Scattering in chiral strong backgrounds

Tim Adamo
University of Edinburgh

based on work w/ L. Mason & A. Sharma

12 June 2020

see 2003.13501, 2007.xxxxx
Tree-level gauge theory/gravity in Minkowski space:

We know everything

[Parke-Taylor, Witten, Roiban-Spradlin-Volovich, Hodges, Cachazo-Skinner, Cachazo-He-Yuan,...]
Motivation

Tree-level gauge theory/gravity in Minkowski space:

We know everything

[Parke-Taylor, Witten, Roiban-Spradlin-Volovich, Hodges, Cachazo-Skinner, Cachazo-He-Yuan,...]

- All multiplicity formulae for tree-level S-matrix
- Important data for massless $g = 0$ sector of string theory
Motivation

Tree-level gauge theory/gravity in Minkowski space:

We know everything

[Parke-Taylor, Witten, Roiban-Spradlin-Volovich, Hodges, Cachazo-Skinner, Cachazo-He-Yuan,...]

- *All multiplicity* formulae for tree-level S-matrix
- Important data for massless $g = 0$ sector of string theory

But what about gauge theory/gravity/string theory in *non-trivial/strong* background fields?
Much less known – even in simplest strong backgrounds

- Tree-level 4-points (AdS, plane waves) [D’Hoker et al., Raju, TA-Casali-Mason-Nekovar]

- Unclear how ‘novel’ methods (unitarity, double copy, scattering equations) extend to strong backgrounds
Much less known – even in simplest strong backgrounds

- Tree-level 4-points (AdS, plane waves) [D’Hoker et al., Raju, TA-Casali-Mason-Nekovar]

- Unclear how ‘novel’ methods (unitarity, double copy, scattering equations) extend to strong backgrounds

Today: Can we make all-multiplicity statements on (any) strong backgrounds?
Much less known – even in simplest strong backgrounds

- Tree-level 4-points (AdS, plane waves) [D’Hoker et al., Raju, TA-Casali-Mason-Nekovar]

- Unclear how ‘novel’ methods (unitarity, double copy, scattering equations) extend to strong backgrounds

Today: Can we make all-multiplicity statements on (any) strong backgrounds?

Yes!

Class of chiral, asymp. flat strong backgrounds in 4d gauge theory and gravity
Radiative backgrounds

Radiative field is completely characterized by free data at \(\mathcal{I}^\pm \)

Asymp. flat gauge/gravitational fields:

\[
A = \mathcal{A}^0(u, z, \bar{z}) \, dz + \bar{\mathcal{A}}^0(u, z, \bar{z}) \, d\bar{z} + O(r^{-1})
\]

\[
ds^2 = ds^2_M - 2 \frac{m_B(u, z, \bar{z})}{r} \, du^2 + \frac{\sigma^0(u, z, \bar{z})}{r} \, dz^2 + \frac{\bar{\sigma}^0(u, z, \bar{z})}{r} \, d\bar{z}^2 + O(r^{-2})
\]
Radiative backgrounds

Radiative field is completely characterized by free data at \mathcal{I}^\pm

Asymp. flat gauge/gravitational fields:

$$A = \mathcal{A}^0(u, z, \bar{z}) \, dz + \bar{\mathcal{A}}^0(u, z, \bar{z}) \, d\bar{z} + O(r^{-1})$$

$$ds^2 = ds_M^2 - 2m_B(u, z, \bar{z}) \frac{du^2}{r} + \sigma^0(u, z, \bar{z}) \frac{dz^2}{r} + \bar{\sigma}^0(u, z, \bar{z}) \frac{d\bar{z}^2}{r} + O(r^{-2})$$

Free data are spin-weighted functions on \mathcal{I}^+:

$$\mathcal{A}^0(u, z, \bar{z}) \leftrightarrow s = 1, \quad \sigma^0(u, z, \bar{z}) \leftrightarrow s = 2$$
SD Radiative fields

Lorentzian-real fields \mathcal{A}^0, $\tilde{\mathcal{A}}^0$ and σ^0, $\tilde{\sigma}^0$ related by complex conjugation

Complexify $\Rightarrow \mathcal{A}^0$, $\tilde{\mathcal{A}}^0$ and σ^0, $\tilde{\sigma}^0$ independent
SD Radiative fields

Lorentzian-real fields A^0, \bar{A}^0 and σ^0, $\bar{\sigma}^0$ related by complex conjugation

Complexify $\Rightarrow A^0$, \bar{A}^0 and σ^0, $\bar{\sigma}^0$ independent

A SD radiative field has $\bar{A}^0 = 0 / \bar{\sigma}^0 = 0$
Lorentzian-real fields $\mathcal{A}^0, \tilde{\mathcal{A}}^0$ and $\sigma^0, \tilde{\sigma}^0$ related by complex conjugation

Complexify $\Rightarrow \mathcal{A}^0, \tilde{\mathcal{A}}^0$ and $\sigma^0, \tilde{\sigma}^0$ independent

A **SD radiative field** has $\tilde{\mathcal{A}}^0 = 0/\tilde{\sigma}^0 = 0$

Idea:

- Exploit integrability of SD sector to compute tree-level S-matrix
Twistor theory

Twistor space: \(Z^A = (\mu^{\dot{\alpha}}, \lambda_\alpha) \) homog. coords. on \(\mathbb{CP}^3 \)

\[\mathbb{PT} = \mathbb{CP}^3 \setminus \{ \lambda_\alpha = 0 \} \]

\(x \in \mathbb{C}^4 \) given by \(X \cong \mathbb{CP}^1 \subset \mathbb{PT} \) via \(\mu^{\dot{\alpha}} = x^{\alpha\dot{\alpha}} \lambda_\alpha \)

Many applications in flat background:

- Massless free fields \(\leftrightarrow \) cohomology on \(\mathbb{PT} \) [Penrose, Sparling, Eastwood-Penrose-Wells]
- Representation for on-shell scattering kinematics [Hodges]
- Full tree-level S-matrix of \(N = 4 \) SYM [Witten, Berkovits, Roiban-Spradlin-Volovich]
- Full tree-level S-matrix of \(N = 8 \) SUGRA [Cachazo-Skinner]
Twistor theory

Twistor space: \(Z^A = (\mu^\dot{\alpha}, \lambda_\alpha) \) homog. coords. on \(\mathbb{CP}^3 \)

\[
\mathbb{PT} = \mathbb{CP}^3 \setminus \{ \lambda_\alpha = 0 \}
\]

\(x \in \mathbb{C}^4 \) given by \(X \cong \mathbb{CP}^1 \subset \mathbb{PT} \) via \(\mu^\dot{\alpha} = x^{\alpha\dot{\alpha}} \lambda_\alpha \)

Many applications in flat background:

- Massless free fields \(\leftrightarrow \) cohomology on \(\mathbb{PT} \) [Penrose, Sparling, Eastwood-Penrose-Wells]
- Representation for on-shell scattering kinematics [Hodges]
- Full tree-level S-matrix of \(\mathcal{N} = 4 \) SYM [Witten, Berkovits, Roiban-Spradlin-Volovich]
- Full tree-level S-matrix of \(\mathcal{N} = 8 \) SUGRA [Cachazo-Skinner]
Trivializing SD sector

Theorem [Ward 1977]
There is a 1:1 correspondence between:
• SD SU(N) Yang-Mills fields on \mathbb{C}^4, and
• rank N holomorphic vector bundles $E \to \mathbb{P}T$ trivial on every $X \subset \mathbb{P}T$ (+ technical conditions)
Trivializing SD sector

Theorem [Ward 1977]
There is a 1:1 correspondence between:
- SD SU(N) Yang-Mills fields on \mathbb{C}^4, and
- rank N holomorphic vector bundles $E \rightarrow \mathbb{P}T$ trivial on every $X \subset \mathbb{P}T$ (+ technical conditions)

Theorem [Penrose 1976]
There is a 1:1 correspondence between:
- SD 4-manifolds \mathcal{M}, and
- $\mathbb{P}T$ a complex deformation of $\mathbb{P}T$ with rational curve $X \subset \mathbb{P}T$ with normal bundle $N_X \cong \mathcal{O}(1) \oplus \mathcal{O}(1)$
SD sector encoded by integrable \mathbb{C}-structures on twistor space

- **Gauge theory**: $E \to \mathbb{PT}$ partial connection $\bar{D} = \bar{\partial} + A$, $A \in \Omega^{0,1}(\text{End}E)$, $\bar{D}^2 = 0$
- **Gravity**: $T_{\mathbb{P}\mathcal{F}}$ complex structure $\bar{\nabla} = \bar{\partial} + V$, $V \in \Omega^{0,1}(T_{\mathbb{P}\mathcal{F}})$, $\bar{\nabla}^2 = 0$
SD sector encoded by integrable \mathbb{C}-structures on twistor space

- Gauge theory: $E \rightarrow \mathbb{PT}$ partial connection $\tilde{D} = \tilde{\partial} + A$, $A \in \Omega^{0,1}(\text{End}E)$, $\tilde{D}^2 = 0$

- Gravity: $T_{\mathbb{PT}}$ complex structure $\tilde{\nabla} = \tilde{\partial} + V$, $V \in \Omega^{0,1}(T_{\mathbb{PT}})$, $\tilde{\nabla}^2 = 0$

For SD radiative fields [Sparling, Newman, Eastwood-Tod]

- $A(Z) = \partial_u A^0(\mu^{\hat{\alpha}} \bar{\lambda}_{\hat{\alpha}}, \lambda, \bar{\lambda}) D\bar{\lambda}$

- $V(Z) = \sigma^0(\mu^{\hat{\alpha}} \bar{\lambda}_{\hat{\alpha}}, \lambda, \bar{\lambda}) D\bar{\lambda} \bar{\lambda}^{\hat{\alpha}} \frac{\partial}{\partial \mu^{\hat{\alpha}}}$
Gauge theory

Restrict to SD rad. gauge fields valued in Cartan $E|_X$ trivialized by holomorphic frame

\[\bar{\partial}|_X H(x, \lambda) = -A|_X H(x, \lambda), \]
\[A|_X = \bar{\partial} g(x, \lambda), \quad \text{as } H^{0,1}(\mathbb{P}^1, \mathcal{O}) = \emptyset, \]
\[\Rightarrow \quad H(x, \lambda) = \exp[-g(x, \lambda)] \]
Gauge theory

Restrict to SD rad. gauge fields valued in Cartan

\(E|_X \) trivialized by holomorphic frame

\[
\bar{\partial}|_X H(x, \lambda) = -A|_X H(x, \lambda),
\]

\[
A|_X = \bar{\partial}g(x, \lambda), \quad \text{as} \quad H^{0,1}(\mathbb{P}^1, \mathcal{O}) = \emptyset,
\]

\[
\Rightarrow \quad H(x, \lambda) = \exp \left[-g(x, \lambda) \right]
\]

Recover space-time gauge field from

\[
\partial_{\alpha\dot{\alpha}}g(x, \lambda) = A_{\alpha\dot{\alpha}}(x) + \lambda_{\alpha} g_{\dot{\alpha}}(x, \lambda)
\]
Gluon perturbations

Gluon perturbations in background encoded by cohomology:

\[+ \text{ helicity gluon} \leftrightarrow a \in H^0_D(\mathbb{PT}, \mathcal{O} \otimes \End E) \]

\[- \text{ helicity gluon} \leftrightarrow b \in H^0_D(\mathbb{PT}, \mathcal{O}(-4) \otimes \End E) \]
Gluon perturbations

Gluon perturbations in background encoded by cohomology:

+ helicity gluon $\leftrightarrow a \in H^{0,1}_D(\mathbb{PT}, \mathcal{O} \otimes \text{End} E)$

− helicity gluon $\leftrightarrow b \in H^{0,1}_D(\mathbb{PT}, \mathcal{O}(-4) \otimes \text{End} E)$

E.g. + helicity with asymp. momentum $k_{\alpha \dot{\alpha}} = \kappa_{\alpha} \tilde{\kappa}_{\dot{\alpha}}$

$$a(Z) = T \frac{\langle \xi \lambda \rangle}{\langle \xi \kappa \rangle} \tilde{\partial} \left(\frac{1}{\langle \lambda \kappa \rangle} \right) e^{i \langle \xi \kappa \rangle [\mu \tilde{\kappa}]}$$

Leads to

$$a^{(\alpha)}_{\alpha \dot{\alpha}}(x) = T \frac{\xi_{\alpha} (\kappa_{\dot{\alpha}} + e g_{\dot{\alpha}}(x, \kappa))}{\langle \xi \kappa \rangle} \exp [i k \cdot x + e g(x, \kappa)]$$
How do we use all this to actually compute amplitudes?
How do we use all this to actually compute amplitudes?

Lesson from flat background: [Nair, Witten, Berkovits, Roiban-Spradlin-Volovich]

- Tree-level YM amplitudes live on rational holomorphic curves in \mathbb{PT}
- N^k MHV degree related to degree of curve $d = k + 1$

\[
\mu^{\hat{\alpha}}(\sigma) = u_{a(d)}^{\hat{\alpha}} \sigma^{a(d)}, \quad \lambda_\alpha(\sigma) = \lambda_\alpha a(d) \sigma^{a(d)}
\]
How do we use all this to actually compute amplitudes?

Lesson from flat background: [Nair, Witten, Berkovits, Roiban-Spradlin-Volovich]

- Tree-level YM amplitudes live on rational holomorphic curves in \(\mathbb{P} \mathbb{T} \)
- \(N^k \) MHV degree related to degree of curve \(d = k + 1 \)

\[
\mu_{\dot{\alpha}}(\sigma) = u_{a(d)}^{\dot{\alpha}} \sigma^{a(d)}, \quad \lambda_{\alpha}(\sigma) = \lambda_{\alpha a(d)} \sigma^{a(d)}
\]

Colour-ordered \(N^{d-1} \) MHV amplitude of \(\mathcal{N} = 4 \) SYM:

\[
\int \frac{d^{2d+2} \lambda}{\text{vol GL}(2, \mathbb{C})} \delta^2|4(d+1)\left(\sum_{i=1}^{n} s_i \tilde{\kappa}_i \sigma_i^{a(d)} \right) \\
\times \prod_{j=1}^{n} \frac{ds_j D\sigma_j}{s_j (jj + 1)} \delta^2(\kappa_j - s_j \lambda(\sigma_j))
\]
Central conjecture

Twistor string theory coupled to background field A (trivial extension to $\mathcal{N} = 4$ SYM)

Worldsheet action:

$$ S = \frac{1}{2\pi} \int_{\Sigma} Y_I \partial Z^I + \text{tr}(j A) + S_g + \text{ghosts}, $$

Vertex operators:

$$ V = \int_{\Sigma} \text{tr}(j a(Z)) $$
Central conjecture

Twistor string theory coupled to background field A (trivial extension to $\mathcal{N} = 4$ SYM)

Worldsheet action:

$$S = \frac{1}{2\pi} \int_{\Sigma} Y_I \bar{\partial} Z^I + \text{tr}(j A) + S_g + \text{ghosts},$$

Vertex operators:

$$V = \int_{\Sigma} \text{tr}(j a(Z))$$

Conjecture

N^kMHV amplitude on SD rad. background given by worldsheet correlator at degree $d = k + 1$
Amplitude formula

Let $Z^I(\sigma) = U^I_{a(d)} \sigma^{a(d)}$, and

$$A(Z(\sigma)) = \ddbar g(U, \sigma)$$

Result for N^k MHV color-ordered tree amplitude:

$$\int \frac{d^4|4(d+1)U}{\text{vol GL}(2, \mathbb{C})} \prod_{i=1}^n \frac{ds_i \text{D}\sigma_i}{s_j (i \ i + 1)} \delta^2(\kappa_i - s_i \lambda(\sigma_i)) \times \exp \left([\mu(\sigma_i) \bar{\kappa}_i] + e_i g(U, \sigma_i) \right)$$
Properties

Formula passes many checks
- Explicit 3- and 4-point checks
- Flat & perturbative limits
- Proved for MHV ($d = 1$)

Important differences from RSVW
- No momentum conservation
- $4d$ residual integrals (obstructed by background functional freedom)
Properties

Formula passes many checks
- Explicit 3- and 4-point checks
- Flat & perturbative limits
- Proved for MHV \((d = 1)\)

Important differences from RSVW
- No momentum conservation
- \(4d\) residual integrals (obstructed by background functional freedom)

Similar – more complicated – story for gravity!
All-multiplicity formulae on some strong backgrounds!

⇒ interesting probe of non-linearities in QFT

Any use/interest for string theory?

• SD *plane waves* \(\subset \) SD radiative backgrounds
• Vacuum plane waves are string backgrounds [Amati-Klimcik, Horowitz-Steif]

• So these formulae provide data for the \(\alpha' \rightarrow 0 \) limit of strings in plane wave backgrounds
Further directions

Many interesting open questions:

• Prove N^kMHV formulae for $k > 1$ (analyticity constraints [Ilderton-MacLeod]?)
• Other chiral backgrounds (with sources, not asymptotically flat)
• Non-chiral backgrounds, scattering equations, ambitwistor strings
Further directions

Many interesting open questions:

• Prove N^kMHV formulae for $k > 1$ (analyticity constraints [Ilderton-MacLeod] ?)
• Other chiral backgrounds (with sources, not asymptotically flat)
• Non-chiral backgrounds, scattering equations, ambitwistor strings

Thanks!