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Plan of the talk

I Three Parts

1. Some facts and basic assumptions

2. Illustration by re-derivation of unintegrated vertex operator at first massive level
of open superstring

3. Integrated vertex Operator and Generalization to all massive vertex operators .



Part I

Some Facts and Assumptions



I

I Any string amplitude is of the form(∫ ∏
i

dτi

)
︸ ︷︷ ︸
Moduli integration

〈
V1 · · · (b1, µ1) · · ·

(∫
dz1U1

)
· · ·
〉

I Vi, Ui are the unintegrated and integrated vertex operators respectively.

I bi are b-ghosts inserted by using the µi the Beltrami differential.

I In the pure spinor formulation of superstrings, b have λ̄λ poles that provide
divergences in λ̄λ→ 0.

I Are there other sources for such divergences? Want to avoid them as much as
possible.

I Yes and no.

I It depends on how we choose to express our vertex operators.



II

I The unintegrated vertex operators are found by solving for a ghost number 1 and
confromal weight 0 object V via

QV = 0, V ' V +QΩ

I Q is the BRST-charge and Ω characterize some freedom of choosing V .

I Ω can be used to eliminate the unphysical degrees of freedom (d.o.f).

I By unphysical d.o.f we mean e.g. superfluous d.o.f that can be eliminated by going
to a special frame of reference.

I Is there a procedure that automatically takes care of Ω?

I Yes. Working exclusively with physical d.o.f, from the very beginning, implicitly
assumes Ω has been taken care of.



III

I Consider
DαS = Tα

I Above S and Tα are some superfields and Dα is super-covariant derivative.

I Can we strip off Dα from S?

I Yes, we can

S = −
1

m2
(/γ)αβDβTα

I But, only for m2 6= 0.



Conclusions from slide I

I To avoid λ̄λ poles in V we work the in minimal gauge.

I In the pure spinor formalism no natural way to define integrated vertex operator.

I From the RNS formalism we know U(z) =
∮
dwb(w)V (z) or QU = ∂V where ∂ is

worldsheet derivative.

I First form uses b ghost explicitly so, can potentially give λ̄λ poles.

I Second form involves V and Q neither have such poles. We use this relation to
solve for U .

Conclusion from slide II

We know the physical d.o.f at any mass level from RNS formalism.

Conclusions from slide III

We saw
DαS = Tα =⇒ S = −

1

m2
(/γ)αβDβTα

We shall assume this kind of inversion is always possible. Hence, our analysis is valid
for all massive states.



The Pure Spinor Formalism

I The action in the in 10 d flat spacetime (for left movers) [Berkovits, 2000]

S =
1

2πα′

∫
d2z
[
∂Xm∂̄Xm + pα∂̄θ

α︸ ︷︷ ︸
Matter

+wα∂̄λ
α︸ ︷︷ ︸

Ghost

]

I (Xm, θα) form N = 1 supersapce in 10 d.

I To keep spacetime SUSY manifest, we work with supersymmetic momenta

Πm = ∂Xm +
1

2
(θγm∂θ)

dα = pα −
1

2
∂Xm(γmθ)α −

1

8
(γmθ)α(θγm∂θ)

I λα satisfies the pure spinor constraint

λγmλ = 0
Gauge
=⇒
Trans

δεwα = εm(γmλ)α

I To keep Gauge invariance manifest, instead of wα, we work with

J = (wλ) and Nmn =
1

2
(wγmnλ)



The Pure Spinor Formalism

I The vertex operators come in two varieties unintegrated and integrated vertex V
and U respectively.

I The physical states lie in the cohomology of the BRST charge Q with ghost
number 1 and zero conformal weight

Q ≡
∮
dzλα(z)dα(z) → QV = 0, V ∼ V +QΩ, QU = ∂V

I We shall take the vertex operators in the plane wave basis

V := V̂ eik.X , U := Ûeik.X

I V̂ has conformal weight n and Û has conformal weight n+ 1 as
[eik.X ] = α′k2 = −n at nth excited level of open strings.

Important Identity

I ≡ : Nmnλα : (γm)αβ −
1

2
: Jλα : γnαβ − α

′γnαβ∂λ
α = 0



I. Pure Spinor Formalism - Important OPE’s

I Some OPE’s which we shall require are (V is arbitrary superfield)

dα(z)dβ(w) = −
α′

2(z − w)
γmαβΠm(w) + · · · where · · · are non-singular pieces of OPE.

dα(z)V (w) =
α′

2(z − w)
Dα(w) + · · · where, Dα ≡

∂

∂θα
+

1

2
γmαβθ

α∂m



Part II

Unintegrated Vertex Operator at m2 = 1
α′



Construction of Vertex Operators

I States are zero weight conformal primary operators lying in the BRST cohomology

I Goal: Find an algorithm to compute conformal primary, zero weight operators
appearing at 1st excited level of superstring.

I In other words: Solve for [V ] = 0 with ghost number 1 and [U ] = 1 with ghost
number 0 satisfying

QV = 0, V ∼ V +QΩ, QU = ∂V

constructed out of

Field/Operator Conformal Weight Ghost Number

Πm 1 0

dα 1 0

∂θα 1 0

Nmn 1 0

J 1 0

λα 0 1



States at the first excited level of open superstring

I The first unintegrated massive vertex operator is known [Berkovits-Chandia,2002].

I We rederive it is to illustrate our methodology which can be generalized to
construct any vertex operator [S. Chakrabarti thesis].

I At this level we have states of mass2 = 1
α′ and they form a supermultiplet with

128 bosonic and 128 ferimonic d.o.f.

I The total 128 bosonic d.o.f are captured by a 2nd rank symmetric-traceless tensor
gmn and a three form field bmnp

I gmn and bmnp satisfy

gmn = gnm, ηmngmn = 0, ∂mgmn = 0 =⇒ 44

bmnp = −bnmp = −bpnm = −bmpn = 0, ∂mbmnp = 0 =⇒ 84

I The fermionic d.o.f are captured by a tensor-spinor field ψmα

∂mψmα = 0, γmαβψmβ = 0 =⇒ 128



Construction of Unintegrated Vertex Operator at First Massive level

I Recall our vertex operators are of the form

V = V̂ eik.X

I In rest of the talk we drop eik.X and also for simplicity of notation drop the ˆ in V̂

I At first excited level we need to solve for

QV = 0 with [V ] = 1, subject to V ∼ V +QΩ

I The most general ghost number 1 and conformal weight zero operator is

V = ∂λaAa(X, θ) + λα∂θαBαβ(X, θ) + dβλ
αCβα(X, θ)

+ ΠmλαHma(X, θ) + JλaEα(X, θ) +NmnλαFαmn(X, θ)

I The superfields Aα, Bαβ , · · · contain the spacetime fields.



I Ω can be used to eliminate all the gauge degrees of freedom and restrict the form
of superfields in V e.g.

Bαβ = γmnpαβ Bmnp i.e. 256→ 120

I Berkovits-Chandia showed that if one solves QV = 0 subject to V ' V +QΩ,
one finds the same states described earlier.

I We assume that we already know the spectrum at a given mass level.

I Our goal is not to show that pure spinor has same spectrum as that of NSR or GS
formalisms.

I Our goal is find a (simple?) algorithm that gives covariant expressions for the
vertex operators.

I Our strategy is to work directly with the physical superfields.

I In rest of the talk we shall see how do we can do this.



I Its important to note that if we have made complete use of Ω we shall be left with
just physical fields.

I Introduce physical superfields corresponding to each physical field such that1

Gmn

∣∣∣
θ=0

= gmn, Bmnp

∣∣∣
θ=0

= bmnp, Ψnα

∣∣∣
θ=0

= ψnα

I We further demand that other conditions satisfied by physical fields are also
satisfied by the corresponding physical superfields. For example for gmn

gmn = gnm, ηmngmn = 0, ∂mgmn = 0

=⇒ Gmn = Gnm, ηmnGmn = 0, ∂mGmn = 0

I For ψmα

∂mψmα = 0, γmαβψmβ = 0 =⇒ ∂mΨmα = 0, γmαβΨmβ = 0

I For the 3-form field bmnp

∂mbmnp = 0 =⇒ ∂mBmnp = 0

1Apparently Rhenomic formulation of supersymmetric theories uses these ideas as pointed out to us by Ashoke
few months back. We thank him for bringing this to notice.



I Next we expand all the unfixed superfields appearing in the unintegrated vertex
operator as linear combination of the physical superfields Gmn, Bmnp,Ψmα

I Lets take an example

Fαmn = a1 k[mΨn]α + a2 k
s
(
γs[mΨn]

)
α

I To see if we have not missed anything we can do a rest frame analysis

Fαmn =

{
Fα0i =⇒ 16 ⊗ 9 = 16⊕ 128

Fαij =⇒ 16 ⊗ 36 = 16⊕ 128⊕ 432

Hence, Fαmn is reducible to the following irreps.

16⊕ 128 + 16⊕ 128⊕ 432

I Thus, we have two physically relevant irreps 128 and we keep them.

I We throw away the unphysical d.o.f.



I We repeat this procedure for Aα, Bαβ , C
β
α, Eα and Hmα as well.

I Its absolutely trivial to see that Aα and Eα must vanish. Berkovits-Chandia find
same conclusion after gauge fixing.

I We denote by ai the coefficients that relate superfields in V to Gmn, Bmnp,Ψmα.

I QV produces terms that contain the supercovariant derivatives

DαHmα, DαBβσ , DαC
β
σ , DαFβmn

I But, all such terms are expressible in terms of the supercovariant derivatives of
the physical superfields

DαGmn, DαBmnp and DαΨmβ

e.g.

DαFβmn = a1 k[mDαΨn]β + a2 k
s
(
γs[m

) σ

β
DαΨn]σ

I How do we determine DαGmn, DαBmnp and DαΨmβ?



I Determination of the supercovariant derivative of physical superfields is our next
major step.

I We employ the same strategy to write these in terms of physical superfields e.g.

DαΨmβ = b1γ
s
αβGsm + γstuαβ

(
b2k[sBtu]m + b3kmBstu

)
+ b4(γ stuv

m )αβksBtuv

I Similarly for DαGmn and DαBmnp.

I This introduces a fresh set of undermined constants {bi}.

I Once again the e.o.m obtained by QV = 0 will determine these.

I There is one further complication that introduces a third set of undetermined
coefficients we collectively denote by {ci}.



I Not all of the operators in QV are independent e.g.

Inβ ≡ N
mnλα(γm)αβ −

1

2
Jλαγnαβ − α

′γnαβ∂λ
α = 0

can be used to express some operators in terms of others.

I Notice that Inβ is carries ghost number 1 and conformal weight 1.

I Inβ generates constraints at various ghost number and conformal weights e.g.

Nstλαλβγsβγ −
1

2
Jλαλβγtβγ −

5α′

4
λα∂λβγtβγ −

α′

4
λγ∂λβ(γ)αδγ

s
βγ = 0

is at ghost number 2 and conformal weight 1.

I This can be written as

K ≡ −Nstλαλβ(γvwxyγ[s)αβK
t]
vwxy + Jλαλβ(γvwxyγs)αβK

s
vwxy

+α′λα∂λβ
[
2γvwxysαβ ηstK

t
vwxy + 16γwxyαβ Ks

wxys

]
= 0

Relevant for this talk.



I We can re-express the Lagrange multiplier superfield in terms of the phsysical
superfields

Kmnpqr = c1 kmk[nBpqr] + c2 ηm[nBpqr]

I Now we have expressed all unknown superfields and differential relations in terms
of the physical superfield.

I Now we solve for

QV +K = 0

I We can now freely set the coefficients of each of the basis operators to zero
because of the Lagrange multipliers.

I Now we get a set of algebraic equation involving the {ai, bi, ci}.

I Solving these linear set of equations determines all the superfields appearing in
the vertex operators, the Lagrange multipliers and the Differential relations in
terms of the physical superfields.



Result - Unintegrated Vertex

I We find that the unintegrated vertex operator is writable as

V = : ∂θβλαBαβ : + : dβλ
αCβα : + : ΠmλαHmα : + : NmnλαFαmn :

where,

Bαβ = (γmnp)αβBmnp ; Cβα = (γmnpq)βαCmnpq ; Hmα = −72Ψmα

Cmnpq =
1

2
∂[mBnpq] ; Fαmn =

1

8

(
7∂[mHn]α + ∂q(γq[m) β

α Hn]β

)
I This agrees with Berkovits-Chandia.

I This complete the general methodology and is applicable for construction of the
integrated vertex operators.

I We point out some important new features that arise.



Part III

Integrated Vertex Operator and Generalization



Construction of the Integrated Vertex Operator

I Having obtained V , we can determine the corresponding integrated vertex
operator by

QU − ∂V = 0 ghost no. 1 and cnf. weight 2.

I U is the only unknown in the above equation and we can employ the method we
used to solve for V .

I Most of the subtleties appear in three kinds of identities at this level.

1. Follows from Inβ by taking world-sheet partial derivatives and composition with other
weight one operators.

2. New kinds of constraints true by reordering of operators appear e.g.

dαdβ + dβdα = −
α′

2
∂Πmγ

m
αβ

3. It happens that there are some coefficients that are not fixed by above procedure. This
only means that the corresponding operator vanishes identically e.g.
NmnNpqηmpGnq = 0.

I After taking care of all these we find



Result

U = : ΠmΠnFmn : + : ΠmdαF
α

m : + : Πm∂θαGmα : + : ΠmNpqFmpq :

+ : dαdβK
αβ : + : dα∂θ

βFαβ : + : dαN
mnGαmn : + : ∂θα∂θβHαβ :

+ : ∂θαNmnHmnα : + : NmnNpqGmnpq :

where,

Fmn = −
18

α′Gmn , F
α
m =

288

α′ (γ
r
)
αβ
∂rΨmβ , Gmα = −

432

α′ Ψmα

Fmpq =
12

(α′)2
Bmpq −

36

α′ ∂[pGq]m , K
αβ

= −
1

(α′)2
γ
αβ
mnpB

mnp

F
α
β = −

4

α′ (γ
mnpq

)
α
β∂mBnpq , G

α
mn =

48

(α′)2
γ
ασ
[mΨn]σ +

192

α′ γ
ασ
r ∂

r
∂[mΨn]σ

Hαβ =
2

α′ γ
mnp
αβ Bmnp , Hmnα = −

576

α′ ∂[mΨn]α −
144

α′ ∂
q
(γq[m)

σ
α Ψn]σ

Gmnpq =
4

(α′)2
∂[mBn]pq +

4

(α′)2
∂[pBq]mn −

12

α′ ∂[p∂[mGn]q]

[S.P.K, S. Chakrabarti and M. Verma - 2018 ]



Generalization to all vertex operators

I We first construct the unintegrated vertex operator and then using this solve for
the corresponding integrated operator.

I Steps for Unintegrated vertex operator construction

STEP I Identify the fields that capture particle content at the given mass level and
introduce superfields whose θ independent component are these field e.g. for a fA

FA(Xm, θ) := fA(Xm) + fAα1
(Xm)θα1 + · · ·+ fAα1···α16

θα1 · · · θα16

STEP II Constrain the superfields to satisfy all the constraints that the
cooresponding fields satisfy e.g. if fA = ψsα

∂mψmα = 0
impose

=⇒ ∂mΨmα = 0

γmαβψmβ = 0
impose

=⇒ γmαβΨmβ = 0

STEP III Ansatz for unintegrated vertex operator:

V =
∑
A

BAS
A

where, BA are the basis operators at conformal weight n and ghost number 1.



STEP IV a Find out all of the constraints at the required mass level and ghost number
by taking OPE’s with the original constraint identity

I := : Nmnλα : (γm)αβ −
1

2
: Jλα : γnαβ − α

′γnαβ∂λ
α = 0

STEP IV b Find out all the constraints that are true by trivial reordering of operators eg.

dαdβ + dβdα = −
α′

2
∂Πmγ

m
αβ

STEP IV c Drop terms that are identically zero that appear in the equation eg.

: NmnNpqηnpGmq := 0

STEP V Introduce the Lagrange multiplier superfields KA. Use group decomposition
to write the superfields SA appearing in V and them as general linear combination of
physical superfields introduced in STEP I

SA =
∑
B

cABFB , KA =
∑
B

dABFB



II. Construction of the Vertex Operators

STEP VI Compute QV . This will give rise to terms of the form

DαSA

where, Dα is the supercovariant derivative. By making use of group theory
decomposition write

DαSA =
∑
B

gαABFB

STEP VII Solve QV = 0 respecting the constraints by method of elimination or
Lagrange multipliers. This determines cA, dA and gcAB and we have constructed our
unintegrated vertex operator.

I Now we are ready for the construction of the integrated vertex operator.

I We need to follow the same steps but this time we need to solve for

QU = ∂V

I The solution to the above equation gives the integrated vertex operator.



Applications

I As a by product of this procedure we are able to get relationship between the
physical superfields that can be easily used to perform θ expansion and hence do
amplitude computations [Subhroneel’s talk].

I We also used the integrated vertex operator to compute the mass renormalization
at one loop for stable non-BPS the massive states at first excited level in Heterotic
strings [to appear - in collaboration with Mritunjay].

I The above result matches with the one obtained earlier using RNS formalism
[Ashoke]

I Can use the integrated vertex operator to perform computations at tree level and
one loop level to see if structural relations/identities found in the case of massless
case hold true (O. Schlotterer’s Talk).



THANK YOU


