Bosonic Tachyons from the Supersymmetric Point of View arXiv:1905.09621

Lorenz Schlechter

June 10, 2020

Lorenz Schlechter Bosonic Tachyons from the Supersymmetric Point of View

Content

- 2 Embedding of Bosonic theories
- 3 Construction of SFT Around the Embedding
- (4) L_{∞} and Quartic order

Tachyons in String Theory

- Open tachyon condensation well understood.
- Local closed tachyons as well (decay of compact dimensions, orbifold defects)
- What about the bulk tachyon?

Results of the 90s and early 2000s

$$V(t) = -t^2 + \frac{6561}{4096}t^3 - 3.0172t^4 + 9.924t^5$$
 (1)

- Adding higher orders and higher level fields leads to oscillating behavior.
- Cubic order \rightarrow minimum, Quartic order \rightarrow run-away
- Quintic order \rightarrow minimum .
- Seams to converge to a minimum at $t \approx 0.05$ (Moeller, Yang 2006)

Potential of the Bosonic Closed String Tachyon (cubic order)

Lorenz Schlechter Bosonic Tachyons from the Supersymmetric Point of View

Potential of the Bosonic Closed String Tachyon (quartic order)

Lorenz Schlechter

Bosonic Tachyons from the Supersymmetric Point of View

Introduction

Embedding of Bosonic theories Construction of SFT Around the Embedding L_∞ and Quartic order

Idea

- The bosonic string can be embedded in the superstring (Berkovits, Vafa 1993)
- This adds additional d.o.f which exactly cancel at the bosonic point.
- What happens if one deforms the CFT away from the bosonic point?

Introduction

Embedding of Bosonic theories Construction of SFT Around the Embedding L_∞ and Quartic order

The Theory Space of SFT

ヘロン ヘロン ヘビン ヘビン

æ

Steps in the Calculation

- Embed the bosonic string in the superstring.
- Use superstring field theory.
- Apply numerical methods (Rastelli, Zwiebach, Moeller).
- Calculate higher dimensional potential (in field space).
- Solve the resulting EOMs.

< ロ > < 同 > < 三 > < 三 >

Berkovits' and Vafa's embedding (1993)

- Hidden $\mathcal{N} = 2$ SUSY in bosonic string (requires choice of current).
- Add spin-shifted fermionic b'c' ghost system with h = (3/2, -1/2) to the <u>matter</u> system.
- Correct spin-statistic.

$$T = 26 \times T_X + T_{b'c'} + T_{bc} + T_{\beta\gamma}$$
⁽²⁾

$$T_{b'c'} = -3/2b'\partial c' - 1/2\partial b'c' + 1/2\partial^2(c'\partial c')$$
(3)

Berkovits' and Vafa's Embedding (1993)

$$T_{\mathcal{N}=1} = 26 \times T_X + T_{b'c'} + T_{bc} + T_{\beta\gamma}$$
(4)

- $\mathcal{N}=1$ string, equivalent to the bosonic string.
- $\beta\gamma$ and b'c' contributions to amplitudes cancel.
- Exact endpoint of the type 0 tachyon condensation. (S. Hellerman, I. Swanson 2008)
- Can be extended to $\mathcal{N}=2$:

$$T_{\mathcal{N}=2} = 26 \times T_X + 2T_{b'c'} + T_{\phi}^{Q=1} + T_{bc} + 2T_{\beta\gamma} + T_{\eta\xi}$$
 (5)

• $\mathcal{N}=2$ has hidden $\mathcal{N}=4$ symmetry \rightarrow can in principle be continued

Steps in the computation

- **1** Construct level truncated Hilbert space of the CFT.
- Rewrite the SFT potential as as sum of string functions (requires b-insertions, PCO prescriptions...).
- Evaluate the string functions (conservation laws, ghost number conservations, conformal maps to the n-punctured sphere).
- Solve the resulting EOMs.

1. Hilbert space

- $L_0 \overline{L}_0 |\psi\rangle = 0$
- $b_0 \pm \overline{b}_0 \ket{\psi} = 0$
- $\bullet\,$ picture -1 in NS, -3/2 or -1/2 in R
- no ghost number constraints
- usual treatment of $\beta\gamma$ system ($\eta\xi+\phi$)
- lowest lying state in NS sector:

$$|t\rangle = t(x)c_1\overline{c}_1c'_{1/2}\overline{c}'_{1/2}e^{-\phi-\overline{\phi}}|0\rangle, \quad h = -2$$
(6)

- 16 additional tachyons B_i with weight h = -1
- 121 massless fields

Bosonic String Field

Applying the same rules to the usual bosonic string field one obtains:

$$\begin{split} \psi_{bos} &= t(x)c_1\overline{c}_1 \left| 0 \right\rangle + d_1(x)c_{-1}c_1\overline{c}_{-1}\overline{c}_1 \left| 0 \right\rangle + d_2(x)c_{-1}c_1 \left| 0 \right\rangle \\ &+ d_3(x)\overline{c}_{-1}\overline{c}_1 \left| 0 \right\rangle + g_{\mu\nu}(x)\alpha_{-1}^{\mu}c_1\overline{\alpha}_{-1}^{\nu}\overline{c}_1 \left| 0 \right\rangle \\ &+ A_{\mu,1}(x)\alpha_{-1}^{\mu}c_1\overline{c}_{-1}\overline{c}_1 \left| 0 \right\rangle + A_{\mu,2}(x)c_{-1}c_1\overline{c}_1\overline{\alpha}_{-1}^{\mu} \left| 0 \right\rangle \\ &+ A_{\mu,3}(x)\alpha_{-1}^{\mu}c_1 \left| 0 \right\rangle + A_{\mu,4}(x)\overline{c}_1\overline{\alpha}_{-1}^{\mu} \left| 0 \right\rangle \\ &+ I(x) \left| 0 \right\rangle \end{split}$$

Demanding ghost number g = 2 would eliminate the additional massless fields.

イロン 不同 とくほと 不良 と

Bosonic Action (Qubic order, level 2)

$$V(\psi) = -t^2 + \frac{27}{32}td_2d_3 + \frac{6561}{4096}t^3 + \frac{27}{32}Itd_1 + \frac{27}{16}g_{\mu\nu}g^{\mu\nu}t .$$
 (7)

- Not in the usual twist symmetric basis.
- A field redefinition brings it to the usual form:

$$|d\rangle = |d_2\rangle - |d_3\rangle = (c_{-1}c_1 - \overline{c}_{-1}\overline{c}_1)|0\rangle$$
(8)

$$|d_g\rangle = |d_2\rangle + |d_3\rangle = (c_{-1}c_1 + \overline{c}_{-1}\overline{c}_1)|0\rangle , \qquad (9)$$

$\mathcal{N} = 1$ Action, (EKS)

$$S_{NS} = -\frac{1}{2} \langle \psi | c_0^+ c_0^- L_0^+ | \psi \rangle + \frac{\omega \left(\Phi, L_2^{(1,1)}(\Phi, \Phi)\right)}{6} + \frac{\omega \left(\Phi, L_3^{(2,2)}(\Phi, \Phi, \Phi)\right)}{24}$$

 $\omega\left(\Phi, L_2^{(1,1)}(\Phi, \Phi, \Phi)\right) = \{f_1 \circ \psi(0), f_2 \circ \psi(0), f_3 \circ X \overline{X} \psi(0)\} + 8 \text{ permutations}$

$$\overline{X}XV(y) = \oint \frac{dz}{2\pi i z} \oint \frac{dw}{2\pi i w} \overline{X}(z)X(w)V(y)$$
.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Quadratic terms

$$S_{kin,NS} = \frac{1}{2} \langle \Psi | c^+ c^- L_0 | \Psi \rangle = \frac{h_{\Psi}}{2} \langle \Psi | c^+ c^- | \Psi \rangle .$$
 (10)

These can be evaluated using the BPZ inner product. With normalization

$$\langle 0| c_{-1}\overline{c}_{-1}c'_{-1/2}\overline{c}'_{-1/2}c_0\overline{c}_0c_1\overline{c}_1c'_{1/2}\overline{c}'_{1/2}e^{-2\Phi-2\overline{\Phi}}|0\rangle = 2, \quad (11)$$

one obtains:

$$V_2^{(2)} = -t^2 + B_2 B_5 - B_4 B_7 + B_{10} B_{13} + B_{11} B_{16} .$$
 (12)

Diagonalizing the fields gives 4 additional tachyons, 8 massless fields and 4 massive fields.

< ロ > < 同 > < 三 > < 三 >

Qubic terms

 $\{\{\Psi^3\}\} = \{f_1 \circ \psi(0), f_2 \circ \psi(0), X\overline{X}f_3 \circ \psi(0)\} + 8 \text{ permutations (13)}$

- Conformal transformations known. $(-\sqrt{3}, 0, \sqrt{3})$ convention.
- Eliminate all creation operators using conservation laws.

$$\langle V_3| \sum_{i=1}^3 \oint_{\mathcal{C}_i} dz_i \phi^{(i)}(z_i) \mathcal{O}(z_i) = 0$$
 (14)

- ϕ has dimenison $1 h(\mathcal{O})$
- Only c_1 and $c'_{1/2}$ remain

Qubic terms

- Rewrite closed amplitudes into open.
- Signs form commuting operators cancel.

$$\begin{split} \langle 0| \, c_{1}^{(1)} c_{1}^{(2)} c_{1}^{(3)} \overline{c}_{1}^{(1)} \overline{c}_{1}^{(2)} \overline{c}_{1}^{(3)} c_{1/2}^{\prime (j)} c_{1/2}^{\prime (j)} \overline{c}_{1/2}^{\prime (m)} e^{a_{1} \Phi^{(1)} + a_{2} \Phi^{(2)} + a_{3} \Phi^{(3)} + b_{1} \overline{\Phi}^{(1)} + b_{2} \overline{\Phi}^{(2)} + b_{3} \overline{\Phi}^{(3)}} |0\rangle &= \\ 2 \, \langle 0| \, c_{1}^{(1)} c_{1}^{(2)} c_{1}^{(3)} |0\rangle_{o} \, \langle 0| \, \overline{c}_{1}^{(1)} \overline{c}_{1}^{(2)} \overline{c}_{1}^{(3)} |0\rangle_{o} \, \langle 0| \, c_{1/2}^{\prime (j)} c_{1/2}^{\prime (j)} |0\rangle_{o} \, \langle 0| \, \overline{c}_{1/2}^{\prime (j)} \overline{c}_{1/2}^{\prime (m)} |0\rangle_{o} \\ & \cdot \langle 0| \, e^{a_{1} \Phi^{(1)} + a_{2} \Phi^{(2)} + a_{3} \Phi^{(3)} + b_{1} \overline{\Phi}^{(1)} + b_{2} \overline{\Phi}^{(2)} + b_{3} \overline{\Phi}^{(3)} |0\rangle_{o} \\ \end{split}$$

$$\langle 0| c_1(z_1)c_1(z_2)c_1(z_3) | 0 \rangle = (z_1 - z_2)(z_1 - z_3)(z_2 - z_3) ,$$
 (15)

$$\langle 0| c_{1/2}'(z_1) c_{1/2}'(z_2) | 0 \rangle = (z_1 - z_2)$$
(16)

$$\langle 0| e^{a_1 \Phi^{(1)} + a_2 \Phi^{(2)} + a_3 \Phi^{(3)}} |0\rangle = \delta(a_1 + a_2 + a_3 + 2) \prod_{i < j} (z_i - z_j)^{-a_i \cdot a_j}$$
(17)

Results

- Tachyonic part of the potential.
- Massless also evaluated, but too long to show here.

$$V_{1}^{(3)} = -\frac{243B_{1}^{2}t}{256} + \frac{243}{128}B_{1}B_{2}t + \frac{243}{128}B_{1}B_{5}t - \frac{243}{128}B_{2}B_{5}t - \frac{1215}{512}B_{1}B_{6}t - \frac{243}{128}B_{12}B_{15}t + \frac{243}{128}B_{11}B_{16}t + \frac{6561t^{3}}{4096}$$

・ロト ・回ト ・ヨト ・ヨト

Solutions to EOMs

t	V	m	m	m	m	m	m	m	m	m	m	m	m
0	0	-2	-1	-1	-1	-1	0	0	0	0	1	1	1
0.42	-0.058	$-\frac{113}{16}$	-2	-1.09	-1	-1	-1	0	0	0.91	1	1	3.18
$+\frac{128}{243}$	-0.04	-2.18	-2	-1	-1	-1	0	0	1	1	1.18	2	$\frac{49}{16}$
$-\frac{128}{243}$	-0.51	-1.90	$-\frac{145}{81}$	-1	-1	$-\frac{64}{81}$	$-\frac{17}{81}$	0.09	$\frac{64}{81}$	1	1.23	<u>145</u> 81	2

Table: The values of the tachyon, the potential and the masses of the fields in the 4 different solutions at cubic order. This excludes the 4 massless fields which do not appear at cubic order.

Potential

Lorenz Schlechter Bosonic Tachyons from the Supersymmetric Point of View

Evaluation of Quartic Terms

- Much more complicated when qubic terms.
- All parts of the computation in principle known, but amount of terms to compute explodes.
- Conformal maps only known numerically. (but solved by Moeller)

< ロ > < 同 > < 三 > < 三 >

EKS solution of L_{∞} -relations

$$L_{n+2}^{(p,q)} = \frac{1}{p+q} \sum_{k=0}^{n} \left(\sum_{r,s} [L_{n-k+1}^{(r,s)}, \lambda_{k+2}^{(p-r,q-s)}] + \sum_{r,s} [L_{n-k+1}^{(r,s)}, \overline{\lambda}_{k+2}^{(p-r,q-s)}] \right)$$

$$\lambda_{n+2}^{(p+1,q)} = \frac{n-p+1}{n+3} \Big(\xi_0 L_{n+2}^{(p,q)} - L_{n+2}^{(p,q)}(\xi_0 \mathbb{I}_{N+1}) \Big), \quad (18)$$

$$\overline{\lambda}_{n+2}^{(p,q+1)} = \frac{n-q+1}{n+3} \Big(\overline{\xi}_0 L_{n+2}^{(p,q)} - L_{n+2}^{(p,q)} (\overline{\xi}_0 \mathbb{I}_{N+1}) \Big).$$
(19)

- Express the superstring brackets as combinations of the bosonic brackets.
- Triple sum \rightarrow terms add up fast.
- All parts of the computation in principle known, but explodes in number of term.

EKS solution of L_{∞} -relations

- Explicit form very long, $\mathcal{O}(200)$ terms for $L_3^{(2,2)}$.
- Includes terms of the form $L_2[L_2[\psi_1,\psi_2],\psi_2]$
- These turn out to be difficult to evaluate.

(4月) トイヨト イヨト

Explicit Evaluation of $L_2[L_2[\psi_1, \psi_2], \psi_2]$

Two possibilities:

- Use conservation laws and reflector state. Works but slow. $L_2[V_1, V_2] = \langle V_{123'} | \left(|V_1\rangle_{(1)} \bigotimes |R_{33'}\rangle \bigotimes |V_2\rangle_{(2)} \right)$ (20)
- Explicit formula using surface states with insertions not at the origin. Problems with $e^{-\phi}$ terms.

< ロ > < 同 > < 三 > < 三 >

Simplification for Special Ghost Structure

But if the ghost structure of the vertex operators is $|V\rangle = V(\alpha, \phi)c_1\overline{c}_1c'_{1/2}\overline{c}'_{1/2}e^{-\Phi-\overline{\Phi}}|0\rangle$, drastic simplifications happen. For heterotic string:

$$\frac{1}{4!}\omega\left(\Phi, L_3^{(2)}(\Phi, \Phi, \Phi)\right) =$$

$$\frac{5}{108}\omega_L\left(\xi_0X_0\Phi, L_2^{(0)}(\Phi, \xi_0L_2^{(0)}(\Phi, \Phi))\right) + \frac{1}{216}\omega_L\left(\xi_0X_0\Phi, L_2^{(0)}(\Phi, L_2^{(0)}(\Phi, \xi_0\Phi))\right)$$

$$+ \frac{1}{108}\omega_L\left(\xi_0\Phi, L_2^{(0)}(\Phi, \xi_0X_0L_2^{(0)}(\Phi, \Phi))\right) - \frac{1}{48}\omega_L\left(\xi_0X_0\Phi, L_2^{(0)}(\xi_0\Phi, L_2^{(0)}(\Phi, \Phi))\right)$$

$$+ \frac{1}{96}\omega_L\left(\xi_0X_0^2\Phi, L_3^{(0)}(\Phi, \Phi, \Phi)\right) + \frac{1}{32}\omega_L\left(\xi_0X_0\Phi, L_3^{(0)}(\Phi, \Phi, X_0\Phi)\right).$$
(21)

(4月) トイヨト イヨト

Simplification for Special Ghost Structure

 $L_2[L_2[\psi_1,\psi_2],\psi_2]$ comes always with 2 ξ_0 insertions and one PCO insertion.

$$egin{aligned} X &= \{Q,\xi\} = e^{\phi}(b'+c'(\mathcal{T}_m+\partial(c')b')+rac{5}{2}\partial^2c') \ &+ 2\partial(\eta)e^{2\phi}b+\eta\partial(e^{2\phi}b)+c\partial\xi \;. \end{aligned}$$

- Due to b'c' ghost number conservation only the first terms contribute.
- $L_2[L_2[\psi_1, \psi_2], \psi_2]$ terms vanish for ghost structure $c_1 \overline{c}_1 c'_{1/2} \overline{c}'_{1/2} e^{-\Phi \overline{\Phi}}!$
- This includes all fields of the bosonic theory.
- Truncated to this structure the SFT looks like bosonic SFT with 1 additional time.

Additional Problems at Higher Order/Level

- The additional tachyons do not have this structure, hard to compute.
- Beyond the massless level the b-insertions become much more complicated.
- Compared to the bosonic theory the number of fields increases much faster with the level.
- Work in Progress.

< ロ > < 同 > < 三 > < 三 >

Outlook

- Further computations require better computational methods. (quartic perhaps already doable)
- Include torus contributions.
- Extension to the $\mathcal{N}=2$ embedding.
- Application to open SFT, much easier computations.