The Standard Model and its flavour anomalies V

Andrea Romanino, SISSA, romanino@sissa.it

II Joint ICTP-Trieste/ICTP-SAIFR School on Particle Physics

Standard parameterisation

$$V_{\rm CKM} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}s^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}s^{i\delta} & c_{23}c_{13} \end{pmatrix}$$

$\sin \theta_{12}$	$\sin \theta_{23}$	$\sin heta_{13}$	δ/π
0.225 ± 0.001	0.0420 ± 0.0006	0.0037 ± 0.0001	0.37 ± 0.01

Standard parameterisation

$$V_{\rm CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

Standard → Wolfestein parameterisation

$$V_{\rm CKM} \approx \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\bar{\rho} - i\bar{\eta}) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \bar{\rho} - i\bar{\eta}) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}\left(\lambda^4\right)$$

 $\lambda pprox 0.22$ $A, ar{
ho}, ar{\eta} = \mathcal{O}(1)$ "Blackboard"

Tests of SM flovour predictions and anomalies One source : $-\frac{2}{\sqrt{2}}V_{ij}\overline{u_{il}}\chi^{M}d_{jl}W_{\mu}^{+}$ th.c. V is unitary

- Tests of unitarity:
- $\Pi \sum_{k} |V_{ih}|^{2} = \sum_{k} |V_{kj}|^{2} = 1$
- $\Box Z_{L} V_{iL} V_{jL}^{*} = Z_{K} V_{ki} V_{kj}^{*} = O \quad i \neq j$

$$\begin{split} & \sum_{k} |V_{ik}|^{2} = \sum_{k} |V_{kj}|^{2} = 1 \\ & \text{Neasure |V_{ij}| eg. through |U_{i}(-) cl_{j} tree level decays} \\ & |V_{ucl}| d \neg u \in V \quad n \neg p \in V \quad 0.97370 \pm 0.00014 \\ & u \neg d \in V \quad \pi^{+} \rightarrow \pi^{\circ} \in V \\ & u \neg d \in V \quad \pi^{+} \rightarrow \pi^{\circ} \in V \\ & u \neg u = v \quad \pi^{-} + \sigma = v \\ & |V_{us}| & S \rightarrow u \in V \quad k_{L}^{\circ} \rightarrow \pi^{-} e^{+} V \\ & l = e, \mu \quad k^{+} \rightarrow \pi^{\circ} e^{+} V \end{split}$$

 $\sum_{h} |V_{ih}|^{\prime} = \sum_{k} |V_{ki}|^{\prime} = 1$

Analogously:

$$V_{ua} | V_{us} | |V_{ub} |$$

 $|V_{ca} | |V_{cs} | |V_{cb} |$
 $|V_{ca} | |V_{ts} | |V_{tb} |$
 $|V_{ca} | = 0.221 \pm 0.004$
 $|V_{cb} | = (0.410 \pm 0.014) \cdot 10^{-2}$

Vub Vub Vub = 0.079±0.006 Moreover: $V_{LS} = (0.388 \pm 0.011) \cdot 10^{3}$ $\left| \frac{V_{ta}}{V_{ta}} \right| = 0.205 \pm 0.006$ $|V_{L_{2}}| = 1.013 \pm 0.03 \bigcirc$

tensions in V_{cb} and V_{ub} (inclusive vs exclusive)

$$\sum_{h} |V_{ih}|^2 = \sum_{k} |V_{kj}|^2 = 1$$

$$|V_{ud}|^{2} + |V_{us}|^{2} + |V_{ub}|^{2} = 0.9985 \pm 0.0005$$

$$|V_{cd}|^{2} + |V_{cs}|^{2} + |V_{cb}|^{2} = 1.025 \pm 0.022$$

$$|V_{ud}|^{2} + |V_{ca}|^{2} + |V_{tg}|^{2} = 0.9970 \pm 0.0018$$

$$|V_{us}|^{2} + |V_{cs}|^{2} + |V_{ts}|^{2} = 1.026 \pm 0.022$$

$$\sum_{i \ge n.c} |V_{ij}|^2 = 2.002 \pm 0.027$$

 $j = d.s.b$ (from BR($w \rightarrow ev$) $\propto \frac{1}{3+3 \sum |v_{ij}|^2}$)

Cabibbo tension

$$\frac{V_{hi}V_{hj}^{*}=0}{ij=sd}$$

$$V_{us}V_{ua}^{*}+V_{cs}V_{ca}^{*}+V_{ts}V_{ta}^{*}=0$$

$$O(\lambda) O(\lambda^{5}) O(\lambda^{5})$$

$$ij=bs V_{ub}V_{us}^{*}+V_{cs}V_{cs}^{*}+V_{ts}V_{ts}^{*}=0$$

$$O(\lambda^{4}) O(\lambda^{2}) O(\lambda^{2})$$

$$ij=bd V_{ub}V_{ud}^{*}+V_{cb}V_{ca}^{*}+V_{tb}V_{ta}^{*}=0$$

$$O(\lambda^{3}) O(\lambda^{3}) O(\lambda^{3})$$

 $V_{hb}V_{hd} = 0$

+ 1 + $\frac{V_{tb}V_{ta}^*}{V_{cb}V_{cd}^*}$ Vub Vud 2 O V cb V čd $-(\overline{p}+\overline{\eta})$ $\overline{p} + i\overline{\gamma} - 1$ Q = arg (Vtu Vtb) Unitarity Triangle $(\overline{e}, \overline{2})$ B= 2ng (- Vcd Vcb Vba Vtb) 2 8 = arg (- Vna Vns Ved Veb

trom time-dependent asymmetries à B-JUKS + --ß ·· B→TJT +··· d 4 -1 61 - B-DK+---4 4 L,

Time - dependent CP - symmetries in B decors
H^o-Fi^o system
$$M = K \sim \hat{s}d$$
, $B_a \sim \bar{b}d$, $B_s \sim \bar{b}s$
Evolution governed by $H = \pi - i\pi/2$
($H^o|H|Fi^o$) $\neq 0$: $M_c^{c_1}Fi^o$ showed (bop)
 $M_L, \pi_H = p H^o \pm q Fio$ mass eigenstates ($H_{uass} M_{LH} Width T_{LH}$)
 $M = B$ can opproximate $\Gamma_L = \Gamma_H = \Gamma$, $[9/p] = 1$. Then
 $\frac{\Gamma(B^o(t) = f) - \Gamma(\bar{B}^o(t) \Rightarrow f)}{\Gamma(-1) + \Gamma(-1)} = S_f sin(Amt) - C_f cos(Amt)$
 $S_f = \frac{2 Sin(Af)}{1 + 1A_f + 1^2} (f = \frac{1 - 13f!}{1 + 1A_f + 1^2} A_f = \frac{q}{p} (\frac{4HA})B^o)$
 $f co eigenstate L dependence anongles$

Example : the 'gold-plated"
$$B \rightarrow Jly les decay (and p)$$

 $b \rightarrow c\bar{c}s$
 $\partial mplitude : V_{cb} V_{cs}T + V_{u;b} V_{u;s} P_i =$
 $u + V_{cb} V_{cs} (P_c - P_b) + V_{ub} V_{u;s} (P_u - P_b)$
 $\delta me phase (P_c - P_b) + V_{ub} V_{u;s} (P_u - P_b)$
 $\delta me phase (P_c - P_b) + V_{ub} V_{u;s} (P_u - P_b)$
 $J^2 \propto loop$
 $Suppressed:$
 $CLEAN$
the tree-level phase coubins with others to give
 $A_f = Jly k_s = -e^{-2iB}$
 $Sqk_s = \delta m \ell \beta$ $Cyk_s = 0$

$\overline{b} \to \overline{q} q \overline{q}'$	$B^0 \to f$	$B_s \to f$	CKM dependence of A_f	Suppression	_
$\overline{\overline{b}} \to \overline{c}c\overline{s}$ $\overline{b} \to \overline{s}s\overline{s}$ $\overline{b} \to \overline{u}u\overline{s}$ $\overline{b} \to \overline{c}c\overline{d}$ $\overline{b} \to \overline{s}s\overline{d}$ $\overline{b} \to \overline{u}u\overline{d}$	ψK_S ϕK_S $\pi^0 K_S$ $D^+ D^-$ $\phi \pi$ $\pi^+ \pi^-$	$\psi\phi$ $\phi\phi$ $K^{+}K^{-}$ ψK_{S} ϕK_{S} $\pi^{0}K_{S}$	$\begin{split} & (V_{cb}^*V_{cs})T + (V_{ub}^*V_{us})P^u \\ & (V_{cb}^*V_{cs})P^c + (V_{ub}^*V_{us})P^u \\ & (V_{cb}^*V_{cs})P^c + (V_{ub}^*V_{us})T \\ & (V_{cb}^*V_{cd})T + (V_{tb}^*V_{td})P^t \\ & (V_{tb}^*V_{td})P^t + (V_{cb}^*V_{cd})P^c \\ & (V_{ub}^*V_{ud})T + (V_{tb}^*V_{td})P^t \end{split}$	$\begin{array}{c} \operatorname{loop} \times \lambda^2 \\ \lambda^2 \\ \lambda^2 / \operatorname{loop} \\ \operatorname{loop} \\ \lesssim 1 \\ \operatorname{loop} \end{array}$	ß

$$b \to c\bar{u}s \quad \text{vs} \quad b \to \bar{c}us \qquad B^{\pm} \to D^0 K^{\pm} \quad \text{vs} \quad B^{\pm} \to \bar{D}^0 K^{\pm} \qquad \qquad \bigvee$$

 $\alpha + \beta + \gamma = (180.6 \pm 7.2)^{\circ}$

Test of unitarity and of new physics

Anomalously small loop-induced FCNC

Expect: 0

K⁰ - K⁰ oscillations

Instead: 10⁶ smaller 0

 $\epsilon \sim 10^{-6}$

 $= (V_{su_i}^{\dagger} V_{u_i d}) (V_{su_j}^{\dagger} V_{u_j d}) f \left(\frac{m_{u_i}^2}{M_{W}^2}, \frac{m_{u_j}^2}{M_{W}^2}\right)$ i = 3: f = O(1), $|V_{td}V_{ts}| \ll 1$ i = 1,2: $|V_{id}V_{is}| = O(1), f \ll 1$

Symmetry origin of suppression: $U(2)^5$

In an appropriate basis

$$\lambda = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \lambda_{33} \end{pmatrix} + \text{small} \quad (U, D, E)$$

Approximately U(2)⁵ symmetric
ε = 0 in the symmetric limit

Flavour tensions / anomalies

"Clean" observables?

- Isospin relations
 - Koto anomaly: $K_L \to \pi^0 \nu \bar{\nu}, K^{\pm} \to \pi^{\pm} \nu \bar{\nu}$
 - hadronic matrix elements related to $K^+ \rightarrow \pi^0 e \nu$ by isospin

- Lepton flavour universality (LFU)
 - $R_K, R_{K^*}, R_D, R_{D^*}$ anomalies
 - uncertainties partially cancel in ratios of observables

K()|()

- Koto
- $\cdot K_I \rightarrow \pi^0 \nu \bar{\nu}$
- 4 events, 0.05 expected
- $BR(K_L \to \pi^0 \nu \bar{\nu})_{KOTO} = 21^{+20}_{-11} \cdot 10^{-10}$ $BR(K^+ \to \pi^+ \nu \bar{\nu})_{NA62} < 1.85 \cdot 10^{-10}$
- BR $(K_I \rightarrow \pi^0 \nu \bar{\nu})_{\rm SM} \approx 0.34 \cdot 10^{-10}$

• 2 events, 1.5 expected

$$\mathsf{BR}(K^+ \to \pi^+ \nu \bar{\nu})_{\rm SM} \approx 0.84 \cdot 10^{-10}$$

• 3.8σ tension

Grossman-Nir bound $BR(K_L \to \pi^0 \nu \bar{\nu}) \leq 4.3 BR(K^+ \to \pi^+ \nu \bar{\nu}) \leq 8.1 \, 10^{-10}$ 2.1 tension with BSM (asumes $s \rightarrow dX$ origin for both)

• NA62

 $\cdot K^+ \rightarrow \pi^+ \nu \bar{\nu}$

Grossman-Nir bound

Pheno-gym: how to violate the GN bound

- $K \to \pi X$ with $M_X \sim m_\pi$
 - blind to NA62
 not to KOTO
- $K \to \pi X, X \to SM$
 - NA62 X decay in detector, rejects KOTO X decay outside detector

 $\cdot \quad X \to \gamma \gamma$

• NA62 looks for π^+ , rejects KOTO sees $\gamma\gamma$ from off axis mimicking π^0 + missing p_T

Lepton Flavour Universality (LFU)

- · $BR(B \rightarrow Ae^+e^-) = BR(B \rightarrow A\mu^+\mu^-) = BR(B \rightarrow A\tau^+\tau^-)$
 - up to $U(3)_I \times U(3)_{eR}$ breaking effects
 - small when $m^2 \ll q^2$ and anyway calculable

$$\frac{\mathsf{BR}(B \to Al_1^+ l_1^-)}{\mathsf{BR}(B \to Al_2^+ l_2^-)}$$

reduces hadronic uncertainties

LFU in CC B-decays

 $\cdot b \rightarrow c \tau \bar{\nu}$

• tree-level in the SM

$$\frac{\text{BR}(B^0 \to D^* e^+ \bar{\nu})}{\text{BR}(B^0 \to D^* \mu^+ \bar{\nu})} = 1.01 \pm 0.03$$

$$\frac{\text{BR}(B^0 \to D^{(*)}\tau^+ \bar{\nu})}{\text{BR}(B^0 \to D^{(*)}l^+ \bar{\nu})} \equiv R_{D^{(*)}} \neq (R_{D^{(*)}})_{\text{SM}}$$

LFU in CC B-decays

LFU in NC B-decays

- $\cdot b \rightarrow s \mu^+ \mu^-$
 - 1-loop in the SM

$$\frac{\mathsf{BR}(B \to K^{(*)}\mu^+\mu^-)}{\mathsf{BR}(B \to K^{(*)}e^+e^-)} \equiv R_{K^{(*)}} \neq (R_{K^{(*)}})_{\mathrm{SM}}$$

- Clean: $R_K^{[1,6]}$, $R_{K^*}^{[0.045,1.1]}$, $R_{K^*}^{[1.1,6]}$: each about 2.5 σ tension (q²/GeV²) also: $B_s \rightarrow \mu^+ \mu^-$: 2 σ tension
- Further deviations, and constraints, in observables with hadronic uncertainties

LFU in NC B-decays

New Physics parameterisation in WET

- WET = $SU(3)_c \times U(1)_{em}$ invariant EFT below EW scale
- $10(\mu) + 10(e)$ independent operators (10 = 4S + 4V + 2T)
- $6(\mu) + 6(e)$ from tree-level match with D=6 SMEFT (6 = 4V + 2S)
- Global fits prefer μ , vector, Q_L (with some flexibility)

$$C_L^{bs} \left(\overline{s_L}\gamma^{\mu}b_L\right) \left(\overline{\mu_L}\gamma_{\mu}\mu_L\right) + C_R^{bs} \left(\overline{s_L}\gamma^{\mu}b_L\right) \left(\overline{\mu_R}\gamma_{\mu}\mu_R\right)$$

needed sufficient optional

• (Subdominant contributions from d_R and e possibly welcome)

New Physics parameterisation in WET

 $C_L^{bs} (\overline{s_L} \gamma^\mu b_L) (\overline{\mu_L} \gamma_\mu \mu_L) + C_R^{bs} (\overline{s_L} \gamma^\mu b_L) (\overline{\mu_R} \gamma_\mu \mu_R)$

New Physics parameterisation in SMEFT

• SMEFT = G_{SM} invariant EFT below NP scale

•
$$\mathcal{O}_{ij}^L = (\overline{d_{iL}}\gamma^{\mu}d_{jL})(\overline{\mu_L}\gamma_{\mu}\mu_L), \ \mathcal{O}_{ij}^R = (\overline{d_{iL}}\gamma^{\mu}d_{jL})(\overline{\mu_R}\gamma_{\mu}\mu_R)$$
 from

$$\mathcal{O}_{ij}^{S} = (\overline{Q_{i}}\gamma^{\mu}Q_{j})(\overline{L_{2}}\gamma_{\mu}L_{2}) \qquad \leftrightarrow \qquad C_{ij}^{S}$$
$$\mathcal{O}_{ij}^{T} = (\overline{Q_{i}}\gamma^{\mu}\sigma_{a}Q_{j})(\overline{L_{2}}\gamma_{\mu}\sigma_{a}L_{2}) \qquad \leftrightarrow \qquad C_{ij}^{T} \qquad Q_{i} = \begin{pmatrix} V_{ij}^{\dagger}u_{j} \\ d_{i} \end{pmatrix}$$
$$\mathcal{O}_{ij}^{R} = (\overline{Q_{i}}\gamma^{\mu}Q_{j})(\overline{\mu_{R}}\gamma_{\mu}\mu_{R}) \qquad \leftrightarrow \qquad C_{ij}^{R}$$

Redundancy

$$\mathcal{O}_{ij}^{+} = \frac{\mathcal{O}_{ij}^{S} + \mathcal{O}_{ij}^{T}}{2} = (\overline{Q_{i}}\gamma^{\mu}L_{2})(\overline{L_{2}}\gamma_{\mu}Q_{j}) \quad \leftrightarrow \quad C_{ij}^{+} = C_{ij}^{S} + C_{ij}^{T} = C_{ij}^{L}$$
$$\mathcal{O}_{ij}^{-} = \frac{\mathcal{O}_{ij}^{S} - \mathcal{O}_{ij}^{T}}{2} = 2(\overline{Q_{i}^{c}}L_{2})(\overline{L_{2}}Q_{j}^{c}) \qquad \leftrightarrow \quad C_{ij}^{-} = C_{ij}^{S} - C_{ij}^{T}$$

A coherent picture?

- $b \rightarrow se^+e^$ $b \rightarrow s \mu^+ \mu^ \cdot b \rightarrow c \tau \bar{\nu}$
- $3_q \rightarrow 2_q 3_l 3_l$ $3_q \rightarrow 2_q 2_l 2_l$ $3_q \rightarrow 2_q \mathbf{1}_1 \mathbf{1}_1$
- >> • (C_τ)-1/2

>>

• λ_{τ}

 $(C_{\mu})^{-1/2}$

 λ_{μ}

 $(C_e)^{-1/2}$

 λ_e

>>

>>

Why Beyond?

Some reasons to go beyond the SM

- Experimental "problems" of the SM
 - Gravity
 - Dark matter
 - Baryon asymmetry
 - Neutrino masses
- Experimental "hints" of physics beyond the SM
 - Quantum number unification
- Theoretical puzzles of the SM
 - $\langle H \rangle \ll M_{\text{Pl}}$
 - Family replication
 - Small Yukawa couplings, pattern of masses and mixings
 - Gauge group, no anomaly, charge quantization, quantum numbers
- Theoretical problems of the SM
 - Higgs mass naturalness problem
 - Cosmological constant problem
 - Strong CP problem
 - Landau poles

Experimental "problems" of the SM

- Gravity
- Dark matter
- Baryon asymmetry
- Neutrino masses

Experimental "hints" of physics beyond the SM

• Quantum number unification

p-decay bounds: $M \gg m_H$

an accident?

Theoretical puzzles of the SM

- $\langle H \rangle \ll M_{Pl}$
- Family replication
- Small Yukawa couplings, masses and mixings

Theoretical problems of the SM

- Landau poles
- Strong CP problem

 $\theta \, G_{\mu\nu} \tilde{G}^{\mu\nu} \quad D = 4$

- Naturalness problem
- Cosmological constant problem

 $\alpha Q_{\max}^2 H^{\dagger} H \quad D = 2$

$$\beta Q_{\max}^4 \sqrt{g} \quad D = 0$$