# $SU(2)_k$ WZW model solutions in string field theory

Matěj Kudrna Institute of Physics AS CR

Workshop on Fundamental Aspects of String Theory

## Introduction

- We will discuss open string field theory involving the SU(2)<sub>k</sub> WZW model
   ➤ A test of OSFT on more complicated background
- OSFT solutions are conjectured to describe boundary states
   > We observe transitions between boundary states
  - There seem to be interesting "selection rules" regarding conventional (Cardy) boundary states
  - ≻ They could lead to better understanding of boundary RG flow
- We can search for non-conventional boundary states
- Earlier work by Michishita (hep-th/0105246)

• We work with the traditional bosonic open string field theory with the action

$$S = -\frac{1}{g_o^2} \int \left( \frac{1}{2} \Psi * Q \Psi + \frac{1}{3} \Psi * \Psi * \Psi \right)$$

- We use the level truncation approach
  - ≻ Numerical approach
  - ≻We impose Siegel gauge
- The theory is more complicated than free boson or minimal models
  - > We cannot reach very high levels
  - $\succ$  Lower precision of results
  - > Still good enough to identify most solutions

## $SU(2)_k$ WZW model

• SU(2) group elements can be parameterized using 3 angles as

$$g = \begin{pmatrix} \cos\theta + i\cos\psi\sin\theta & ie^{i\phi}\sin\theta\sin\psi\\ ie^{-i\phi}\sin\theta\sin\psi & \cos\theta - i\cos\psi\sin\theta \end{pmatrix}$$

- They are generated by 3 operators:  $J^{\pm}$ ,  $J^{3}$
- In  $\mathrm{SU}(2)_k$  WZW model, the operators are lifted to currents, which have mode algebra

$$\begin{bmatrix} J_m^{\pm}, J_n^{\pm} \end{bmatrix} = 0, \begin{bmatrix} J_m^3, J_n^3 \end{bmatrix} = \frac{mk}{2} \delta_{m+n,0}, \begin{bmatrix} J_m^{\pm}, J_n^{\pm} \end{bmatrix} = \pm 2J_{m+n}^3 + mk\delta_{m+n,0}, \begin{bmatrix} J_m^3, J_n^{\pm} \end{bmatrix} = \pm J_{m+n}^{\pm}.$$

- Primary fields are have a structure following irreducible SU(2) representations
   ➤ We label them as |j,m>
  - > The range of j is restricted by the level k to  $j = 0, \dots, \frac{k}{2}$
  - $\succ m$  has the usual range  $m = -j, \ldots, j$
  - $\succ$  The currents act on primary fields as

$$\begin{array}{lll} J_n^a|j,m\rangle &=& 0, \quad n>0,\\ J_0^3|j,m\rangle &=& m|j,m\rangle,\\ J_0^+|j,m\rangle &=& \alpha_{j,m}^+|j,m+1\rangle,\\ J_0^-|j,m\rangle &=& \alpha_{j,m}^-|j,m-1\rangle, \end{array}$$

 $\succ$  Hilbert space is spanned by states

$$J_{-n_1}^{a_1}\dots J_{-n_l}^{a_l}|j,m\rangle$$

## Boundary states

We distinguish two types of boundary states

- Boundary states which preserve half of the bulk symmetry
  - They satisfy gluing conditions

$$(J_n^a + \Omega^a_{\ b}(g)\bar{J}_{-n}^b) \|B\rangle\rangle = 0$$

- $\succ$  They are labeled by SU(2) group elements g and half-integer J
- $\succ$  For a given *g*, we find the usual Cardy solution, which is given in terms of *S*-matrix

$$|J,g\rangle\rangle = \sum_{j} \frac{S_{J}^{\ j}}{\sqrt{S_{0}^{\ j}}} |j,g\rangle\rangle = \sum_{j} B_{J}^{j} |j,g\rangle\rangle$$

• Symmetry-breaking boundary states

> They genericly satisfy only the Virasoro gluing conditions

> Most of them are not understood

• In OSFT, we impose the following condition

$$I_0^3|\Psi\rangle = 0$$

> Used for fixing SU(2) symmetry of solutions  $|\Psi\rangle \rightarrow e^{i\lambda_a J_0^a} |\Psi\rangle$ 

- This implies that solutions preserve the  $J^3$  gluing condition
  - $\succ$  Great simplification
  - > Only the parameter  $\theta$  survives
  - > Its range is now from  $-\pi$  to  $\pi$
  - $\succ$  Group elements simplify to

$$g = \left(\begin{array}{cc} e^{i\theta} & 0\\ 0 & e^{-i\theta} \end{array}\right)$$

➢ Irredicible representations also become diagonal

- Cardy boundary states are associated with SU(2) conjugacy classes
   ➢ Conjugacy classes form either points (*J=0* or *J=k/2*) or 2-spheres on the SU(2) 3-sphere
  - > Branes which preserve the  $J^3$  gluing condition can be nicely visualized as points or lines on a circle
  - $\succ$  The angle  $\theta$  determines rotation of branes
  - $\succ$  (*J*, $\theta$ )-brane is the same as (*k*/2-*J*, $\pi$ - $\theta$ )-brane
- The figure shows k=7 case as example
   ➢ Branes with θ=0 have black color
   ➢ Branes with θ≠0 have red color





We consider the following observables:

- The energy derived from OSFT action
- Ellwood invariants

► Labeled by bulk primary operators

$$E_{j,m} = 2\pi i \langle E[c\bar{c}\phi_{j,m,-m}V^{aux}]|\Psi - \Psi_{TV}\rangle$$

They describe boundary states corresponding to solutionsThe expected values are

$$E_{j,m}^{exp} = (-1)^{j-m} B_J^{\ j} e^{2im\theta}$$

• The first out-of-Siegel equation  $\Delta_S$  as a consistency check

$$\Delta_S \equiv -\langle 0|c_{-1}c_0b_2|Q\Psi + \Psi * \Psi \rangle$$

## Regular solutions

- Solutions describing Cardy boundary states, which preserve half of the bulk symmetry
- In these examples, we consider k=4 and initial boundary condition J=1
- There are three groups solutions which satisfy the reality condition

$$E_{j,m} = (-1)^{2j} E_{j,-m}^*$$

- We have reached level 11

#### • First solution

- $\succ$  Based on energy, it represents a  $\frac{1}{2}$ -brane
- $\succ$  The invariant  $E_{2,2}$  is real
  - $\Rightarrow$  we can determine  $\theta$  exactly
- ≻ The angle is  $\theta = \pi/4$
- ➤ All invariants are consistent with this angle
- $\succ$  It satisfies  $\Delta_S$  quite well
- There are 3 more solutions related by rotations
- ≻ No solution for  $\theta$ =0

|          | Energy         | $E_{0,0}$       | $\Delta_S$     | 1               |            |
|----------|----------------|-----------------|----------------|-----------------|------------|
| $\infty$ | 0.9320         | 0.919           | -0.0010        |                 |            |
| $\sigma$ | 0.0003         | 0.004           | 0.0001         |                 |            |
| Exp.     | 0.930605       | 0.930605        | 0              |                 |            |
|          | $E_{1/2,1/2}$  | $E_{1/2,-1/2}$  |                |                 |            |
| $\infty$ | 0.482 + 0.487i | -0.482 + 0.487i |                |                 |            |
| $\sigma$ | 0.002 + 0.002i | 0.002 + 0.002i  |                |                 |            |
| Exp.     | 0.5 + 0.5i     | -0.5 + 0.5i     |                |                 |            |
|          | $E_{1,1}$      | $E_{1,0}$       | $E_{1,-1}$     |                 |            |
| $\infty$ | -0.009         | 0.09            | -0.009         |                 |            |
| $\sigma$ | 0.004          | 0.03            | 0.004          |                 |            |
| Exp.     | 0              | 0               | 0              |                 |            |
|          | $E_{3/2,3/2}$  | $E_{3/2,1/2}$   | $E_{3/2,-1/2}$ | $E_{3/2,-3/2}$  | 1          |
| $\infty$ | 0.482 - 0.487i | 0.59 + 0.54i    | -0.59 + 0.54i  | -0.482 - 0.487i |            |
| $\sigma$ | 0.002 + 0.002i | 0.12 + 0.05i    | 0.12 + 0.05i   | 0.002 + 0.002i  |            |
| Exp.     | 0.5 - 0.5i     | 0.5 + 0.5i      | -0.5 + 0.5i    | -0.5 - 0.5i     |            |
|          | $E_{2,2}$      | $E_{2,1}$       | $E_{2,0}$      | $E_{2,-1}$      | $E_{2,-2}$ |
| $\infty$ | 0.919          | -0.04 + 0.97i   | 0.71           | -0.04 - 0.97i   | 0.919      |
| $\sigma$ | 0.004          | 0.08 + 0.07i    | 0.12           | 0.08 - 0.07i    | 0.004      |
| Exp.     | 0.930605       | 0.930605i       | 0.537285       | -0.930605i      | 0.930605   |

- Second solution
  - ≻ Corresponds to a 0-brane
  - Some invariants are real  $\Rightarrow$  it has exactly  $\theta = \pi/2$
  - Similar properties as the first solution
  - > There is other solution with  $\theta = -\pi/2$

| · · · · · · · · · · · · · · · · · · · | D             |                | ٨              | 1              |            |
|---------------------------------------|---------------|----------------|----------------|----------------|------------|
|                                       | Energy        | $E_0$          | $\Delta_S$     |                |            |
| $\infty$                              | 0.537311      | 0.536          | -0.00009       |                |            |
| $\sigma$                              | 0.000008      | 0.001          | 0.00008        |                |            |
| Exp.                                  | 0.537285      | 0.537285       | 0              |                |            |
|                                       | $E_{1/2,1/2}$ | $E_{1/2,-1/2}$ |                |                |            |
| $\infty$                              | 0.704i        | 0.704i         |                |                |            |
| $\sigma$                              | 0.001i        | 0.001i         |                |                |            |
| Exp.                                  | 0.707107i     | 0.707107i      |                |                |            |
|                                       | $E_{1,1}$     | $E_{1,0}$      | $E_{1,-1}$     |                |            |
| $\infty$                              | -0.757        | -0.761         | -0.757         |                |            |
| σ                                     | 0.001         | 0.011          | 0.001          |                |            |
| Exp.                                  | -0.759836     | -0.759836      | -0.759836      |                |            |
|                                       | $E_{3/2,3/2}$ | $E_{3/2,1/2}$  | $E_{3/2,-1/2}$ | $E_{3/2,-3/2}$ |            |
| $\infty$                              | -0.704i       | -0.69i         | -0.69i         | -0.704i        |            |
| $\sigma$                              | 0.001i        | 0.10i          | 0.10i          | 0.001i         |            |
| Exp.                                  | -0.707107i    | -0.707107i     | -0.707107i     | -0.707107i     |            |
|                                       | $E_{2,2}$     | $E_{2,1}$      | $E_{2,0}$      | $E_{2,-1}$     | $E_{2,-2}$ |
| $\infty$                              | 0.536         | 0.55           | 0.71           | 0.55           | 0.536      |
| σ                                     | 0.001         | 0.02           | 0.12           | 0.02           | 0.001      |
| Em                                    | 0 527995      | 0 597905       | 0 527995       | 0 527985       | 0 527995   |

- Third solution
  - $\succ$  Slow convergence of invariants
  - $\succ$  Probably represents also a 0-brane
  - ➤ Only rough agreement of observables
    ⇒ there is a small chance that
    it is an exotic solution

≻ It has  $\theta = 0$ 

 $\succ$  There is a second solution with  $\theta = \pi$ 

|          | Energy        | $E_{0,0}$      | $\Delta_S$     | ]              |            |
|----------|---------------|----------------|----------------|----------------|------------|
| $\infty$ | 0.580         | 0.528          | -0.0110        | ]              |            |
| σ        | 0.003         | 0.005          | 0.0007         |                |            |
| Exp.     | 0.537285      | 0.537285       | 0              |                |            |
|          | $E_{1/2,1/2}$ | $E_{1/2,-1/2}$ |                | -              |            |
| $\infty$ | 0.657         | -0.657         |                |                |            |
| $\sigma$ | 0.007         | 0.007          |                |                |            |
| Exp.     | 0.707107      | -0.707107      |                |                |            |
|          | $E_{1,1}$     | $E_{1,0}$      | $E_{1,-1}$     |                |            |
| $\infty$ | 0.689         | -0.56          | 0.689          |                |            |
| $\sigma$ | 0.006         | 0.06           | 0.006          |                |            |
| Exp.     | 0.759836      | -0.759836      | 0.759836       |                |            |
|          | $E_{3/2,3/2}$ | $E_{3/2,1/2}$  | $E_{3/2,-1/2}$ | $E_{3/2,-3/2}$ | ]          |
| $\infty$ | 0.657         | -0.5           | 0.5            | -0.657         | ]          |
| $\sigma$ | 0.007         | 0.1            | 0.1            | 0.007          |            |
| Exp.     | 0.707107      | -0.707107      | 0.707107       | -0.707107      |            |
|          | $E_{2,2}$     | $E_{2,1}$      | $E_{2,0}$      | $E_{2,-1}$     | $E_{2,-2}$ |
| $\infty$ | 0.528         | -0.47          | 0.3            | -0.47          | 0.528      |
| $\sigma$ | 0.005         | 0.42           | 0.3            | 0.42           | 0.007      |
| Exp.     | 0.537285      | -0.537285      | 0.537285       | -0.537285      | 0.537285   |

- Solutions at other k have similar properties
- We can formulate some "selection rules" regarding  $\theta$ > The best solutions have  $\theta$  proportional to  $J_i$ - $J_f$

 $\theta = \pm 2|J_i - J_f| \frac{\pi}{k}$ 

Unless J=k/2, branes tend to be on the same half of the circle as the initial brane
New branes touch the original one at one point

• The example depicts k=9 with  $J_i=2$ 



• If we consider also solutions with worse convergence, the rule generalizes to

$$\theta = \pm 2|J_i - J_f + l|\frac{\pi}{k}, \quad l \in \mathbb{Z}$$

• Examples depict *k*=4 and *k*=9





## SL(2,C) solutions

- SL(2,C) group is complexification of SU(2) ⇒ if we allow complex solutions, we can see solutions describing SL(2,C) gluing conditions
- We generalize the angle  $\theta$  by adding a new parameter  $\rho$

so that

$$\theta \to \theta - i \log \rho$$

$$e^{in\theta} \to \rho^n e^{in\theta}$$

- Therefore invariants with high m usually have either small or large values
- $\theta$  seems to follow the same rule as before

$$\theta = \pm 2|J_i - J_f|\frac{\pi}{k}$$

•  $\rho$  seems to be generic

- 0-brane solution at *k=2* (level 14)
- $\theta = -\pi / k + i \log 2.070$
- Invariants are not symmetric
   ⇒ solution does not satisfy reality
   conditions
- The action is real
   ⇒ pseudo-real solution
- It excites the marginal field, but with imaginary value

|          | Energy        | $E_0$          | $\Delta_S$ |
|----------|---------------|----------------|------------|
| $\infty$ | 0.707093      | 0.7076         | -0.000016  |
| $\sigma$ | 0.000003      | 0.0001         | 0.000002   |
| Exp.     | 0.707107      | 0.707107       | 0          |
|          | $E_{1/2,1/2}$ | $E_{1/2,-1/2}$ |            |
| $\infty$ | -1.744i       | -0.405i        |            |
| $\sigma$ | 0.015i        | 0.003i         |            |
| Exp.     | -1.74064i     | -0.406234i     |            |
|          | $E_{1,1}$     | $E_{1,0}$      | $E_{1,-1}$ |
| $\infty$ | -3.029        | -0.714         | -0.163     |
| $\sigma$ | 0.030         | 0.014          | 0.005      |
| Exp.     | -3.02982      | -0.707107      | -0.165026  |

## Exotic solutions

- There are some solutions that are clearly not Cardy boundary states
   ⇒ we find unknown boundary states
- Symmetry-breaking boundary states
   ➤ They break J<sup>+</sup>, J<sup>-</sup> gluing conditions
   ➤ But they still preserve J<sup>3</sup> gluing conditions
- Only a small number of well-behaved exotic solutions (compared to free boson)
   ➤ They appear mainly on boundary states with high J
- Sometimes there are more solutions with similar properties
   Related by marginal deformations?

- The first exotic solution appears at k=3 and  $J=\frac{1}{2}$ 
  - $\succ$  Complex at levels levels 2,3
  - $\geq$  Real from level 4
  - Highly symmetric
  - $\succ$  Satisfies out-of-Siegel equations
- There is a similar solution in M(5,6)because  $SU(2)_3=M(5,6)\times U(1)$ 
  - $\succ$  We can predict values of observables
  - Corresponding boundary state should be possible to find analytically

|          | Energy        | $E_0$          | $\Delta_S$     |                |
|----------|---------------|----------------|----------------|----------------|
| $\infty$ | 1.05624       | 1.054          | -0.00014       |                |
| $\sigma$ | -             | 0.001          | _              |                |
| Exp.     | 1.05605       | 1.05605        | 0              |                |
|          | $E_{1/2,1/2}$ | $E_{1/2,-1/2}$ |                |                |
| $\infty$ | 0.006         | -0.006         | ]              |                |
| $\sigma$ | 0.016         | 0.016          |                |                |
| Exp.     | 0             | 0              |                |                |
|          | $E_{1,1}$     | $E_{1,0}$      | $E_{1,-1}$     |                |
| $\infty$ | -0.006        | 1.31           | -0.006         |                |
| $\sigma$ | 0.016         | 0.03           | 0.016          |                |
| Exp.     | 0             | 1.34332        | 0              |                |
|          | $E_{3/2,3/2}$ | $E_{3/2,1/2}$  | $E_{3/2,-1/2}$ | $E_{3/2,-3/2}$ |
| $\infty$ | -1.054        | 0.006          | -0.006         | 1.054          |
| $\sigma$ | 0.001         | 0.016          | 0.016          | 0.001          |
| Exp.     | 1.05605       | 0              | 0              | 1.05605        |

### • Two exotic solutions at k=6 with similar properties

|          | Energy        | $E_{0,0}$      | $\Delta_S$     |                |                |                |            |
|----------|---------------|----------------|----------------|----------------|----------------|----------------|------------|
| $\infty$ | 1.07149       | 1.0713         | -0.000036      |                |                |                |            |
| σ        | 0.00002       | 0.0011         | 0.000003       |                |                |                |            |
|          | $E_{1/2,1/2}$ | $E_{1/2,-1/2}$ |                | -              |                |                |            |
| $\infty$ | 0             | 0              |                |                |                |                |            |
|          | $E_{1,1}$     | $E_{1,0}$      | $E_{1,-1}$     |                |                |                |            |
| $\infty$ | 0.0003        | 1.667          | 0.0003         |                |                |                |            |
| σ        | 0.0004        | 0.005          | 0.0004         |                |                |                |            |
|          | $E_{3/2,3/2}$ | $E_{3/2,1/2}$  | $E_{3/2,-1/2}$ | $E_{3/2,-3/2}$ | ]              |                |            |
| $\infty$ | 0             | 0              | 0              | 0              |                |                |            |
|          | $E_{2,2}$     | $E_{2,1}$      | $E_{2,0}$      | $E_{2,-1}$     | $E_{2,-2}$     | ]              |            |
| $\infty$ | -0.0003       | -0.02          | 1.66           | -0.02          | -0.0003        |                |            |
| σ        | 0.0004        | 0.06           | 0.19           | 0.06           | 0.0004         |                | 5.         |
|          | $E_{5/2,5/2}$ | $E_{5/2,3/2}$  | $E_{5/2,1/2}$  | $E_{5/2,-1/2}$ | $E_{5/2,-3/2}$ | $E_{5/2,-5/2}$ | ]          |
| $\infty$ | 0             | 0              | 0              | 0              | 0              | 0              |            |
|          | $E_{3,3}$     | $E_{3,2}$      | $E_{3,1}$      | $E_{3,0}$      | $E_{3,-1}$     | $E_{3,-2}$     | $E_{3,-3}$ |
| $\infty$ | -1.0713       | -0.001         | 0.03           | 0.93           | 0.03           | -0.001         | -1.0713    |
| $\sigma$ | 0.0011        | 0.046          | 0.65           | 0.79           | 0.65           | 0.046          | 0.0011     |

|          | Energy        | $E_{0,0}$      | $\Delta_S$     | 1              |                |                |            |
|----------|---------------|----------------|----------------|----------------|----------------|----------------|------------|
| $\infty$ | 1.07149       | 1.0718         | 0.0000241      |                |                |                |            |
| $\sigma$ | 0.00006       | 0.0003         | 0.0000008      |                |                |                |            |
|          | $E_{1/2,1/2}$ | $E_{1/2,-1/2}$ |                | 1              |                |                |            |
| $\infty$ | 0             | 0              |                |                |                |                |            |
|          | $E_{1,1}$     | $E_{1,0}$      | $E_{1,-1}$     |                |                |                |            |
| $\infty$ | -0.012        | 1.665          | -0.001         |                |                |                |            |
| $\sigma$ | 0.021         | 0.009          | 0.013          |                |                |                |            |
|          | $E_{3/2,3/2}$ | $E_{3/2,1/2}$  | $E_{3/2,-1/2}$ | $E_{3/2,-3/2}$ |                |                |            |
| $\infty$ | 0             | 0              | 0              | 0              |                |                |            |
|          | $E_{2,2}$     | $E_{2,1}$      | $E_{2,0}$      | $E_{2,-1}$     | $E_{2,-2}$     | ]              |            |
| $\infty$ | 0.007         | -0.05          | 1.61           | -0.06          | 0.05           |                |            |
| $\sigma$ | 0.051         | 0.09           | 0.25           | 0.16           | 0.08           |                |            |
|          | $E_{5/2,5/2}$ | $E_{5/2,3/2}$  | $E_{5/2,1/2}$  | $E_{5/2,-1/2}$ | $E_{5/2,-3/2}$ | $E_{5/2,-5/2}$ |            |
| $\infty$ | 0             | 0              | 0              | 0              | 0              | 0              |            |
|          | $E_{3,3}$     | $E_{3,2}$      | $E_{3,1}$      | $E_{3,0}$      | $E_{3,-1}$     | $E_{3,-2}$     | $E_{3,-3}$ |
| $\infty$ | -9.2          | 0.04           | 0.5            | 1.0            | -0.3           | -0.12          | -0.26      |
| σ        | 0.3           | 0.20           | 1.2            | 1.2            | 1.0            | 0.28           | 0.25       |

- Both have energy around 1.07149
- Most invariants (except  $E_{3,\pm 3}$ ) are the same within errors
- Many invariants are exactly or asymptotically zero
- The first solution is real, the second only pseudo-real
- The second solution has asymmetric invariants
- It is similar to SL(2,C) solutions
- Its boundary state can be probably reached by (complex) marginal deformation of the first one

## Summary and discussion

- We find real solutions reprenting Cardy boundary states
  - $\succ$  These solutions follow "selection rules" regarding  $\theta$

 $\theta = \pm 2|J_i - J_f + l|\frac{\pi}{k}, \quad l \in \mathbb{Z}$ 

> Are there similar rules for BCFT results?

- Can we reach other  $\theta$ ?
  - A promising approach seems to be to fix the value of the marginal field
  - Combination of relevant and marginal deformations
  - > Not yet clear how much of the moduli space is covered
  - ≻ Work in progress
- We also find pseudo-real solutions reprenting SL(2,C) boundary states
  - $\succ$  These solution follow "selection rules" for  $\theta$
  - $\succ$  The other parameter  $\rho$  seems to be generic

- For  $k \ge 3$  we find exotic solutions which describe boundary states breaking the current symmetry
- The number of these solutions is much smaller than in free boson on torus
   Low number of relevant operators?
  - > Do exotic boundary states typically have too high energy?
  - > The condition  $J_0^3 |\Psi\rangle = 0$  could be too restrictive
  - > The SU(2) symmetry could be fixed just using  $Z_2$  subgroups of SU(2)
  - > That would require a different ansatz for string field and new numerical algorithms
- Some of the exotic solutions we found could be related to analytic results ≻0105038, 0705.1068