New results on localizing SFT effective actions

1912.05463 & work to appear

J. Vošmera^{1,2}

in collaboration with

H. Erbin, C. Maccaferri, M. Schnabl

¹CEICO, Institute of Physics, AS CR, Prague

²IPNP, Charles University, Prague

June 9, 2020

A tale of two stories

1. Can we generalize the story of tree-level bosonic OSFT effective action with gauge-invariant sourcing to open superstring field theory?

Can we actually evaluate the corresponding tree-level on-shell open-closed amplitudes?

[see also Yuji's and Harold's talks on Monday]

2. Can we compute the tree-level quartic effective potential in heterotic Yang-Mills from heterotic SFT without having to know the closed string bosonic quartic vertex?

[Erbin, Maccaferri, JV: 1912.05463]

Gauge-invariants for A_{∞} SFTs

General A_{∞} SFT: given a cyclic A_{∞} structure $(\mathcal{H}, \{m_k\}_{k=1}^{\infty}, \omega)$, we have

$$S(\Psi) = \sum_{k=1}^{\infty} \frac{1}{k+1} \omega(\Psi, m_k(\Psi^{\otimes k})) \qquad \begin{array}{l} \sum_{l=1}^{k-1} m_l m_{k-l} = 0\\ \omega(\Psi_1, m_{k-1}(\Psi_2, \dots, \Psi_k)) = \\ = -(-1)^{d(\Psi_1)} \omega(m_{k-1}(\Psi_1, \dots, \Psi_{k-1}), \Psi_k) \end{array}$$

[see Hiroshige Kajiura's talk for intro]

Tensor coalgebra language: [Gaberdiel, Zwiebach: hep-th/9705038; Erler: 1505.02069]

$$S(\Psi) = \int_0^1 dt \, \langle \omega | \pi_1 \partial_t \frac{1}{1 - \Psi(t)} \otimes \pi_1 \mathbf{m} \frac{1}{1 - \Psi(t)} \qquad \mathbf{m}^2 = 0$$
$$\langle \omega | \pi_2 \mathbf{m} = 0$$

where $\Psi(0) \equiv 0$, $\Psi(1) \equiv \Psi$ and $\mathbf{m} \equiv \mathbf{m}_1 + \mathbf{m}_2 + \dots$

Gauge transformation: given an odd cyclic coderivation Λ , we have

$$\delta_{\mathsf{gauge}}\Psi=\pi_1[\mathbf{m},\mathbf{\Lambda}]rac{1}{1-\Psi}$$

[see e.g. Erler: 1610.03251]

Gauge-invariants: for an odd cyclic coderivation e,

$$\mathcal{E}(\Psi) \equiv \int_0^1 dt \, \langle \omega | \pi_1 \partial_t \frac{1}{1 - \Psi(t)} \otimes \pi_1 \mathbf{e} \frac{1}{1 - \Psi(t)}$$

is gauge-invariant (up to pieces that vanish on-shell) whenever $[{\bf e},{\bf m}]=0$

Ellwood invariant in cubic OSFT: a small recap (1)

Cubic OSFT action augmented by Ellwood invariant:

[see Harold's and Yuji's talks for intro]

$$\mathfrak{S}(\Psi;\mu) = \mu\omega(\Psi,e_0) + \frac{1}{2}\omega(\Psi,m_1(\Psi)) + \frac{1}{3}\omega(\Psi,m_2(\Psi,\Psi))$$

 e_0 midpoint insertion of an on-shell $(h, \bar{h}) = (0, 0)$ closed string primary
state on identity string field
[Hashimoto, Itzhaki: hep-th/0111092; Gaiotto, Rastelli, Sen, Zwiebach: hep-th/011129] m_1, m_2 BRST operator Q, Witten's star product
 ω BPZ inner product (a.k.a. symplectic form)

Tensor coalgebra language:

$$\mathfrak{S}(\Psi;\mu) = \int_0^1 dt \, \langle \omega | \pi_1 \partial_t \frac{1}{1 - \Psi(t)} \otimes \pi_1 \mathbf{m}(\mu) \frac{1}{1 - \Psi(t)}$$

where $\mathbf{m}(\mu) \equiv \mathbf{m} + \mu \mathbf{e}$ with $\mathbf{m} \equiv \mathbf{m}_1 + \mathbf{m}_2$, $\mathbf{e} \equiv \mathbf{e}_0$ and

$$\begin{split} 0 &= \mathbf{m}^2 \\ 0 &= [\mathbf{m}, \mathbf{e}] \quad (\implies \text{gauge-invariant } \mathcal{E}(\Psi)) \\ 0 &= \mathbf{e}^2 \end{split}$$
 so that $\mathbf{m}(\mu)^2 &= \mathbf{m}^2 + \mu[\mathbf{m}, \mathbf{e}] + \mu^2 \mathbf{e}^2 = 0 \implies \text{(special) weak } A_\infty \text{ struc}$

Ellwood invariant in cubic OSFT: a small recap (2)

Tree-level effective dynamics:

[Kajiura: math/0306332; Sen: 1609.00459; Yuji's talk]

1. split $\Psi \in \mathcal{H}$ using a projector $P_0 \equiv I_0 \Pi_0$ (such that im $P_0 = \ker L_0$) as

$$\Psi \equiv P_0 \Psi + (1 - P_0) \Psi \equiv \psi + R, \qquad b_0 R = 0$$

here $I_0: P_0\mathcal{H} \to \mathcal{H}$ and $\Pi_0: \mathcal{H} \to P_0\mathcal{H}$ are the canonical projection and inclusion

2. integrate R out using the propagator $h_0 \equiv -(b_0/L_0)\overline{P}_0$ satisfying the HK decomposition + annihilation conditions (\rightarrow SDR [Harold's & Hiroshige's talks])

$$Qh_0 + h_0Q = P_0 - 1$$
, $\Pi_0h_0 = h_0I_0 = (h_0)^2 = 0$

Case $\mu = 0$: eff. A_{∞} structure

[Konopka: 1507.08250; Erler: 1610.03251; Matsunaga: 1901.08555]

$$\tilde{\mathbf{m}} \equiv \tilde{\mathbf{\Pi}}_0 \mathbf{m} \tilde{\mathbf{I}}_0$$

 \rightarrow $\mathbf{m}_2\text{-perturbed}$ homotopy-equivalence data

$$\begin{split} \tilde{\mathbf{I}}_0 &\equiv \frac{1}{\mathbf{1}_{T\mathcal{H}} - \mathbf{h}_0 \mathbf{m}_2} \mathbf{I}_0 , \quad \tilde{\mathbf{\Pi}}_0 &\equiv \mathbf{\Pi}_0 \frac{1}{\mathbf{1}_{T\mathcal{H}} - \mathbf{m}_2 \mathbf{h}_0} , \quad \tilde{\mathbf{h}}_0 &\equiv \frac{1}{\mathbf{1}_{T\mathcal{H}} - \mathbf{h}_0 \mathbf{m}_2} \mathbf{h}_0 \\ \rightarrow \text{ unpackaged products: } \tilde{m}_k &\equiv \pi_1 \tilde{\mathbf{m}} \pi_k \text{, where } \tilde{m}_1 = P_0 m_1 \text{, } \tilde{m}_2 = P_0 m_2 \text{,} \\ \tilde{m}_3(\psi_1, \psi_2, \psi_3) &= P_0 m_2 (h_0 m_2(\psi_1, \psi_2), \psi_3) + P_0 m_2(\psi_1, h_0 m_2(\psi_2, \psi_3)) \text{, . . .} \\ \text{[Kajjura: hep-th/0112228]} \end{split}$$

Ellwood invariant in cubic OSFT: a small recap (3)

<u>Cyclicity</u>: BPZ properties of $h_0 \implies \tilde{\mathbf{m}}$, $\tilde{\mathbf{I}}_0$ cyclic w.r.t. $\langle \tilde{\omega} | \pi_2 \equiv \langle \omega | \pi_2 \mathbf{I}_0$ Effective Ellwood invariant: defining

$$\tilde{\mathbf{e}} \equiv \tilde{\mathbf{\Pi}}_{0} \mathbf{e} \tilde{\mathbf{I}}_{0} \implies \quad \tilde{\mathcal{E}}(\psi) = \int_{0}^{1} dt \, \langle \tilde{\omega} | \pi_{1} \partial_{t} \frac{1}{1 - \psi(t)} \otimes \pi_{1} \tilde{\mathbf{e}} \frac{1}{1 - \psi(t)}$$

can show $[\tilde{\mathbf{e}}, \tilde{\mathbf{m}}] = 0 \implies \tilde{\mathcal{E}}(\psi)$ gauge-invariant for the effective SFT at $\mu = 0$, given by cyclic products $\tilde{e}_k \equiv \pi_1 \tilde{\mathbf{e}} \pi_k$, where $\tilde{e}_0 = P_0 e_0$ and for k > 0

$$\tilde{e}_k(\psi^{\otimes k}) = \sum_{l=0}^{k-1} \tilde{m}_k(\psi^{\otimes l}, h_0 e_0, \psi^{\otimes k-1-l})$$

<u>Case $\mu \neq 0$ </u>: effective weak cyclic A_{∞} structure using "vertical composition" [see Yuji's and Harold's talks]

$$\tilde{\mathbf{m}}(\mu) \equiv \tilde{\mathbf{m}} + \mu \tilde{\mathbf{e}} + \sum_{\alpha=2}^{\infty} \mu^{\alpha} \tilde{\mathbf{\Pi}}_{0} \mathbf{e} (\tilde{\mathbf{h}}_{0} \mathbf{e})^{\alpha-1} \tilde{\mathbf{I}}_{0}$$

 \rightarrow insufficient to deform $\tilde{\mathbf{m}}$ by $\mu \tilde{\mathbf{e}}$ since $(\tilde{\mathbf{m}} + \mu \tilde{\mathbf{e}})^2 \neq 0$ (because $\tilde{\mathbf{e}}^2 \neq 0$)

 \rightarrow need to consider amplitudes with arbitrary number of (on-shell) closed strings \rightarrow unpackaged products $\tilde{\mathfrak{m}}_k \equiv \pi_1 \tilde{\mathfrak{m}} \pi_k$ (except $\tilde{\mathfrak{m}}_0$, which starts as $\mu P_0 e_0 + \dots$)

$$\tilde{\mathfrak{m}}_{k}(\psi^{\otimes k}) = \sum_{\alpha=0}^{\infty} \sum_{\substack{\sum_{i=1}^{\alpha+1} l_{i}=k}} \mu^{\alpha} \tilde{m}_{k+\alpha}(\psi^{\otimes l_{1}}, h_{0}e_{0}, \psi^{\otimes l_{2}}, \dots, \psi^{\otimes l_{\alpha}}, h_{0}e_{0}, \psi^{\otimes l_{\alpha}+1})$$
[see also Masuda, Matsunaga: 2003.0502]

Ellwood invariant in cubic OSFT: a small recap (4)

Vacuum shift: true vac. $\Psi_v(\mu) \equiv \sum_{\alpha=1}^{\infty} \mu^{\alpha} \Psi_{\alpha}$ of the full OSFT with Ellwood

$$\begin{split} \Psi_1 &= h_0 e_0 + \psi_1 \,, \\ \Psi_2 &= h_0 m_2 (h_0 e_0 + \psi_1, h_0 e_0 + \psi_1) + \psi_2 \,, \\ &\vdots \end{split}$$

→ $\psi_{\alpha} \in \ker L_0$ possible corrections at each order [Sen: 1411.7478] → can be obstructed (\Longrightarrow BCFT unable to adapt to μ -deformation)

$$O_1 \equiv P_0 e_0 + P_0 m_1(\psi_1),$$

$$O_2 \equiv P_0 m_2 (h_0 e_0 + \psi_1, h_0 e_0 + \psi_1) + P_0 m_1(\psi_2),$$

$$\vdots$$

Coalgebra description: denoting $\psi_v(\mu) \equiv \sum_{\alpha=1}^{\infty} \mu^{\alpha} \psi_{\alpha}$, we obtain

$$\begin{split} &\sum_{\alpha=1}^{\infty} \mu^{\alpha} \Psi_{\alpha} = \pi_1 \frac{1}{\mathbf{1}_{T\mathcal{H}} - \mathbf{h}_0(\mu \mathbf{e} + \mathbf{m}_2)} \frac{1}{1 - \psi_{\mathbf{v}}(\mu)} \\ &\sum_{\alpha=1}^{\infty} \mu^{\alpha} O_{\alpha} = \pi_1 \tilde{\mathbf{m}}(\mu) \frac{1}{1 - \psi_{\mathbf{v}}(\mu)} \,, \end{split}$$

 \rightarrow corrections $\psi_k \in \ker L_0$ determine the true vacuum $\psi_v(\mu)$ of the eff. SFT \rightarrow full SFT obstructions O_{α} coincide with the EOMs for $\psi_v(\mu)$

 \rightarrow in most examples $\psi_{lpha} = 0 \implies$ obstructions O_{lpha} determine the eff. tadpole

Munich A_{∞} open SFT: NS sector (1)

Action and products: [Erler, Konopka, Sachs: 1312.2948]

$$S(\Psi) = \int_0^1 dt \, \langle \omega_{\mathsf{S}} | \pi_1 \partial_t \frac{1}{1 - \Psi(t)} \otimes \pi_1 \mathbf{M} \frac{1}{1 - \Psi(t)}$$

 \rightarrow define $\mathbf{M} \equiv \sum_{n=0}^{\infty} \mathbf{M}_{n+1}^{(n)}$ where $\#_{\text{pic}}(M_{n+1}^{(n)}) = n$, $\#_{\text{gh}}(M_{n+1}^{(n)}) = 1 - n$

 \rightarrow start with bosonic products $M_1^{(0)}\equiv Q,~M_2^{(0)}\equiv m_2$ and $M_k^{(0)}\equiv 0$ for k>2, define recursively

$$\begin{split} \mathbf{M}_{n+1}^{(n-1)} &\equiv \frac{1}{n-1} \left([\mathbf{M}_{2}^{(0)}, \boldsymbol{\mu}_{n}^{(n-1)}] + [\mathbf{M}_{3}^{(1)}, \boldsymbol{\mu}_{n-1}^{(n-2)}] + \ldots + [\mathbf{M}_{n}^{(n-2)}, \boldsymbol{\mu}_{2}^{(1)}] \right), \\ \boldsymbol{\mu}_{n+1}^{(n)} &\equiv \frac{1}{n+2} \left(\xi_{0} M_{n+1}^{(n-1)} - M_{n+1}^{(n-1)} \sum_{k=0}^{n} 1^{\otimes k} \otimes \xi_{0} \otimes 1^{\otimes n-k} \right), \\ \mathbf{M}_{n+1}^{(n)} &\equiv \frac{1}{n} \left([\mathbf{M}_{1}^{(0)}, \boldsymbol{\mu}_{n+1}^{(n)}] + [\mathbf{M}_{2}^{(1)}, \boldsymbol{\mu}_{n}^{(n-1)}] + \ldots + [\mathbf{M}_{n}^{(n-1)}, \boldsymbol{\mu}_{2}^{(1)}] \right), \end{split}$$

 \rightarrow both $\mathbf{M}_n^{(p)}$ and the gauge products $\boldsymbol{\mu}_n^{(p)}$ are cyclic

Munich A_{∞} open SFT: NS sector (2)

Generating functions: [see Hiroshi Kunitomo's talk for the heterotic L_∞ version]

$$\mathbf{M}(s,t) \equiv \sum_{n=0}^{\infty} t^n (\mathbf{M}_{n+1}^{(n)} + s \mathbf{M}_{n+2}^{(n)}), \qquad \boldsymbol{\mu}(t) \equiv \sum_{n=0}^{\infty} t^n \boldsymbol{\mu}_{n+2}^{(n+1)}$$

 \rightarrow satisfy differential equations (with ICs $\mathbf{M}(1,0)=\mathbf{m}$ and $\mathbf{M}(0,1)=\mathbf{M}$)

$$\frac{\partial}{\partial t}\mathbf{M}(s,t) = \left[\mathbf{M}(s,t), \boldsymbol{\mu}(t)\right], \qquad \frac{\partial}{\partial s}\mathbf{M}(s,t) = \left[\boldsymbol{\eta}, \boldsymbol{\mu}(t)\right],$$

- ightarrow these imply $\mathbf{M}^2 = [oldsymbol{\eta}, \mathbf{M}] = 0$
- \rightarrow can solve to obtain

 $\mathbf{M} = \mathbf{G}^{-1}\mathbf{Q}\mathbf{G}$

where we have introduced cyclic cohomomorphism

$$\mathbf{G} \equiv \overleftarrow{\mathcal{P}}_t \exp\left(\int_0^1 dt \, \boldsymbol{\mu}(t)\right)$$

Ellwood invariant for Munich A_{∞} open SFT

<u>Definition</u>: starting with $e_0 \in \mathcal{H}$ given by a local midpoint insertion of a weight (0,0) on-shell bulk primary with $\#_{gh} = 2$, $\#_{pic} = -1$, we define higher products

$$\mathbf{E}_0 \equiv \mathbf{e}_0, \qquad \mathbf{E}_k \equiv \frac{1}{k} \left([\mathbf{E}_0, \boldsymbol{\mu}_{k+1}^{(k)}] + \ldots + [\mathbf{E}_{k-1}, \boldsymbol{\mu}_2^{(1)}] \right)$$

Generating function:

$$\mathbf{E}(t) \equiv \sum_{k=0}^{\infty} t^k \mathbf{E}_k, \qquad \frac{\partial}{\partial t} \mathbf{E}(t) = [\mathbf{E}(t), \boldsymbol{\mu}(t)]$$

 \rightarrow implies $[\mathbf{E}, \mathbf{M}] = \mathbf{E}^2 = [\boldsymbol{\eta}, \mathbf{E}] = 0$, also \mathbf{E} manifestly cyclic

- \rightarrow can solve to obtain $\mathbf{E} = \mathbf{G}^{-1} \mathbf{e}_0 \mathbf{G}$
- \rightarrow gauge-invariant quantity (up to pieces that vanish on-shell)

$$\mathcal{E}(\Psi) \equiv + \int_0^1 dt \, \langle \omega_{\mathsf{S}} | \pi_1 \partial_t \frac{1}{1 - \Psi(t)} \otimes \pi_1 \mathbf{E} \frac{1}{1 - \Psi(t)}$$
$$= + \int_0^1 dt \, \langle \omega_{\mathsf{L}} | \pi_1 \mathbf{G} \boldsymbol{\xi}_t \frac{1}{1 - \Psi(t)} \otimes \pi_1 \mathbf{e}_0$$
$$= - \int_0^1 dt \, \langle \omega_{\mathsf{L}} | \tilde{A}_t(\boldsymbol{\xi}_0 \tilde{\Psi}(t)) \otimes \boldsymbol{e}_0 \qquad \text{[Erler: 1308.4400]}$$

⇒ t-Ellwood invariant of WZW-like SFT (using the field redefinition of [Erler, Okawa, Takezaki: 1505.01659; very useful discussions with <u>Ted Erler</u>])

Effective Munich SFT with Ellwood invariant (1)

Completely parallel to the bosonic OSFT case. Differences:

- $\rightarrow M_k \neq 0 \text{ for } k > 2$
- $\rightarrow E_k \neq 0 \text{ for } k > 0$

<u> μ -deformed products:</u> $\mathfrak{M}(\mu) \equiv \mathbf{M} + \mu \mathbf{E}$

$$\mathfrak{M}(\mu)^2 = \mathbf{M}^2 + \mu[\mathbf{E}, \mathbf{M}] + \mu^2 \mathbf{E}^2 = 0 \quad \Longrightarrow \quad \mathsf{weak} \ A_{\infty}$$

Eff. structure at $\mu = 0$: cyclic A_{∞} structure

 $\tilde{\mathbf{M}}\equiv\tilde{\mathbf{\Pi}}_{0}\mathbf{M}\tilde{\mathbf{I}}_{0}$

 $ightarrow \delta \mathbf{M}$ -perturbed homotopy-equivalence data ($\delta \mathbf{M} \equiv \sum_{k=2}^{\infty} \mathbf{M}_k$)

$$\tilde{\mathbf{I}}_{0} \equiv \frac{1}{\mathbf{1}_{T\mathcal{H}} - \mathbf{h}_{0}\delta\mathbf{M}}\mathbf{I}_{0}, \quad \tilde{\mathbf{\Pi}}_{0} \equiv \mathbf{\Pi}_{0}\frac{1}{\mathbf{1}_{T\mathcal{H}} - \delta\mathbf{M}\mathbf{h}_{0}}, \quad \tilde{\mathbf{h}}_{0} \equiv \frac{1}{\mathbf{1}_{T\mathcal{H}} - \mathbf{h}_{0}\delta\mathbf{M}}\mathbf{h}_{0}$$

Eff. structure at $\mu \neq 0$: weak cyclic A_{∞} structure ($\mathbf{E} \equiv \mathbf{\Pi}_0 \mathbf{E} \mathbf{I}_0 \ \& [\mathbf{E}, \mathbf{M}] = 0$)

$$\tilde{\mathfrak{M}}(\mu) \equiv \tilde{\mathbf{M}} + \mu \tilde{\mathbf{E}} + \sum_{\alpha=2}^{\infty} \mu^{\alpha} \tilde{\mathbf{\Pi}}_{0} \mathbf{E} (\tilde{\mathbf{h}}_{0} \mathbf{E})^{\alpha-1} \tilde{\mathbf{I}}_{0}$$

<u>Vacuum shift:</u> obstructions to the full SFT vac. shift given by the equations of motion for the true vacuum of the effective SFT (see the cubic case for details)

Effective Munich SFT with Ellwood invariant (2)

Effective action:

$$\tilde{\mathfrak{S}}(\psi;\mu) = \int_0^1 dt \, \langle \tilde{\omega} | \pi_1 \partial_t \frac{1}{1 - \psi(t)} \otimes \pi_1 \tilde{\mathfrak{M}}(\mu) \frac{1}{1 - \psi(t)}$$

Double expansion of couplings:

$$\tilde{\mathfrak{S}}(\psi;\mu) = \sum_{k=0}^{\infty} \sum_{\alpha=0}^{\infty} \underbrace{\frac{1}{k+1} \mu^{\alpha} \tilde{\omega}(\psi, \tilde{\mathfrak{M}}_{k\alpha}(\psi^{\otimes k}))}_{\equiv \tilde{\mathfrak{S}}_{k\alpha}}$$

 $\to k+1$ counts the number of open-string insertions $\to \alpha$ counts the number of (on-shell) closed-string insertions

$$\tilde{\mathfrak{M}}_{k0} = \tilde{M}_k$$
, $\tilde{\mathfrak{M}}_{k\alpha} \equiv \pi_1 \tilde{\mathbf{\Pi}}_0 \mathbf{E} (\tilde{\mathbf{h}}_0 \mathbf{E})^{\alpha - 1} \tilde{\mathbf{I}}_0 \pi_k$ for $\alpha > 0$

Low-order expressions: have $\tilde{\mathfrak{M}}_{00} = 0$, $\tilde{\mathfrak{M}}_{10} = P_0 M_1$ and

$$\begin{split} \tilde{\mathfrak{M}}_{01}(\psi^{\otimes 0}) &= P_0 e_0 \quad \rightarrow \text{tadpole at } \mathcal{O}(\mu^1) \\ \tilde{\mathfrak{M}}_{11}(\psi^{\otimes 1}) &= P_0 e_1(\psi) + P_0 M_2(h_0 e_0, \psi) + P_0 M_2(\psi, h_0 e_0) \rightarrow \text{mass-shift at } \mathcal{O}(\mu^1) \\ \tilde{\mathfrak{M}}_{20}(\psi^{\otimes 2}) &= P_0 M_2(\psi, \psi) \quad \rightarrow \text{cubic coupling at } \mathcal{O}(\mu^0) \\ \tilde{\mathfrak{M}}_{30}(\psi^{\otimes 3}) &= P_0 M_3(\psi^{\otimes 3}) + P_0 M_2(\psi, h_0 M_2(\psi, \psi)) + P_0 M_2(h_0 M_2(\psi, \psi), \psi) \\ & \rightarrow \text{quartic coupling at } \mathcal{O}(\mu^0) \end{split}$$

$\mathcal{N} = 2$ localization (1)

Closed-string state:

$$e_0 = \varepsilon_{ij} c \bar{c} (X_0 + \bar{X}_0) \mathbb{U}^i_{\frac{1}{2}} \bar{\mathbb{U}}^j_{\frac{1}{2}} e^{-\phi - \bar{\phi}}(i) I \qquad (e_0 \text{ is on-shell})$$

Open-string state:

$$\psi = c \mathbb{V}_{\frac{1}{2}} e^{-\phi} \qquad \Longrightarrow \qquad 0 = \tilde{\mathfrak{M}}_{10}(\psi^{\otimes 1}) \equiv Q \psi \quad (\psi \text{ is on-shell})$$

Assume from now on that the background at hand supports a global $\mathcal{N}=2$ worldsheet superconformal symmetry. Both ψ and e_0 at zero momentum.

R-charge decomposition: [Sen: 1508.02481; Maccaferri, Merlano: 1801.07607]

$$\begin{split} \mathbb{V}_{\frac{1}{2}} &= \mathbb{V}_{\frac{1}{2}}^{+} + \mathbb{V}_{\frac{1}{2}}^{-} \,, \\ \mathbb{U}_{\frac{1}{2}}^{i} &= (\mathbb{U}_{\frac{1}{2}}^{i})^{+} + (\mathbb{U}_{\frac{1}{2}}^{i})^{-} \,, \\ \bar{\mathbb{U}}_{\frac{1}{2}}^{j} &= (\bar{\mathbb{U}}_{\frac{1}{2}}^{j})^{+} + (\bar{\mathbb{U}}_{\frac{1}{2}}^{j})^{-} \,, \end{split}$$

Projector conditions: $\mathcal{N} = 2$ worldsheet SCA implies that [Maccaferri, Merlano: 1801.07607, 1905.04958; Mattiello, Sachs: 1902.10955; JV: 1910.00538]

$$\begin{split} 0 &= \tilde{\mathfrak{M}}_{20}(\psi^{\otimes 2}) \equiv P_0 M_2(\psi, \psi) \,, \quad (\to \text{ no eff. cubic coupling at } \mathcal{O}(\mu^0)) \\ 0 &= \tilde{\mathfrak{M}}_{01}(\psi^{\otimes 0}) \equiv P_0 e_0 \,, \qquad (\to \text{ eff. action tadpole-free at } \mathcal{O}(\mu^1)) \end{split}$$

$\mathcal{N}=2$ localization (2)

Auxiliary fields: bulk-boundary and boundary OPEs

$$\begin{split} & \mathbb{G}_{1}^{\pm} \equiv \varepsilon_{ij} \lim_{z \to \bar{z}} \left[(\mathbb{U}_{\frac{1}{2}}^{i})^{\pm}(z) (\bar{\mathbb{U}}_{\frac{1}{2}}^{j})^{\pm}(\bar{z}) \right] \,, \\ & \mathbb{G}_{0} \equiv \varepsilon_{ij} \lim_{z \to \bar{z}} \left[2z \left((\mathbb{U}_{\frac{1}{2}}^{i})^{-}(z) (\bar{\mathbb{U}}_{\frac{1}{2}}^{j})^{+}(\bar{z}) - (\mathbb{U}_{\frac{1}{2}}^{i})^{+}(z) (\bar{\mathbb{U}}_{\frac{1}{2}}^{j})^{-}(\bar{z}) \right) \right] \,, \\ & \mathbb{H}_{1}^{\pm} \equiv \lim_{z \to 0} \left[\mathbb{V}_{\frac{1}{2}}^{\pm}(z) \mathbb{V}_{\frac{1}{2}}^{\pm}(-z) \right] \,, \\ & \mathbb{H}_{0} \equiv \lim_{z \to 0} \left[2z \Big(\mathbb{V}_{\frac{1}{2}}^{-}(z) \mathbb{V}_{\frac{1}{2}}^{+}(-z) - \mathbb{V}_{\frac{1}{2}}^{+}(z) \mathbb{V}_{\frac{1}{2}}^{-}(-z) \Big) \right] \,, \end{split}$$

 $\tilde{\mathfrak{S}}_{30}$ coupling: use the results of [Maccaferri, Merlano: 1801.07607]

$$ilde{\mathfrak{S}}_{30} = \langle \mathbb{H}_1^+ | \mathbb{H}_1^-
angle + rac{1}{4} \langle \mathbb{H}_0 | \mathbb{H}_0
angle \qquad (
ightarrow ext{quartic eff. potential at } \mathcal{O}(\mu^0))$$

 $\tilde{\mathfrak{S}}_{11}$ coupling: can use *R*-charge conservation and *c*-ghost saturation to show

$$ilde{\mathfrak{S}}_{11} = 2\langle \mathbb{G}_1^- | \mathbb{H}_1^+
angle + 2\langle \mathbb{G}_1^+ | \mathbb{H}_1^-
angle + \langle \mathbb{G}_0 | \mathbb{H}_0
angle \qquad (o \mathsf{mass-shift} \mathsf{ at } \mathcal{O}(\mu^1))$$

 \rightarrow no integrations over bosonic moduli in $\tilde{\mathfrak{S}}_{30}$ and $\tilde{\mathfrak{S}}_{11}$

ightarrow fully localized on the bdy of the moduli space (propagator ightarrow ∞ -long strip)

$\mathcal{N}=2$ localization (3)

Leading-order effective potential:

$$\tilde{\mathfrak{V}} - \tilde{\mathfrak{V}}_{\mathsf{min}} = -\langle \mathbb{H}_1^+ + 2\mu \mathbb{G}_1^+ | \mathbb{H}_1^- + 2\mu \mathbb{G}_1^- \rangle - \frac{1}{4} \langle \mathbb{H}_0 + 2\mu \mathbb{G}_0 | \mathbb{H}_0 + 2\mu \mathbb{G}_0 \rangle$$

- \rightarrow terms on r.h.s. can be shown positive definite
- ightarrow true vacuum of the effective theory: $\psi_{\mathsf{v}}(\mu) = 0 + \mathcal{O}(\mu^2)$
- \rightarrow global minima at

$$\mathbb{H}_1^\pm = -2\mu\mathbb{G}_1^\pm\,,\qquad \mathbb{H}_0 = -2\mu\mathbb{G}_0\,,$$

.

 \rightarrow depth of the global minima

$$\mathfrak{V}_{\mathsf{min}} = 4 \bigg(\big\langle \mathbb{G}_1^+ \big| \mathbb{G}_1^- \big\rangle + \frac{1}{4} \big\langle \mathbb{G}_0 \big| \mathbb{G}_0 \big\rangle \bigg)$$

 $\Rightarrow \tilde{\mathfrak{V}}$ is an eff. tachyon potential for modes $\in \ker L_0$ which become relevant for $\mu \neq 0 \rightarrow$ condensation into a bound state with mass defect $\tilde{\mathfrak{V}}_{\min}$

Example: D(-1)/D3 system in a *B*-field [level-trunc. \rightarrow David: hep-th/0007235]

- → (♣) give non-commutative ADHM eqns [Nekrasov, Schwarz: hep-th/9802068]
- $\rightarrow \tilde{\mathfrak{V}}_{min}$ reproduces the 1/4-BPS bound-state mass-defect computed from supersymmetry [Obers, Pioline: hep-th/9809039]

A tale of two stories

1. Can we generalize the story of tree-level bosonic OSFT effective action with gauge-invariant sourcing to open superstring field theory?

Can we actually evaluate the corresponding tree-level on-shell open-closed amplitudes?

[see also Yuji's and Harold's talks on Monday]

2. Can we compute the tree-level quartic effective potential in heterotic Yang-Mills from heterotic SFT without having to know the closed string bosonic quartic vertex?

[Erbin, Maccaferri, JV: 1912.05463]

WZW-like heterotic SFT: NS sector

Expanded action: [Berkovits, Okawa, Zwiebach: hep-th/0406212, hep-th/0409018]

$$\begin{split} S(\Phi) &= \frac{1}{2} \langle \eta_0 \Phi, Q \Phi \rangle + \frac{\kappa}{3!} \langle \eta_0 \Phi, [\Phi, Q \Phi] \rangle + \\ &+ \frac{\kappa^2}{4!} \left(\langle \eta_0 \Phi, [\Phi, [\Phi, Q \Phi]] \rangle + \langle \eta_0 \Phi, [\Phi, Q \Phi, Q \Phi] \rangle \right) + \mathcal{O}(\kappa^3) \end{split}$$

 $\rightarrow \Phi$ in the large Hilbert space, $\#_{\rm gh}(\Phi)=+1,\ \#_{\rm pic}(\Phi)=0$

$$\Phi \in \underbrace{\mathsf{SCFT}_{\mathsf{m}}}_{c_{\mathsf{m}}=15} \otimes \mathsf{CFT}_{bc} \otimes \mathsf{CFT}_{\beta\gamma} \otimes \underbrace{\overline{\mathsf{CFT}}_{\mathsf{m}}}_{\bar{c}_{\mathsf{m}}=26} \otimes \overline{\mathsf{CFT}}_{bc}$$

- \rightarrow level-matching $b_0^-\Phi=L_0^-\Phi=0$
- \rightarrow inner product $\langle \Phi_1, \Phi_2 \rangle \equiv \langle \Phi_1 | c_0^- | \Phi_2 \rangle$
- ightarrow cyclic symmetric bosonic CSFT products $[\Phi_1,\ldots,\Phi_k]$ satisfy L_∞ relations

Tree-level effective WZW-like SFT

$$\begin{split} \underline{\mathsf{Kernel} \text{ of } L_0^+:} \text{ for all } \varphi \in \ker L_0^+ \text{ have} \\ \varphi &= \varphi_A + \varphi_D + \text{unphysical fields} \\ \to \varphi_A \equiv c\gamma^{-1} \mathcal{V}_{\frac{1}{2},1} \bar{c} \text{ with } \mathcal{V}_{\frac{1}{2},1} \equiv \varepsilon_{ik} \mathbb{V}_{\frac{1}{2}}^i \bar{\mathbb{W}}_1^k \implies \text{``usual'' physical fields} \\ \to \varphi_D \equiv D\xi YQ(\partial c - \bar{\partial}\bar{c}) \text{ with } D \in \mathbb{R}, Y \text{ the inverse PCO} \implies \text{ghost dilaton} \\ \underline{\mathsf{Effective action:}} \text{ for physical fields } \varphi_p \equiv \varphi_A + \varphi_D \in \ker L_0^+ \\ S(\varphi_p) &= \frac{1}{2} \langle \eta_0 \varphi_p, Q\varphi_p \rangle + \frac{1}{3!} \langle \eta_0 \varphi_p, [\varphi_p, Q\varphi_p] \rangle + \\ &+ \frac{1}{4!} \Big(\langle \eta_0 \varphi_p, [\varphi_p, [\varphi_p, Q\varphi_p]] \rangle + \langle \eta_0 \Phi, [\varphi_p, Q\varphi_p, Q\varphi_p] \rangle \Big) + \end{split}$$

$$+ \frac{1}{8} \left\langle [\eta_0 \varphi_{\mathsf{P}}, Q\varphi_{\mathsf{P}}], \frac{b_0^+}{L_0^+} \xi_0 \overline{P}_0[\eta_0 \varphi_{\mathsf{P}}, Q\varphi_{\mathsf{P}}] \right\rangle + \mathcal{O}(\varphi_{\mathsf{P}}^5)$$

 \rightarrow we fixed Siegel gauge to integrate out modes outside ker L_0^+

- \rightarrow out-of-Siegel equations trivialized by EOM for φ [see <code>Harold's</code> talk]
- \rightarrow unphysical fields in ker L_0^+ decouple up to quartic order

$\mathcal{N}=2$ localization (1)

Assume global $\mathcal{N} = 2$ worldsheet superconf. symm. in the holomorphic sector. Effective couplings at zero momentum for φ_A only (so that $\eta_0 Q \varphi_A = 0$). <u>R-charge decomposition:</u> $\varphi_A \equiv \varepsilon_{ik} c \gamma^{-1} \mathbb{V}^i_{\pm} \overline{\mathbb{W}}^k_1 \overline{c}$ where

 $\mathbb{V}_{\frac{1}{2}}^{i} = (\mathbb{V}_{\frac{1}{2}}^{i})^{+} + (\mathbb{V}_{\frac{1}{2}}^{i})^{-}$ $\varphi_{A} = \varphi^{+} + \varphi^{-}$

<u>Projector condition</u>: $\mathcal{N} = 2$ global SCA implies

 $P_0[\eta_0\varphi_A, Q\varphi_A] = 0$ (\rightarrow zero eff. cubic coupling)

Quartic eff. coupling: R-charge conservation & c-ghost saturation \implies

$$\tilde{S}_{4}(\varphi_{A}) = -\frac{1}{8} \left\langle \left[\eta_{0}\varphi^{-},\varphi^{-}\right], P_{0}[\varphi^{+},Q\varphi^{+}] \right\rangle - \frac{1}{8} \left\langle \left[\eta_{0}\varphi^{+},\varphi^{+}\right], P_{0}[\varphi^{-},Q\varphi^{-}] \right\rangle - \frac{1}{8} \left\langle \left[\varphi^{-},\varphi^{+}\right], P_{0}[\eta_{0}\varphi^{-},Q\varphi^{+}] \right\rangle - \frac{1}{8} \left\langle \left[\varphi^{+},\varphi^{-}\right], P_{0}[\eta_{0}\varphi^{+},Q\varphi^{-}] \right\rangle$$

 \rightarrow fully localized on the bdy of the moduli space (propagator $\rightarrow \infty$ -long tube) \rightarrow fundamental bosonic quartic vertex drops out

$\mathcal{N} = 2$ localization (2)

Auxiliary fields: bulk OPEs

$$\begin{split} \mathbb{H}_{1,1}^{\pm} &= \lim_{\substack{z \to 0\\ \bar{z} \to 0}} \left[(2\bar{z}) \mathcal{V}_{\frac{1}{2},1}^{\pm}(z,\bar{z}) \mathcal{V}_{\frac{1}{2},1}^{\pm}(-z,-\bar{z}) \right] \\ \mathbb{H}_{0,1} &= \lim_{\substack{z \to 0\\ \bar{z} \to 0}} \left[\pm |2\bar{z}|^2 \mathcal{V}_{\frac{1}{2},1}^{\pm}(z,\bar{z}) \mathcal{V}_{\frac{1}{2},1}^{\mp}(-z,-\bar{z}) \right] \end{split}$$

Leading-order effective potential:

$$\tilde{V}(\varphi_A) = -\frac{1}{4} \left(\langle \mathbb{H}_{1,1}^+ | \mathbb{H}_{1,1}^- \rangle + \langle \mathbb{H}_{0,1} | \mathbb{H}_{0,1} \rangle \right) \tag{(4)}$$

 \rightarrow global minima at $\mathbb{H}_{1,1}^{\pm} = \mathbb{H}_{0,1} = 0 \implies$ moduli space for given background Yang-Mills in flat 10d space:

$$\varphi_A = (g_{\mu\nu} + B_{\mu\nu})\xi c\psi^{\mu} e^{-\phi} \bar{c} \, i\bar{\partial}\bar{X}^{\nu} + A_{\mu i}\xi c\psi^{\mu} e^{-\phi} \bar{c}\bar{J}^i \,,$$

- $\rightarrow \bar{J_i}$ for $i=1,\ldots, \dim \mathfrak{g}$ are the k=1 affine KM currents for given heterotic gauge group G=SO(32) , $E_8\times E_8$
- \rightarrow (**\blacklozenge**) becomes (with *C* the Dynkin index)

$$\tilde{V}(g, B, A) = \frac{1}{16} \frac{1}{C} \operatorname{tr} \left[[A_{\mu}, A_{\nu}] [A^{\mu}, A^{\nu}] \right]$$

 \rightarrow algebraic YM coupling, no dependence on g,B

Conclusions and outlook

Summary:

- \rightarrow we defined a gauge-invariant quantity for the Munich A_∞ open SFT
- \rightarrow we used it to study deformations of open superstring field theory
- \rightarrow we examined efficient methods (localization) of evaluating certain low-order tree-level on-shell Neveu-Schwarz open-closed and heterotic amplitudes at zero momentum

Future directions:

- \rightarrow investigate the fate of the WZW-like structure at low energies
- \rightarrow localization: in the Ramond sector? at higher orders in perturbation theory? at loop level? for non-zero momentum? for ghost-dilaton couplings?
- \rightarrow effect of RR deformations on open superstring backgrounds?
- \rightarrow Ellwood invariant from a limit of open-closed superstring field theory?

Thank you!