Tree-level S-matrix of superstring field theory

H. Kunitomo (YITP, Kyoto U) 2020/06/09 on-line talk for
"String Field Theory and Related Aspects"

Introduction

There are three main complementary approaches of superstring field theory.

- WZW-like approach: (Berkovits)
- Approach based on homotopy algebra: (Erler-Konopka-Sachs)
- Approach with an extra free field: (Sen)

In this talk, we consider the heterotic string field theory based on the second approach and show that it correctly reproduces the tree-level S-matrix calculated by the well-known first-quantized method. (cf. pioneering work by Konopka)

Heterotic string field theory with cyclic L_{∞} structure (Kunitomo-Sugimoto)

String fields: $\quad \Phi=\Phi_{N S}+\Phi_{R} \in \mathcal{H}^{\text {res }}=\mathcal{H}_{\text {small }}^{N S(2,-1)}+\mathcal{H}_{\text {small }}^{R(2,-1 / 2) r e s}$.
Constraints: $\quad b_{0}^{-} \Phi=L_{0}^{-} \Phi=0, \quad X Y \Phi_{R}=\Phi_{R}$ or $\mathcal{G G}^{-1} \Phi=\Phi$,
Here,

$$
\begin{gathered}
\mathcal{G}=\pi^{0}+\pi^{1} X, \quad \mathcal{G}^{-1}=\pi^{0}+\pi^{1} Y \\
\left(\mathcal{G G}^{-1}=\pi^{0}+\pi^{1} X Y\right)
\end{gathered}
$$

where $\pi^{0}\left(\pi^{1}\right)$ is the projection onto $\mathcal{H}^{N S}\left(\mathcal{H}^{R}\right) . X$ and Y satisfy

$$
X Y X=X, \quad[Q, \Xi]=X, \quad\left(\Xi=\xi_{0}+\cdots\right)
$$

Symplectic forms: $\omega_{s}\left(\Phi_{1}, \Phi_{2}\right)=\left\langle\Phi_{1}\right| c_{0}^{-}\left|\Phi_{2}\right\rangle$

$$
\Omega\left(\Phi_{1}, \Phi_{2}\right)=\omega_{s}\left(\Phi_{1}, \mathcal{G}^{-1} \Phi_{2}\right), \quad \omega_{l}\left(\Phi_{1}, \Phi_{2}\right)=\omega_{s}\left(\xi_{0} \Phi_{1}, \Phi_{2}\right)
$$

for $\Phi_{1}, \Phi_{2} \in \mathcal{H}^{\text {res }}$.

Bilinear rep.:

$$
\begin{array}{rcc}
\langle\Omega|: \mathcal{H}^{\text {res }} \otimes \mathcal{H}^{\text {res }} & \longrightarrow & \mathbb{C} \\
\psi & \uplus \\
\left|\Phi_{1}\right\rangle \otimes\left|\Phi_{2}\right\rangle & \longmapsto & \Omega\left(\Phi_{1}, \Phi_{2}\right),
\end{array}
$$

Heterotic string products is represented by
multi-linear map: $\quad L_{n}:\left(\mathcal{H}^{\text {res }}\right)^{\wedge n} \longrightarrow \mathcal{H}^{\text {res }}$
where $\mathcal{H}^{\wedge n}$ is the space of the symmetrized tensor product:

$$
\mathcal{H}^{\wedge n} \ni \Phi_{1} \wedge \cdots \wedge \Phi_{n}=\sum_{\sigma}(-1)^{\epsilon(\sigma)} \Phi_{\sigma(1)} \otimes \cdots \otimes \Phi_{\sigma(n)}
$$

with $L_{1} \Phi=Q \Phi$ and $L_{n}\left(\Phi_{1}, \cdots, \Phi_{n}\right) \in \mathcal{H}^{\text {res }} \quad(n \geq 2)$.

If $\left\{L_{n}\right\}$ satisfy

$$
\sum_{\sigma} \sum_{m=1}^{n} \frac{(-1)^{\epsilon(\sigma)}}{m!(n-m)!} L_{n-m+1}\left(L_{m}\left(\Phi_{\sigma(1)}, \cdots, \Phi_{\sigma(m)}\right), \Phi_{\sigma(m+1)}, \cdots, \Phi_{\sigma(n)}\right)=0
$$

$$
\Omega\left(\Phi_{1}, L_{n}\left(\Phi_{2}, \cdots, \Phi_{n+1}\right)\right)=-(-1)^{\left|\Phi_{1}\right|} \Omega\left(L_{n}\left(\Phi_{1}, \cdots, \Phi_{n}\right), \Phi_{n+1}\right)
$$

it is called a cyclic L_{∞} algebra $\left(\mathcal{H}^{\text {res }}, \Omega,\left\{L_{n}\right\}\right)$.
If we have such string products with proper ghost and picture numbers, the action

$$
I=\sum_{n=0}^{\infty} \frac{1}{(n+2)!} \Omega(\Phi, L_{n+1}(\underbrace{\Phi, \cdots, \Phi}_{n+1}))
$$

is invariant under the gauge tf.

$$
\delta \Phi=\sum_{n=0}^{\infty} \frac{1}{n!} L_{n+1}(\underbrace{\Phi, \cdots, \Phi}_{n}, \Lambda)
$$

\& (Assume) bosonic products $\left\{L_{n}^{(0)}\right\}$ is known, which is an cyclic L_{∞} algebra with proper ghost number but no picture number.
\& Heterotic string products $\left\{L_{n}\right\}$ is constructed by inserting X and/or ξ_{0} to $\left\{L_{n}^{(0)}\right\}$ (keeping cyclic L_{∞} structure) so as to have proper picture number.

Coalgebra representation:
Symmetrized tensor algebra: $\quad \mathcal{S H}=\mathcal{H}^{\wedge 0} \oplus \mathcal{H}^{\wedge 1} \oplus \mathcal{H}^{\wedge 2} \oplus \cdots$
Coderivation: $\quad L_{n}: \mathcal{S H} \longrightarrow \mathcal{S H}$

$$
\begin{array}{lr}
\boldsymbol{L}_{n} \Phi_{1} \wedge \cdots \wedge \Phi_{m}=0, & \text { for } m<n, \\
\boldsymbol{L}_{n} \Phi_{1} \wedge \cdots \wedge \Phi_{m}=L_{n}\left(\Phi_{1} \wedge \cdots \wedge \Phi_{m}\right), & \text { for } m=n, \\
\boldsymbol{L}_{n} \Phi_{1} \wedge \cdots \wedge \Phi_{m}=\left(L_{n} \wedge \mathbb{I}_{m-n}\right) \Phi_{1} \wedge \cdots \wedge \Phi_{m}, & \text { for } m<n .
\end{array}
$$

Then we can consider coderivation $\boldsymbol{L}=\sum_{n=0}^{\infty} \boldsymbol{L}_{n+1}$. The L_{∞} algebra is represented by a (degree odd) coderivation L satisfying

$$
[\boldsymbol{L}, \boldsymbol{L}]=0 . \quad([,]: \text { graded commutator })
$$

Construction of L :
Consider coderivations $\boldsymbol{B}(s, t)$ and $\boldsymbol{\lambda}(s, t)$:

$$
\begin{aligned}
& \boldsymbol{B}(s, t)=\left.\sum_{m, n, r=0}^{\infty} s^{m} t^{n} \boldsymbol{B}_{m+n+r+1}^{(n)}\right|^{2 r}, \quad(\text { degree odd }) \\
& \boldsymbol{\lambda}(s, t)=\left.\sum_{m, n, r=0}^{\infty} s^{m} t^{n} \boldsymbol{\lambda}_{m+n+r+2}^{(n+1)}\right|^{2 r}, \quad \text { (degree even) }
\end{aligned}
$$

where m : 'picture no. deficit', (n) : picture no. and $2 r$: cyclic Ramond no.
(cyclic Ramond no. = no. of Ramond inputs + no. of Ramond output.)

Construct them by (cyclically) inserting X_{0} and/or ξ_{0} to $L_{n}^{(0)}$ so as to satisfy the differential eqs.

$$
\begin{align*}
\partial_{t} \boldsymbol{B}_{n+2}(s, t)=\left[\boldsymbol{Q}, \boldsymbol{\lambda}_{n+2}(s, t)\right] & +\sum_{m=0}^{n-1}\left(\boldsymbol{B}_{m+2}(s, t)\left(\pi(s) \pi_{1} \boldsymbol{\lambda}_{n-m+1}(s, t) \wedge \mathbb{I}_{m+1}\right)\right. \\
& \left.-\boldsymbol{\lambda}_{m+2}(s, t)\left(\pi(s) \pi_{1} \boldsymbol{B}_{n-m+1}(s, t) \wedge \mathbb{I}_{m+1}\right)\right) \tag{1a}\\
\partial_{s} \boldsymbol{B}_{n+2}(s, t)=\left[\boldsymbol{\eta}, \boldsymbol{\lambda}_{n+2}(s, t)\right] & -\sum_{m=0}^{n-1}\left(\boldsymbol{B}_{m+2}(s, t)\left(t \pi_{1}^{1} \boldsymbol{\lambda}_{n-m+1}(s, t) \wedge \mathbb{I}_{m+1}\right)\right. \\
& \left.-\boldsymbol{\lambda}_{m+2}(s, t)\left(t \pi_{1}^{1} \boldsymbol{B}_{n-m+1}(s, t) \wedge \mathbb{I}_{m+1}\right)\right) \tag{1b}
\end{align*}
$$

with the initial condition

$$
\boldsymbol{B}(s, 0)=\left.\sum_{m, r=0}^{\infty} s^{m} \boldsymbol{L}_{m+r+1}^{(0)}\right|^{2 r}
$$

Then $\boldsymbol{B}(s, t)$ satisfies

$$
\begin{align*}
& {\left[\boldsymbol{Q}, \boldsymbol{B}_{n+2}(s, t)\right]=-\sum_{m=0}^{n-1} \boldsymbol{B}_{m+2}(s, t)\left(\pi(s) \pi_{1} \boldsymbol{B}_{n-m+1}(s, t) \wedge \mathbb{I}_{m+1}\right)} \tag{2a}\\
& {\left[\boldsymbol{\eta}, \boldsymbol{B}_{n+2}(s, t)\right]=\sum_{m=0}^{n-1} \boldsymbol{B}_{m+2}(s, t)\left(t \pi_{1}^{1} \boldsymbol{B}_{n-m+1}(s, t) \wedge \mathbb{I}_{m+1}\right)} \tag{2b}
\end{align*}
$$

where $\pi(s)=\pi^{0}+s \pi^{1}$.
From $\boldsymbol{B}(s, t)$, we obtain a cyclic L_{∞} algebra $\left(\mathcal{H}_{\text {large }}, \omega_{l}, \boldsymbol{D}-\boldsymbol{C}\right)$ with

$$
\boldsymbol{D}-\boldsymbol{C}=\boldsymbol{Q}-\boldsymbol{\eta}+\boldsymbol{B}, \quad \text { with } \quad \boldsymbol{B}=\boldsymbol{B}(0,1)=\boldsymbol{B}_{2}+\boldsymbol{B}_{3} \cdots
$$

It can be decomposed into two independent L_{∞} algebras in $\mathcal{H}_{\text {large }}$

$$
\begin{gathered}
\pi_{1} \boldsymbol{D}=\pi_{1} \boldsymbol{Q}+\pi_{1}^{0} \boldsymbol{B}, \quad \pi_{1} \boldsymbol{C}=\pi_{1} \boldsymbol{\eta}-\pi_{1}^{1} \boldsymbol{B} \\
{[\boldsymbol{D}, \boldsymbol{D}]=[\boldsymbol{C}, \boldsymbol{C}]=[\boldsymbol{D}, \boldsymbol{C}]=0}
\end{gathered}
$$

Then, we transform them by using the cohomomorphism

$$
\pi_{1} \hat{\boldsymbol{F}}^{-1}=\pi_{1} \mathbb{I}_{\mathcal{S H}}-\Xi \pi_{1}^{1} \boldsymbol{B}
$$

to another pair of the L_{∞} algebras by the similarity tf .

$$
\begin{aligned}
\pi_{1} \hat{\boldsymbol{F}}^{-1} \boldsymbol{D} \hat{\boldsymbol{F}} & =\pi_{1} \boldsymbol{Q}+\mathcal{G} \pi_{1} \boldsymbol{B} \hat{\boldsymbol{F}} \equiv \pi_{1} \boldsymbol{L} \\
\pi_{1} \hat{\boldsymbol{F}}^{-1} \boldsymbol{C} \hat{\boldsymbol{F}} & =\pi_{1} \boldsymbol{\eta}
\end{aligned}
$$

which satisfy

$$
[\boldsymbol{\eta}, \boldsymbol{\eta}]=[\boldsymbol{L}, \boldsymbol{L}]=[\boldsymbol{\eta}, \boldsymbol{L}]=0
$$

We can show that $\left(\mathcal{H}^{\text {res }}, \Omega, \boldsymbol{L}\right)$ is the cyclic L_{∞} algebra representing the heterotic string products.

For later use, we denote

$$
\boldsymbol{L}=\boldsymbol{Q}+\boldsymbol{L}_{i n t}, \quad \pi_{1} \boldsymbol{L}_{i n t}=\mathcal{G} \pi_{1} \boldsymbol{B} \hat{\boldsymbol{F}} \equiv \mathcal{G} \pi_{1} \boldsymbol{l}
$$

Tree-level S-matrix

Remove the ghost no. restriction and take Siegel-Ramond gauge:

$$
b_{0}^{+} \Phi_{N S}=\beta_{0} \Phi_{R}=0, \quad\left(\Phi_{N S}+\Phi_{R} \in \mathcal{H}_{S R}^{r e s}\right)
$$

Tree-level S-matrix (generating function): (Jevicki-Lee)

$$
S\left[\Phi_{0}\right]=I\left[\Phi_{c l}\left(\Phi_{0}\right)\right]
$$

where $\Phi_{c l}\left(\Phi_{0}\right)$ is a classical sol. determined as a function of the homogeneous sol. Φ_{0} obtained as follows.

Rewrite the EoM (diff. eq.) to the integral eq. (Note 1)

$$
\begin{equation*}
\Phi=\Phi_{0}-Q^{+} \pi_{1} \boldsymbol{L}_{i n t}\left(e^{\wedge \Phi}\right), \quad Q^{+}=\frac{b_{0}^{+}}{L_{0}^{+}}\left(1-P_{0}\right) \tag{3}
\end{equation*}
$$

where P_{0} is the proj. op. onto the on-shell sub-space $\mathcal{H}_{0}\left(\ni \Phi_{0}\right)$:

$$
P_{0}: \mathcal{H}_{S R}^{r e s} \rightarrow \mathcal{H}_{0}=\left\{\Phi \in \mathcal{H}_{S R}^{r e s} \mid L_{0}^{+} \Phi_{N S}=G \Phi_{R}=0\right\}
$$

Q^{+}satisfyingn $Q Q^{+}+Q^{+} Q+P_{0}=1$ is called the contracting homotopy operator.

Eq. (3) can be solved in closed form using coalgebra rep. as function of Φ_{0} :

$$
\Phi_{c l}\left(\Phi_{0}\right)=\pi_{1}\left(\hat{\boldsymbol{I}}+\boldsymbol{H} \boldsymbol{L}_{\text {int }}\right)^{-1} \hat{\boldsymbol{P}}\left(e^{\wedge \Phi_{0}}\right)
$$

where $\boldsymbol{H}, \hat{\boldsymbol{P}}$ and $\hat{\boldsymbol{I}}$ are ops. acting on $\mathcal{S} \mathcal{H}^{\text {res }}$ defined by

$$
\begin{aligned}
\boldsymbol{H} & =\sum_{r, s=0}^{\infty} \frac{1}{(r+s+1)!} Q^{+} \wedge\left(\mathbb{I}_{1}\right)^{\wedge r} \wedge\left(P_{0}\right)^{\wedge s} \\
\hat{\boldsymbol{P}} & =\sum_{n=0}^{\infty} P_{n}=\sum_{n=0}^{\infty} \frac{1}{n!}\left(P_{0}\right)^{\wedge n}, \quad \hat{\boldsymbol{I}}=\sum_{n=0}^{\infty} \mathbb{I}_{n}=\sum_{n=0}^{\infty} \frac{1}{n!}\left(\mathbb{I}_{1}\right)^{\wedge n}
\end{aligned}
$$

They satisfy

$$
\begin{aligned}
& \boldsymbol{H} \boldsymbol{Q}+\boldsymbol{Q} \boldsymbol{H}+\hat{\boldsymbol{P}}=\hat{\boldsymbol{I}} \\
& \boldsymbol{H} \hat{\boldsymbol{P}}=\hat{\boldsymbol{P}} \boldsymbol{H}=\boldsymbol{H} \boldsymbol{H}=0, \quad[\boldsymbol{Q}, \hat{\boldsymbol{P}}]=0
\end{aligned}
$$

Putting $\Phi_{c l}\left(\Phi_{0}\right)$ to the action I, we obtain the tree-level S-matrix.

Here, we express the tree-level S-matrix by multilinear map:

$$
\begin{aligned}
\langle S| & =\langle\Omega| P_{0} \otimes \pi_{1} \boldsymbol{S}: \mathcal{H}_{0} \otimes \mathcal{S} \mathcal{H}_{0} \rightarrow \mathbb{C}, \\
\boldsymbol{S} & =\hat{\boldsymbol{P}} \boldsymbol{L}_{\text {int }}\left(\hat{\boldsymbol{I}}+\boldsymbol{H} \boldsymbol{L}_{i n t}\right)^{-1} \hat{\boldsymbol{P}},
\end{aligned}
$$

which provides total S-matrix in the BRST formulation including unphysical states. (It is also obtained by HPT.)

The physical S-matrix is obtained by projecting it to the physical subspace:

$$
\left\langle S^{\text {phys }}\right|=\langle S| P_{p h y s} \otimes \hat{\boldsymbol{P}}_{\text {phys }},
$$

where $P_{\text {phys }}$ is the proj. op. onto the physical subspace,

$$
P_{\text {phys }}: \mathcal{H}_{0} \rightarrow \mathcal{H}_{\text {phys }}=\operatorname{Ker}(\widetilde{Q}) / \operatorname{Im}(\widetilde{Q}),
$$

and $\hat{\boldsymbol{P}}_{\text {phys }}=\sum_{n=0}^{\infty} \frac{1}{n!}\left(P_{\text {phys }}\right)^{\wedge n}$. Unitarity of $S^{\text {phys }}$ is guaranteed by

$$
[\boldsymbol{Q}, \boldsymbol{S}]=0 .
$$

The S-matrix element of $(n+3)$-string scattering is further expanded to those with different no. of external Ramond states (= cyclic Ramond no.):

$$
\langle S|=\sum_{n=0}^{\infty}\left\langle S_{n+3}\right|=\sum_{n=0}^{\infty} \sum_{r=0}^{\left[\frac{n+3}{2}\right]}\left\langle\left. S_{n+3}^{(n-r+1)}\right|^{2 r}\right.
$$

For example, four-string scattering elements are

$$
\left\langle S_{4}\right|=\left\langle\left. S_{4}^{(2)}\right|^{0}+\left\langle\left. S_{4}^{(1)}\right|^{2}+\left\langle\left. S_{4}^{(0)}\right|^{4}\right.\right.\right.
$$

The 1st, 2nd and 3rd terms represent the S-matrix elements of four-NS, two-NS-two-R and four-R scattering, respectively.

Evaluation of S-matrix

Since $\pi_{1} \boldsymbol{L}_{\text {int }}=\mathcal{G} \pi_{1} \boldsymbol{l},\langle S|$ is also written as $\left(\langle\Omega|=\left\langle\omega_{l}\right|\left(\xi_{0} \otimes \mathcal{G}^{-1}\right)\right)$

$$
\begin{gather*}
\langle S|=\sum_{n=0}^{\infty}\left\langle S_{n+3}\right|=\sum_{n=0}^{\infty}\left\langle\omega_{l}\right| \xi_{0} P_{0} \otimes P_{0} \pi_{1} \boldsymbol{\Sigma}_{n+2} \\
\pi_{1} \boldsymbol{\Sigma}=\pi_{1} \boldsymbol{l}\left(\hat{\boldsymbol{I}}+\boldsymbol{H} \boldsymbol{L}_{i n t}\right)^{-1} \hat{\boldsymbol{P}} \tag{4}
\end{gather*}
$$

with $\boldsymbol{\Sigma}_{n+2}=\boldsymbol{\Sigma} \pi_{n+2}$. We can write (4) by using \boldsymbol{B} in the form of the (classical) Dyson-Schwinger eq.
$\pi_{1} \boldsymbol{\Sigma}_{n+2}=\sum_{m=0}^{n} \pi_{1} \boldsymbol{B}_{m+2}\left(\frac{1}{(m+2)!}\left(P_{0} \pi_{1}-\left(Q^{+} \mathcal{G}-\Xi \pi^{1}\right) \pi_{1} \boldsymbol{\Sigma}\right)^{\wedge(m+2)}\right) \pi_{n+2}$.
Since $\boldsymbol{\Sigma}_{l+2}$ with $l \geq n$ do not contribute in the r.h.s. we can recursively determine $\boldsymbol{\Sigma}_{n+2}$ from $\boldsymbol{\Sigma}_{2}=\boldsymbol{B}_{2} P_{2}$.

We extend it to the generating function with two parameters as
$\pi_{1} \boldsymbol{\Sigma}_{n+2}(s, t)=\sum_{m=0}^{n} \pi_{1} \boldsymbol{B}_{m+2}(s, t)\left(\frac{1}{(m+2)!}\left(P_{0} \pi_{1}-\Delta(s, t) \pi_{1} \boldsymbol{\Sigma}(s, t)\right)^{\wedge(m+2)}\right)$,
with $\boldsymbol{B}_{m+2}(s, t)=\boldsymbol{B}(s, t) \pi_{m+2}$ and

$$
\Delta(s, t)=Q^{+}\left(\pi^{0}+(t X+s) \pi^{1}\right)-t \Xi \pi^{1} .
$$

Here, $\Delta(s, t)$ is determined so that $[\boldsymbol{\eta}, \boldsymbol{\Sigma}]=[\boldsymbol{Q}, \boldsymbol{\Sigma}]=0$ are preserved:

$$
[\boldsymbol{\eta}, \boldsymbol{\Sigma}(s, t)]=[\boldsymbol{Q}, \boldsymbol{\Sigma}(s, t)]=0
$$

and $\boldsymbol{\Sigma}(0,1)=\boldsymbol{\Sigma} . \Delta(s, t)$ satisfies

$$
\partial_{s} \Delta(s, t)=-\left\{\eta, Q^{+} \Xi\right\}, \quad \partial_{t} \Delta(s, t)=-\left\{Q, Q^{+} \Xi\right\} .
$$

Then, using Eqs.(1) and (2), we can show that

$$
\partial_{s} \boldsymbol{\Sigma}(s, t)=[\boldsymbol{\eta}, \boldsymbol{\rho}(s, t)], \quad \partial_{t} \boldsymbol{\Sigma}(s, t)=[\boldsymbol{Q}, \boldsymbol{\rho}(s, t)],
$$

with a fixed $\boldsymbol{\rho}(s, t)$ (Note 2). Further, if we introduce an operation $\mathcal{O} \circ\left(\mathcal{O}=\xi_{0}\right.$ or $\left.X_{0}\right)$ on coderivation \boldsymbol{D}_{n} defined by

$$
\pi_{1} \mathcal{O} \circ \boldsymbol{D}_{n}=\frac{1}{n+1}\left(\mathcal{O} D_{n}+(-1)^{|\mathcal{O}||D|} D_{n}\left(\mathcal{O} \pi_{1} \wedge \mathbb{I}_{n-1}\right)\right) .
$$

we find the relation

$$
\begin{equation*}
\partial_{t} \boldsymbol{\Sigma}(s, t)-X_{0} \circ \partial_{s} \boldsymbol{\Sigma}(s, t)=[\boldsymbol{Q},[\boldsymbol{\eta}, \boldsymbol{T}(s, t)]], \tag{5}
\end{equation*}
$$

with $\boldsymbol{T}(s, t)=\xi_{0} \circ \boldsymbol{\rho}(s, t)$ holds. From (5) we have

$$
\partial_{t}\left\langle S_{n+3}(s, t)\right|=\partial_{s}\left\langle S_{n+3}(s, t)\right| X_{0}+\cdots,
$$

for $\langle S(s, t)|$, where dots represents the terms vanishing on $\mathcal{H}_{\text {phys }}$ and

$$
\left\langle S_{n+3}(s, t)\right| X_{0}=\left\langle S_{n+3}(s, t)\right|\left(X_{0} \otimes \mathbb{I}_{n+2}+\mathbb{I}_{1} \otimes X_{0} \wedge \mathbb{I}_{n+1}\right) .
$$

Repeatedly using (6), we can find that

$$
\begin{equation*}
\left\langle S_{n+3}^{p h y s}\right|=\sum_{p=0}^{n+1}\left\langle\left. S_{n+3}^{p h y s(0)}\right|^{2(n-p+1)}\left(X_{0}\right)^{p}\right. \tag{6}
\end{equation*}
$$

Here, $\left\langle S_{n+3}^{\text {phys(0) }}\right|$ is the part of physical S-matrix element integrated over the whole moduli space (or added up all the possible Feynman diagrams) without inserting the PCOs. (Note 3)

Hence, the r.h.s. of (6) is independent of the position X_{0} inserted, and nothing but the tree-level physical S-matrix obtained in the 1st-quantized method.

Summary

\diamond We have shown that the tree-level physical S-matrix of the heterotic string field theory agrees with that in the 1-st quantized formulation.
\& Similarly, we can show that the tree-level physical S-matrices of the type II and the open superstring field theories also agree with those in the 1 -st quantized formulation.
© Extension to the loop-level: Loop $L_{\infty}(\mathrm{BV})$ algebra, LSZ reduction formula, unitarity, Heisenberg rep., asymptotic fields, and so on.

Appendix

Note 1: Expanding the ghost zero-mode, the sates in $\mathcal{H}^{\text {res }}$ has the form

$$
\mathcal{H}^{\text {res }} \ni \Phi=\left(\phi_{N S}-c_{0}^{+} \psi_{N S}\right)+\left(\phi_{R}-\frac{1}{2}\left(\gamma_{0}+2 c_{0}^{+} G\right) \psi_{R}\right) .
$$

EoMs are obtained by projecting $\pi_{1} \boldsymbol{L}\left(e^{\wedge \Phi}\right)=0$ onto ψ-component.

$$
\begin{gathered}
N S: L_{0}^{+}\left(\Phi_{c l}\right)_{N S}+b_{0}^{+} \pi_{1}^{0} \boldsymbol{L}_{i n t}\left(e^{\wedge\left(\Phi_{c l}\right)_{N S}}\right)=0 \\
R: G\left(\Phi_{c l}\right)_{R}+\frac{b_{0}^{+}}{2 G} \pi_{1}^{1} \boldsymbol{L}_{i n t}\left(e^{\wedge\left(\Phi_{c l}\right)_{R}}\right)=0
\end{gathered}
$$

They can be rewritten as the form of integral eq. ($\left(1-P_{0}\right)$ is ommitted.)

$$
\Phi=\Phi_{0}-\frac{b_{0}^{+}}{L_{0}^{+}} \pi_{1} \boldsymbol{L}\left(e^{\wedge \Phi}\right)
$$

Note 2: $\boldsymbol{\rho}(s, t)$ is determined by solving the recursion relation

$$
\begin{aligned}
& \pi_{1} \boldsymbol{\rho}_{n+2}(s, t) \\
& =\sum_{m=0}^{n} \pi_{1} \boldsymbol{\lambda}_{m+2}(s, t)\left(D_{m+2}(s, t)\right) P_{n+2} \pi_{n+2} \\
& -\sum_{m=0}^{n-1} \pi_{1} \boldsymbol{B}_{m+2}(s, t)\left(D_{m+1}(s, t) \wedge\left(\Delta(s, t) \pi_{1} \boldsymbol{\rho}(s, t)+Q^{+} \Xi \pi_{1}^{1} \boldsymbol{\Sigma}(s, t)\right)\right) P_{n+2} \pi_{n+2},
\end{aligned}
$$

with $\rho_{2}(s, t)=\boldsymbol{\lambda}_{2}(s, t) P_{2} \pi_{2}$, where

$$
D_{M}(s, t)=\frac{1}{M!}\left(P_{0} \pi_{1}-\Delta(s, t) \pi_{1} \boldsymbol{\Sigma}(s, t)\right)^{\wedge M}
$$

Note 3:
For example, (one of the) two-NS-two-Ramond scattering S-matrix element $\left\langle\left. S_{4}^{\text {phys }(0)}\right|_{0} ^{2}\right.$ is written as

$$
\begin{aligned}
& \left\langle\left. S_{4}^{p h y s(0)}\right|_{0} ^{2}\right. \\
& \quad=\left\langle\omega_{s}\right|\left(P_{p h y s} \pi^{1}\right. \\
& \left.\quad \otimes \pi_{1}^{1}\left(\left.\boldsymbol{L}_{2}^{(0)}\right|_{0} ^{2}-\left.\left.\boldsymbol{L}_{2}^{(0)}\right|_{0} ^{2} \frac{b_{0}^{+}}{L_{0}^{+}} \boldsymbol{L}_{2}^{(0)}\right|_{0} ^{0}-\left.\left.\boldsymbol{L}_{2}^{(0)}\right|_{0} ^{2} \frac{b_{0}^{+}}{L_{0}^{+}} \boldsymbol{L}_{2}^{(0)}\right|_{0} ^{2}\right)\right) P_{p h y s} \pi_{3} \\
& \\
&
\end{aligned}
$$

