{q}_{iR} \quad 3^{*} \quad 1 \quad -2/3 \qquad \qquad \gamma$$

$$\mathcal{L}_{SM}^{gauge} = \sum_{\psi = Q_i, u_{iR}, d_{iR}, L_i, e_{iR}} \overline{\psi} i \gamma^{\mu} D_{\mu} \psi - \frac{1}{4} \sum_{v = G_A, W_a, B} v^{\mu \nu} v_{\mu \nu}$$

"Blackboard"

QED + QCD + effective weak interactions + gauge principle = Standard Model gauge theory "Blackboard"

Gauge sector

	SU(3)	SU(2)	U(1)
Li	1	2	-1/2
- - - - - - - -	1	1	1
Qi	3	2	1/6
- U _{iR}	3*	1	-2/3
diR	3*	1	1/3

Y

$$\mathcal{L}_{SM}^{gauge} = \sum_{\psi = Q_i, u_{iR}, d_{iR}, L_i, e_{iR}} \overline{\psi} i \gamma^{\mu} D_{\mu} \psi - \frac{1}{4} \sum_{v = G_A, W_a, B} v^{\mu\nu} v_{\mu\nu}$$

The Standard Model II

Andrea Romanino, SISSA, romanino@sissa.it

Puzzles (gauge sector)

- Why 3 copies of the same representation of G_{SM}?
- Why G_{SM}?
- Why those quantum numbers? And in particular
 - why Y / Q is quantised?
 - why anomalies cancel (see below)?

Notable features (gauge sector)

- chirality
- anomaly cancellation
- electroweak precision tests

Gauge sector

$$G_{SM} = SU(3)_{c} \times SU(2)_{L} \times U(1)_{Y}$$

		SU(3)	SU(2)	U(1)	
	Li	1	2	-1/2	
$Q_i = \begin{pmatrix} u_{iL} \\ d_{iL} \end{pmatrix}$	- - - - -	1	1	1	L-handed spinors
$L_i = \begin{pmatrix} \nu_{iL} \\ e_{iL} \end{pmatrix}$	Qi	3	2	1/6	i = 1,2,3
$\langle {}^{\circ}iL \rangle$	- U _{iR}	3*	1	-2/3	
	\overline{d}_{iR}	3*	1	1/3	
		_		Υ	

A nice property

- The fermion content is "chiral": no L and R with same G_{SM} quantum numbers
 - Equivalently: r irrep on $L \Rightarrow r^*$ is not
 - Equivalently: no explicit (G_{SM} symmetric) fermion mass term is allowed
- Extra heavy fermions (M » (H)) should be "vectorlike"
- A puzzle, a blessing, or what expected?

Anomalies

- A symmetry of the lagrangian is not necessarily preserved by quantum corrections. If not, the symmetry is **anomalous**
- Global symmetry: OK + interesting physics
 - axial U(1) in QCD
 - scale invariance
- In the case of gauge transformations: INCONSISTENCY
- A gauge symmetry survives quantum corrections iff $Tr (T_a \{T_b T_c\}) = 0$ where T_a are the generators and the trace is on L-handed fermions
- QED and QCD automatically non-anomalous

Anomaly cancellations in the SM

Anomaly cancellation

• Is
$$T_{ijk} = Tr(\tau_i \{\tau_j, \tau_k\}) = 0$$
? $\tau_i = T_A, T_a, Y$

(nice, but why??)

Electroweak precision tests (EWPT)

- Accuracy up to the ‰ level → sensitivity to 1loop corrections, which involve
 - g, g', v
 - m_t , $a_s(MZ)$, $\Delta a_{had}(MZ)$
 - m_h
- and bring together
 - the gauge sector: $g^2/(4\pi)^2$, $g'^2/(4\pi)^2$
 - the flavour sector: $\lambda^2/(4\pi)^2$
 - the EW-breaking sector: $g^2/(4\pi)^2 \log(m_h/M_W)$
- The agreement works because of the relatively low value of m_h

Experimental determination of Higgs mass: direct vs indirect

The flavour sector and spontaneous SB

$$\begin{split} \bar{\Psi}_i i \gamma^\mu D_\mu \Psi_i - \frac{1}{4} F^a_{\mu\nu} F^{a\mu\nu} & \text{gauge} \\ \mathcal{L}^{\text{ren}}_{\text{SM}} = & + \lambda_{ij} \Psi_i \Psi_j H + \text{h.c.} & \text{flavor} \\ + |D_\mu H|^2 - V(H) & \text{symmetry breaking} \end{split}$$

Fermion and gauge boson masses

Gauge invariance forbids (gauge invariant) vector masses
 M_W?

• G_{SM} forbids (gauge invariant) fermion masses m_e?

SU(2)_L predicts v_L e_L to have same masses and couplings v ints?

Spontaneous Symmetry Breaking (SSB)

- Characterization of spontaneous symmetry breaking
 - The lagrangian is invariant
 - The currents associated with the symmetry are conserved
 - The vacuum of the theory is not invariant
 - The spectrum is not invariant
- Features
 - Allows a consistent breaking of gauge symmetries (symmetry is not totally lost); in particular, allows a consistent quantization of massive vectors
 - SSB of both global (e.g. approximate chiral symmetry of QCD) and gauge (electroweak) symmetries does take place in nature

- The spontaneous breaking of a symmetry arises when the ground state of the system is degenerate because of a symmetry
- Example: classical mechanics:

- Example: quantum mechanics: a lattice of spins coupled in a rotationally invariant way (ferromagnet)
 - The spins are aligned in the ground state
 - They spontaneously choose a direction, thus breaking rotational invariance
- In the limit of ∞ degrees of freedom (QFT), superpositions of degenerate vacua are not allowed: the symmetry is indeed broken

SSB in QFT

SSB $\Leftrightarrow \langle \phi \rangle \equiv \langle \Omega | \phi(x) | \Omega \rangle$ not invariant under the symmetry (\neq 0) ("vev" \equiv non-vanishing vacuum expectation value) (if Ω is invariant, $\langle \phi \rangle$ is invariant)

- Poincaré invariance:
 - Only (4D) scalars can get a vev

 $V_{eff} = V_{tree} + quantum corrections (1PI diagrams)$

SSB of global symmetry: complex scalar field

$$\mathcal{L} = (\partial_{\mu}\phi)^{\dagger}(\partial^{\mu}\phi) - V(\phi^{\dagger}\phi), \quad V(\phi^{\dagger}\phi) = \mu^{2}\phi^{\dagger}\phi + \lambda(\phi^{\dagger}\phi)^{2}$$
 is invariant under $\phi \to e^{i\alpha}\phi$ (global U(1))

$$\langle \phi \rangle = ve^{i\theta}$$
 $v^2 = \frac{|\mu^2|}{2\lambda} \neq 0$

The system chooses an arbitrary value of θ , thus breaking U(1)

Assume θ = 0 in the minimum (no loss of generality: $\widetilde{\varphi}(x) = \varphi(x)e^{-i\theta}$)

SSB of gauge transformations (Higgs mechanism)

- Gauge bosons can get a longitudinal component and a mass
- Correspondingly, the Goldstone bosons associated to the global symmetry become unphysical. The degree of freedom associated to those bosons is eaten up by the gauge bosons

Example: the complex scalar field again

Promote the global U(1) to a gauge U(1)

$$\mathcal{L}_{\text{gauge}} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + (D_{\mu}\phi)^{\dagger} (D^{\mu}\phi) - V(\phi^{\dagger}\phi) + \text{g.f.}, \quad D_{\mu} = \partial_{\mu} + igA_{\mu}$$

Break U(1) spontaneously: $\mu^2 < 0, \ \langle \phi \rangle = v$; a vector mass term is generated:

$$(D_{\mu}\phi)^{\dagger}(D^{\mu}\phi) = (\partial_{\mu}\phi')^{\dagger}(\partial^{\mu}\phi') + \frac{1}{2}M^{2}A_{\mu}A^{\mu} + \sqrt{2}gvA^{\mu}\partial_{\mu}G + \text{interactions}$$

$$M^{2} = 2g^{2}v^{2}$$

Gauge transformation:

$$\begin{cases} \phi(x) = \left(v + \frac{h(x)}{\sqrt{2}}\right)e^{ig(x)} & \text{is equivalent to } \begin{cases} \phi(x) = v + \frac{h(x)}{\sqrt{2}} \\ A_{\mu}(x) & \text{unitarity gauge} \end{cases}$$
 Unitarity

The Goldstone boson disappears, A_{μ} gets a longitudinal component

"Blackboard"