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Motivation

Tree-level gauge theory/gravity in Minkowski space:

We know everything
[Parke-Taylor, Witten, Roiban-Spradlin-Volovich, Hodges, Cachazo-Skinner, Cachazo-He-Yuan,...]

• All multiplicity formulae for tree-level S-matrix

• Important data for massless g = 0 sector of string theory

But what about gauge theory/gravity/string theory in
non-trivial/strong background fields?
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Much less known – even in simplest strong backgrounds

• Tree-level 4-points (AdS, plane waves) [D’Hoker et al., Raju,

TA-Casali-Mason-Nekovar]

• Unclear how ‘novel’ methods (unitarity, double copy,
scattering equations) extend to strong backgrounds

Today: Can we make all-multiplicity statements on (any)
strong backgrounds?

Yes!
Class of chiral, asymp. flat strong backgrounds in 4d gauge

theory and gravity
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Radiative backgrounds

Radiative field is completely characterized by free data at I ±

Asymp. flat gauge/gravitational fields:

A = A0(u, z , z̄) dz + Ā0(u, z , z̄) dz̄ + O(r−1)

ds2 = ds2
M−2

mB(u, z , z̄)

r
du2+

σ0(u, z , z̄)

r
dz2+

σ̄0(u, z , z̄)

r
dz̄2

+ O(r−2)

Free data are spin-weighted functions on I +:

A0(u, z , z̄)↔ s = 1 , σ0(u, z , z̄)↔ s = 2



Radiative backgrounds

Radiative field is completely characterized by free data at I ±

Asymp. flat gauge/gravitational fields:
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SD Radiative fields

Lorentzian-real fields A0, Ā0 and σ0, σ̄0 related by complex
conjugation

Complexify ⇒ A0, Ã0 and σ0, σ̃0 independent

A SD radiative field has Ã0 = 0/σ̃0 = 0

Idea:

• Exploit integrability of SD sector to compute tree-level
S-matrix
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Twistor theory

Twistor space: ZA = (µα̇, λα) homog. coords. on CP3

PT = CP3 \ {λα = 0}

x ∈ C4 given by X ∼= CP1 ⊂ PT via µα̇ = xαα̇λα

Many applications in flat background:

• Massless free fields ↔ cohomology on PT [Penrose, Sparling,

Eastwood-Penrose-Wells]

• Representation for on-shell scattering kinematics [Hodges]

• Full tree-level S-matrix of N = 4 SYM [Witten, Berkovits,

Roiban-Spradlin-Volovich]

• Full tree-level S-matrix of N = 8 SUGRA [Cachazo-Skinner]
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Trivializing SD sector

Theorem [Ward 1977]
There is a 1:1 correspondence between:

• SD SU(N) Yang-Mills fields on C4, and

• rank N holomorphic vector bundles E → PT trivial on
every X ⊂ PT (+ technical conditions)

Theorem [Penrose 1976]
There is a 1:1 correspondence between:

• SD 4-manifolds M , and

• PT a complex deformation of PT with rational curve
X ⊂ PT with normal bundle NX

∼= O(1)⊕O(1)
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Upshot

SD sector encoded by integrable C-structures on twistor space

• Gauge theory: E → PT partial connection D̄ = ∂̄ + A,
A ∈ Ω0,1(EndE ), D̄2 = 0

• Gravity: TPT complex structure ∇̄ = ∂̄ + V ,
V ∈ Ω0,1(TPT ), ∇̄2 = 0

For SD radiative fields [Sparling, Newman, Eastwood-Tod]

• A(Z ) = ∂uA0(µα̇λ̄α̇, λ, λ̄)Dλ̄

• V (Z ) = σ0(µα̇λ̄α̇, λ, λ̄)Dλ̄ λ̄α̇ ∂
∂µα̇
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Gauge theory

Restrict to SD rad. gauge fields valued in Cartan

E |X trivialized by holomorphic frame

∂̄|XH(x , λ) = −A|X H(x , λ) ,

A|X = ∂̄g(x , λ) , as H0,1(P1,O) = ∅ ,
⇒ H(x , λ) = exp [−g(x , λ)]

Recover space-time gauge field from

∂αα̇g(x , λ) = Aαα̇(x) + λα gα̇(x , λ)
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Gluon perturbations

Gluon perturbations in background encoded by cohomology:
+ helicity gluon ↔ a ∈ H0,1

D̄
(PT,O ⊗ EndE )

− helicity gluon ↔ b ∈ H0,1

D̄
(PT,O(−4)⊗ EndE )

E.g. + helicity with asymp. momentum kαα̇ = κακ̃α̇

a(Z ) = T
〈ξ λ〉
〈ξ κ〉

∂̄

(
1

〈λκ〉

)
ei

〈ξ κ〉
〈ξ λ〉 [µ κ̃]

Leads to

a
(+)
αα̇ (x) = T

ξα(κ̃α̇ + e gα̇(x , κ))

〈ξ κ〉
exp [i k · x + e g(x , κ)]
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How do we use all this to actually compute amplitudes?

Lesson from flat background: [Nair, Witten, Berkovits,

Roiban-Spradlin-Volovich]

• Tree-level YM amplitudes live on rational holomorphic
curves in PT
• NkMHV degree related to degree of curve d = k + 1

µα̇(σ) = uα̇a(d) σ
a(d) , λα(σ) = λα a(d) σ

a(d)

Colour-ordered Nd−1MHV amplitude of N = 4 SYM:∫
d2d+2λ

volGL(2,C)
δ2|4(d+1)

(
n∑

i=1

si κ̃i σ
a(d)
i

)

×
n∏

j=1

dsj Dσj
sj (j j + 1)

δ̄2(κj − sj λ(σj))
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Central conjecture

Twistor string theory coupled to background field A (trivial
extension to N = 4 SYM)

Worldsheet action:

S =
1

2π

∫
Σ

YI ∂̄Z
I + tr(j A) + Sg + ghosts ,

Vertex operators:

V =

∫
Σ

tr(j a(Z ))

Conjecture
NkMHV amplitude on SD rad. background given by
worldsheet correlator at degree d = k + 1
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Amplitude formula

Let Z I (σ) = U I
a(d) σ

a(d), and

A(Z (σ)) = ∂̄ g(U , σ)

Result for NkMHV color-ordered tree amplitude:∫
d4|4(d+1)U

volGL(2,C)

n∏
i=1

dsi Dσi
sj (i i + 1)

δ̄2(κi − si λ(σi))

× exp
(

[µ(σi) κ̃i ] + ei g(U , σi)
)



Properties

Formula passes many checks

• Explicit 3- and 4-point checks

• Flat & perturbative limits

• Proved for MHV (d = 1)

Important differences from RSVW

• No momentum conservation

• 4d residual integrals (obstructed by background
functional freedom)

Similar – more complicated – story for gravity!
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All-multiplicity formulae on some strong backgrounds!

⇒ interesting probe of non-linearities in QFT

Any use/interest for string theory?

• SD plane waves ⊂ SD radiative backgrounds

• Vacuum plane waves are string backgrounds [Amati-Klimcik,

Horowitz-Steif]

• So these formulae provide data for the α′ → 0 limit of
strings in plane wave backgrounds



Further directions

Many interesting open questions:

• Prove NkMHV formulae for k > 1 (analyticity constraints
[Ilderton-MacLeod] ?)

• Other chiral backgrounds (with sources, not
asymptotically flat)

• Non-chiral backgrounds, scattering equations, ambitwistor
strings

Thanks!
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