The Standard Model III

Andrea Romanino, SISSA, romanino@sissa.it

Notable features (flavour sector)

- U(3)⁵ and accidental symmetries
- no neutrino masses
- (anomalous suppression of loop FCNC)

The flavour sector

$$\psi_i^{\dagger} i \sigma^{\mu} D_{\mu} \psi_i - \frac{1}{4} F_{\mu\nu}^a F^{a\mu\nu} \qquad \text{gauge}$$

$$\mathcal{L}_{\text{SM}}^{\text{ren}} = +\lambda_{ij} \psi_i \psi_j H + \text{h.c.} \qquad \text{flavor}$$

$$+|D_{\mu} H|^2 - V(H) \qquad \text{symmetry breaking}$$

$$e^{c}$$
 $(e^{c})_{1}$ $(e^{c})_{2}$ $(e^{c})_{3}$

$$u^{c}$$
 $(u^{c})_{1}$ $(u^{c})_{2}$ $(u^{c})_{3}$

$$d^{c}$$
 $(d^{c})_{1}$ $(d^{c})_{2}$ $(d^{c})_{3}$

The flavour sector allows to tell the three families: gauge interactions do not

$U(3)^5 \times U(1)_H$

The gauge lagrangian cannot tell families \leftrightarrow is U(3)⁵ invariant:

$$L_i
ightarrow U_{ij}^L L_j$$
 $e_i^c
ightarrow U_{ij}^e e_j^c$
 $U(3)^5: Q_i
ightarrow U_{ij}^Q Q_j \Rightarrow \mathcal{L}_{\mathrm{SM}}^{\mathrm{gauge}}
ightarrow \mathcal{L}_{\mathrm{SM}}^{\mathrm{gauge}}$
 $u_i^c
ightarrow U_{ij}^{u^c} u_j^c$
 $d_i^c
ightarrow U_{ij}^{d^c} d_j^c$

also
$$U(1): H \to e^{i\alpha}H \Rightarrow \mathcal{L}_{\text{SM}}^{\text{EWSB}} \to \mathcal{L}_{\text{SM}}^{\text{EWSB}}$$

$U(3)^5 \times U(1)_H$

The flavour (Yukawa) lagrangian is is not U(3)⁵ invariant (unless $\lambda_{ij}=0$)

$$l_{i} \rightarrow U_{ij}^{l} l_{j}$$

$$e_{i}^{c} \rightarrow U_{ij}^{e^{c}} e_{j}^{c} \qquad \lambda_{E} \rightarrow U_{e^{c}}^{T} \lambda_{E} U_{L}$$

$$U(3)^{5}: q_{i} \rightarrow U_{ij}^{q} q_{j} \Rightarrow \lambda_{D} \rightarrow U_{d^{c}}^{T} \lambda_{D} U_{Q} \qquad \mathcal{L}_{SM}^{flavour} \not\rightarrow \mathcal{L}_{SM}^{flavour}$$

$$u_{i}^{c} \rightarrow U_{ij}^{u^{c}} u_{j}^{c} \qquad \lambda_{U} \rightarrow U_{u^{c}}^{T} \lambda_{U} U_{Q}$$

$$d_{i}^{c} \rightarrow U_{ij}^{d^{c}} d_{j}^{c}$$

$$\mathcal{L}_{\mathrm{SM}}^{\mathrm{flavor}} = \lambda_{ij}^{E} e_{i}^{c} l_{j} H^{\dagger} + \lambda_{ij}^{D} d_{i}^{c} q_{j} H^{\dagger} + \lambda_{ij}^{U} u_{i}^{c} q_{j} H + \mathrm{h.c.}$$

Accidental symmetries (ren lagrangian)

The flavour lagrangian breaks $U(3)^5 \times U(1)_H$ to $U(1)_e \times U(1)_\mu \times U(1)_\tau \times U(1)_B \times U(1)_Y$

$$\lambda_{ij}^{E} e_{i}^{c} L_{j} H^{\dagger} \rightarrow \lambda_{e_{i}} e_{i}^{c'} L_{i}' H^{\dagger}$$

$$\lambda_{ij}^{D} d_{i}^{c} Q_{j} H^{\dagger} \rightarrow \lambda_{d_{i}} d_{i}^{c'} Q_{i}' H^{\dagger}$$

$$\lambda_{ij}^{U} u_{i}^{c} Q_{j} H \rightarrow \lambda_{u_{i}} V_{ij} u_{i}^{c'} Q_{i}' H$$

B Le L_μ L_τ individual lepton numbers (also L = Le + L_μ + L_τ total) B Baryon number

- Welcome that they arise as accidental symmetries
 - prediction of the SM, not by hand
 - « 1 predicted, not = 0
 - allows SM extensions in which they are broken (see-saw, GUT) (Li necessarily broken by neutrino masses, possibly L)
 - broken by non perturbative effects

No neutrino masses

- Within the SM
 - $m_v = 0$

 $U(1)_{em}: m_v \neq 0, L \neq 0$

- $m_v = 0 \leftrightarrow L$ accidentally conserved
- $m_v / \langle H \rangle < 10^{-12}$
- Plausibly unrelated to m_e / $\langle H \rangle \approx 0.3 \times 10^{-5}$
 - family independent
 - (compelling reason for m_v to be small)

- Beyond the SM, standard framework
 - if the origin of $m_v \neq 0$ lies above the EW scale

$$\mathcal{L}_{\mathrm{SM}}^{\mathrm{eff}} = \mathcal{L}_{\mathrm{SM}}^{\mathrm{ren}} + \frac{c_{ij}}{2\Lambda}(l_i h)(l_j h) + \mathrm{h.c.} + \ldots$$

$$m_{u,d,e} = \lambda_{u,d,e} v \quad m_{\nu} = c v \times \frac{v}{\Lambda}$$

$$\Lambda \sim 0.5 \cdot 10^{15} \,\mathrm{GeV}\, \frac{c}{m_{\nu}}$$

Possible tree level origins of LHLH

See-saw type I S: SM singlet

at least 2

See-saw type III T: SU(2)_L triplet, Y = 0

at least 2

See-saw type II T: $SU(2)_L$ triplet, Y = 1

at least 1

Analysis of the SM lagrangian: SSB

The Higgs sector

Most general gauge invariant ren. lagrangian for H:

$$\mathcal{L}_{H} = (D_{\mu}H)^{\dagger}(D^{\mu}H) - V(H^{\dagger}H)$$
$$V(H^{\dagger}H) = \mu^{2}H^{\dagger}H + \lambda_{H}(H^{\dagger}H)^{2}$$

- λ_H > 0
- \bullet μ^2 < 0 \Rightarrow <H> \neq 0 \Rightarrow electroweak symmetry breaking

QED unbroken

Fix the Higgs quantum numbers from fermion masses. Then the electric charge is automatically conserved

$$\langle H \rangle = \begin{pmatrix} 0 \\ v \end{pmatrix}, \ v > 0, \ v^2 = \frac{|\mu^2|}{2\lambda_H} \approx (174 \,\text{GeV})^2 \qquad m_H^2 = 4 \,\lambda_H(v^2) \,v^2$$

$$T = aY + b_a T_a, \ a, b_a \text{ real}, \ T_a = \frac{\sigma}{2}, \ Y = \frac{1}{2}$$

$$0 = T \,\langle H \rangle = \frac{v}{2} \begin{pmatrix} b_1 - ib_2 \\ a - b_3 \end{pmatrix} \Rightarrow T \propto Q$$

3 broken generators ↔ 3 massive vectors ↔ 3 unphysical
 Goldstone bosons ↔ 1 real physical Higgs particle

"Blackboard"

SM spectrum: s = 1

"Blackboard"

SM spectrum: s = 0

"Blackboard"

Andrea Romanino, SISSA, romanino@sissa.it

Notable features (Higgs sector)

- electric charge conserved
- custodial symmetry
- perturbative extrapolation

QED unbroken

- Higgs quantum numbers from fermion masses
- Just what needed to break (or not) SU(2)_L x U(1)_Y to U(1)_{em}
 - e.g. SU(2)_L doublet with different Y would break to U(1)_Q
 - e.g. $SU(2)_L$ triplet with $Y \neq 0, 1, -1$ would break to nothing Y = 0 would break to $U(1)_Y \times U(1)_{T3}$
 - e.g. two SU(2)_L doublets with correct Y could break the whole SU(2)_L x U(1)_Y

Custodial symmetry

- Not guaranteed by gauge invariance or breaking pattern
- Peculiar of EW breaking by a doublet (dominant contribution from triplets ruled out)
- **Solution Exact in the limit g' = 0, \lambda_U = \lambda_D**

$\rho \approx 1 \leftrightarrow \text{(approximate) custodial SU(2)}$

 $\rho = 1$ if in the g' = 0 limit W^{1,2,3} have equal mass

■ I.e. if a SO(3) ≈ SU(2) symmetry rotates the real fields W^{1,2,3}

The custodial symmetry in the Higgs sector: the Higgs lagrangian is accidentally SO(4) symmetric, as

$$|H|^2 = h_{1R}^2 + h_{1I}^2 + h_{2R}^2 + h_{2I}^2$$

 \odot SO(4) is spontaneously broken to SO(3) by $\langle h_{2R} \rangle \neq 0$

"Blackboard"

Light Higgs + SM couplings = perturbativity

- Unitarity bound: |a₀| ≤ 1
- $m{\circ}$ Tree level, no Higgs: $a_0 \sim rac{s}{16\pi v^2}$, s = (p₁+p₂)², v pprox 174 GeV

- Onitarity bound saturated at s ≈ (1.2 TeV)²
- The Bad behaviour of a_0 due to the longitudinal part of the W propagator $\sim p_\mu p_\nu/(M_W)^2$, cancelled by Higgs exchange

(perturbative extrapolation possible up to MPI)

Buttazzo et al

(perturbative extrapolation possible up to M_{Pl})

SM spectrum: s = 1/2

"Blackboard"