Note added: In my talk on 10 June, the information on our past and
forthcoming papers was not presented. They are listed on the last page
of this pdf file. Accordingly, | could not acknowledge one of my essential
collaborators, Toshifumi Noumi (Kobe University).

| apologize that these important information was missing in my talk.
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What is K ? : line integral of T(z) in the sliver coordinate

2
X \i \i sliver coordinate

z = % arctan &

Why interesting /important?



Whatis K :

X

a cone of infinite height

Why interesting /important?



Because... 1/K may be related to

e Possible underlying geometry of (Witten’s) Open SFT
e New Expression for Amplitudes

Open SFT — CS theory



Outline

I. Overview (History)

II. S-matrix in tree level

I quit to take up this today.



Emergence of (1/K)

1. Classical solutions formally being pure-gauge
(Okawa 2006; Ellwood 2009; Erler-Maccaferri 2012 ...)

2. Murata-Schnabl solution (Murata-Schnabl 2011);
Winding number (Hata-Kojita 2012, ...): Geometric interpretation

3. Tree level S-matrix (2019);
Unconventional propagator (2020)



(1) Classical solutions are pure gauge (formally)

If we use 1/K, all the classical solutions can be written as
v=u'Qu

1/K appears in U or U~ unless ¥ is a pure-gauge solution.

In other words, 1/K is regarded as a singular object. This singularity
symbolizes the non-triviality of V.

Q. Why is 1/K considered to be singular ?

Because 1/K cannot be expressed as a superposition of wedge states
e** (0 < x < 00). Usually f(K) is defined by using it.
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KBc algebra

K,B] =0, {B,c}=1,

OB =K, QOc=cKc



Relation with correlation functions on semi-infinite cylinders: an example
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Note that: many of expressions with 1/K in this talk are formal.

(For example, "formally written as pure gauge" does not mean pure

gauge. )

I hope that after a good understanding, we will be able to distinguish
between correct and inappropriate expressions with 1/K. That is also
the goal I would like to achieve.



1/K also appears in (formal) homotopy states, which represents
(non-)emptiness of the physical excitations around V¥

"QuAy = 1"
(Qud=Qd+V¥xd+(—)pxV)

e if such a Ay exists, there are no open string excitation around ¥
o if Ay exists only formally, there are phisical open string excitation

around V¥

Example: for ¥ =0,
"Q_ — ‘]H

ANl



(2) Murata-Schnabl solution

Ansatz for classical solution for n-multiple of the initial D-brane. For
n=2,
1 K*B
Yiouble = .
doubl K C K _ T ¢

They are almost solution but not rigorously realized so far:

e desirable energy and the Ellwood invariant are obtained by using

some regularization
e EOM is broken. (difficulty: the double limit from 1/Ks)
e n >2? (ct. Hata 2019, Kojita 2019)



(3-1) A new formula for S matrix

On another note..

On the basis of gauge invariance etc., we (I and H.Matsunaga) find a
formula which expresses S-matrix around ¥ by using ¥, V.

I\(J[,N) — I\(J[,N) (01 y sosy ON;WT)

Typically, this expresses S-matrix by using 1/K.

In the previous paper, we showed the calculation of N =4 and
proved that it agrees with the S matrix. (However, there was no
proof for general N.) In this calculation, we seem to be dealing with
1/K well.



(3-2) Unconventional propagator

Later on, we proposed a gauge-fixing condition for a Feynman rule
with a very "unconventional” propagator Pn1, which utilizes 1/K.

This Pm is derived by using Homological Perturbation Lemma,
though a part of assumption (ker Pp = Hpnys) is not justified. (so its
theoretical ground is not complete at present)

From this Feynman rule, we obtain an expression for S-matrices with
B/K. Apparently, it looks different from I\(PN) for N > 5, though the
two are very similar. (Only the weight for each term is different. )



Geometry

Winding #
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new formula

Geometr
y for loop
‘ expectation/ conjecture/ guess, ...
Winding #
equivalent ?
MS solution

lacking proof for general N not complete



Geometry

Winding #

MS solution

new formula
for loop

today’s main subject




new formula

Geometry e

Winding #

. MS solution ".
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I don’t talk much about this today,
just few comments



2.1. S-matrix from clsscl solutions

We had obtained the following formula for S-matrix from gauge
invariance etc.:

N
IEPN): JH A+ Wy)O
j=1

where
Wy = QuAT —1 (— —e"),
« B

A=AT1—Ay (—e E)’

Oj: external states satistying QywO; = 0,

/
Z = symmetrization over {j}



Example: for N =5,

5

Iy) = -3 (JW\yO1W\y02W\y(93AO4AO5
+ JW\{/O]W\POZ/A\OgW\yO;;AO};
+ ..

+ JW\yOZWwO1W\y03AO4AO5
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We call these terms using Wy, A, and Oj; "urchins”

Jny(% AOr Wy O3 Wy O4AOs



We proved

L(PN ) — S-matrix

by relating L(I,N) with the Feynman rules in the dressed 5, gauge.

The dressed By gauge is... (We will review from the next slide)
e a 'singular” gauge condition in the sense that the propagator does
not generate propagation of the open string midpoint.

e However, we can use it for the tree-level calculation.

e For a proper treatment of loop amplitudes, we need to consider it

as a limit of a class of regular gauges, as discussed in
Kiermaier-Sen-Zwiebach [arXiv:0712.0627]



Reminder: the dressed 5, gauge

Reference: Appendix C of Erler-Schnabl [arXiv: 0906.0979].
The gauge fixing condition is

Brg¥ = 0.

Here Br g is defined by

Brge= %F(K)Bg F(K)~" e G(K)'] G(K)

with B, = Bo — Bj. Let us also introduce

Lr.a e = 5FK)LG [FK) " 0 G(K) "] G(K)

with £5 = Lo — L.



Notably, B, and £, are derivatives (under star products) and
mutually commuting. Their action on {K, B, c} reads

| |

ngK:B, zEO_K:K,
|- T _
ZBOB:O> zﬁoB:B,
1 1
ngc:O, Zﬁgc:—c.

2By is trivial in the matter sector and 3£, simply counts the scaling
dimension of the operator inserted to the wedge state of zero width.

ForF=G =e?,
Brc = Bo, Lrc = Lo

and this gauge condition reduces to the Schnabl gauge.



Propagator

We will use the following “simplified" propagator

Br G >
Pp = — = J dse_S“’GBF)G .
Lrc Jo

Actually, this P is incomplete, because it violates the BPZ property
(P* # P). The genuine propagator is given by

PhL =P5QPp.

Nevertheless, we cen use the simplified propagator to calculate
on-shell, tree-level amplitudes,

AN(®PT1y ey ON) = AN(PTy oosy ON)

P[/) —Pp*

(We confirmed this proposition.)



Physical states

Let us assume F = G. The physical states in this gauge is
@i = F(K)OiF(K)

where O; = c¢Vj is an identity-based state at the ghost number 1,
satistying QO; = 0.

In terms of Wy, A, Oj,

Pi = —WyOiyv/—Wy



Notation for Feynman rules

Feynman diagrams are expressed by using the following three maps:

i. star product m: HQ®H — H

m(di, dj) = i * bj,

ii. propagator Pp,
iii. inner product: H @ H — C

I(cbi,cb)-)zjcbiwj-

We also define Y(¢i, ¢;) = Ppm(di, ¢;)] for notational simplicity.

A

¢1 b2



Now, the formula to convert Feynman graphs and urchins is given
by
Tn((m y ooey (pn) =V —WO1 A...On_1 AOn\/ —W.

where T, (@1, ..., P ) is recursively defined by

Ti(@1) = @1

n—I1
Ta(@1y ey @n) = > Y(Ti(@1, 0y @1), Tnei (@i 1y ey @)
i=1

+ }\ =V WyO1AO, A3/ Wy

©1 ©2¢93  ©1 Q2 P3

Forn = 3,



Derivation of this formula forn = 2,

Br r
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where H(K) = F(K)“. This equals v/—Wy O, A1O1v/—Wh.



Closer look: To obtain the Ay term, we need to use the regularized

propagator. There are several options. Let us take..

_ AN /A~+100 .
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Also in the last equality we used

A+1ioc0 .
J dse'Se *H'(e °K)
A

Pe_A

= dxx **H’(xK)
Je—(A+ioco)
A A

] © © . ]
— x‘e—H(xK)] + ieJ dxx~ 7t —H(xK)
e—(A+ioco) K

— %H(e_/\K) + Of(e),

—e/

where we used A€ = e ~ | and assumed that the integral in the

third line does not give any 1/€ singularity.



Note: In our previous work, we observed that Ay (= B/K) works as

"a boundary term" which removes world-sheet UV divergence (c.f.
Sen [arXiv:1902.00263 [hep-th]]).

Now, we understand that Ay corresponds to a regularization term
for Pp in the dressed By gauge.

We are halfway down the road to the proof; by a combinatorial
argument, we can confirm "I\(PN) = S-matrix in tree level".

(But I would like to omit this part because it is too technical.)



Note: from relation to Feynman diagrams, we find that the urchins
satisty the following relation, which is very important in our proof:

y—1 x—1
Ly —il=) [yj,x—
1 j=1

1=

Here [l, m, n] is the partial sum of the urchins, given by

l+1 l+m-+1

> j (AO)T Wy O (AO) T WyOrpm (AON T WaOtimin

where
(AO)S — AOPAOP_|_] A0p+2...AOq .

This satisfies
L, m,n] = [m,n,1]



Example of our notation [l, m,n]

— Z JW\inAOJ‘W\yOkW\POIAOm — [2> 1>2]
(i)j)k)l’)m)



2.2. "Unconventional" propagator

There is another way to obtain a similar expression for the S-matrix;
a Feynman rule with what we call "the tachyon vacuum’s At gauge"
and the following "propagator,” Py *!

1 |

I was sceptical when my collaborator proposed this based on HPL,
but..

This Feynman rule gives a correct result at least for tree S-matrices.
The result is sum of urchins, but their weight is different from L(PN ;
By a combinatorial discussion, we proved agreement with L(PN !

*1 To be precise, we used the expression At /(1 + Wy ) instead of Av.



Example: A Feynman graph for a 5 point amplitude

External states: ¢; = Wy O;v/Wy

5 Wy Wy Wy Wy

1 AlA Wl A
>j—< ”
A
2 1l Wy Wy

A | Wy

:% ( J OTWOL,AOAOWOW + J OTWO, WO AOLWOsA

+ J O1W(92A03WO4W05A)



A notable feature of this Feynman rule is that most of the Feynman
diagrams vanish except for those of the following two types:

Nl
ol

I-type: After removing all the external lines, the resulting subgraph
is "I-shape”

Y-type: After removing all the external lines, the resulting subgraph
is "Y-shape"



The contribution from the Feynman diagrams of I-type is

N—3 N—4
()X (w2

p=0

while the contribution from the Feynman diagrams of Y-type is

1 1 N—3

p+q+r=N—-6
where

L o ([ [ )

Pi1 Oq1 01’1 =0 q1

We can prove that the sum of these expressions equals L(yN)



Concluding remarks

new formula
for loop

Geometry

Winding #
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Main references for this talk:

e 1908.09784 [hep-th], w. H. Matsunaga (Charles Univ., Czech A.S.)

... presentation of IEPN)

e 2003.05021 [hep-th], w. H. Matsunaga:
... presentation of the "unconventional propagator"

e to appear soon, w. H. Matsunaga, and T. Noumi (Kobe Univ.):
... relation to Feynman diagrams in the dressed By gauge;
combinatorial proof of

_ "Iny) — S-matrix in tree leel,"

— "S-matrix from the unconventional propagator = I\(l,N o



