Note added: In my talk on 10 June, the information on our past and forthcoming papers was not presented. They are listed on the last page of this pdf file. Accordingly, I could not acknowledge one of my essential collaborators, Toshifumi Noumi (Kobe University).
I apologize that these important information was missing in my talk.

1/K in Open String Field Theory

Toru Masuda
CEICO, Czech Academy of Sciences, Prague

Workshop on Fundamental Aspects of String Theory ICTP-SAIFR/IFT-UNESP, 10th June 2020, Video Conference.

1/K in Witten's Open String Field Theory

Toru Masuda
CEICO, Czech Academy of Sciences, Prague

Workshop on Fundamental Aspects of String Theory ICTP-SAIFR/IFT-UNESP, 10th June 2020, Video Conference.

What is K ? : line integral of $\mathrm{T}(z)$ in the sliver coordinate

z: sliver coordinate
$z=\frac{2}{\pi} \arctan \xi$

$$
\mathrm{K}=\int_{+\mathrm{i} \infty}^{-\mathrm{i} \infty} \mathrm{~T}(z) \frac{\mathrm{d} z}{2 \pi \mathfrak{i}}
$$

Why interesting/important?

What is K :

Why interesting/important?

Because... 1/K may be related to

- Possible underlying geometry of (Witten's) Open SFT
- New Expression for Amplitudes

Outline

I. Overview (History)
 II. S-matrix in tree level
 HH. 1/K and classical solution
 I quit to take up this today.

Emergence of $(1 / K)$

1. Classical solutions formally being pure-gauge (Okawa 2006; Ellwood 2009; Erler-Maccaferri 2012 ...)
2. Murata-Schnabl solution (Murata-Schnabl 2011); Winding number (Hata-Kojita 2012, ...): Geometric interpretation
3. Tree level S-matrix (2019);

Unconventional propagator (2020)

(1) Classical solutions are pure gauge (formally)

If we use $1 / K$, all the classical solutions can be written as

$$
\Psi=\mathrm{U}^{-1} \mathrm{QU}
$$

$1 / \mathrm{K}$ appears in U or U^{-1} unless Ψ is a pure-gauge solution.

In other words, $1 / \mathrm{K}$ is regarded as a singular object. This singularity symbolizes the non-triviality of Ψ.
Q. Why is $1 / K$ considered to be singular ?

Because $1 / K$ cannot be expressed as a superposition of wedge states $e^{x K}(0<x<\infty)$. Usually $f(K)$ is defined by using it.

- K, B, c

- KBc algebra
$[K, B]=0, \quad\{B, c\}=1$, $Q B=K, \quad Q c=c K c$

Relation with correlation functions on semi-infinite cylinders: an example

$$
\begin{aligned}
& \int c B e^{x_{1} K} c e^{x_{2} K} c e^{x_{3} K} c e^{x_{4} K}=\int \frac{d z}{2 \pi i}\left\langle c(0) b(z) c\left(x_{1}\right) c\left(x_{1}+x_{2}\right) c\left(x_{1}+x_{2}+x_{3}\right)\right\rangle_{C_{x_{1}+x_{2}+x_{3}+x_{4}}}
\end{aligned}
$$

Note that: many of expressions with $1 / K$ in this talk are formal.
(For example, "formally written as pure gauge" does not mean pure gauge.)

I hope that after a good understanding, we will be able to distinguish between correct and inappropriate expressions with $1 / \mathrm{K}$. That is also the goal I would like to achieve.

1/K also appears in (formal) homotopy states, which represents (non-)emptiness of the physical excitations around Ψ

$$
\begin{gathered}
" \mathrm{Q}_{\Psi} \mathrm{A}_{\Psi}=1 " \\
\left(\mathrm{Q}_{\Psi} \phi=\mathrm{Q} \phi+\Psi * \phi+(-)^{|\phi|} \phi * \Psi\right)
\end{gathered}
$$

- if such a A_{Ψ} exists, there are no open string excitation around Ψ
- if A_{Ψ} exists only formally, there are phisical open string excitation around Ψ

Example: for $\Psi=0$,

$$
" Q \frac{B}{K}=1 "
$$

(2) Murata-Schnabl solution

Ansatz for classical solution for n-multiple of the initial D-brane. For $n=2$,

$$
\Psi_{\text {double }}=\frac{1}{K} c \frac{\mathrm{~K}^{2} \mathrm{~B}}{\mathrm{~K}-1} \mathrm{c}
$$

They are almost solution but not rigorously realized so far:

- desirable energy and the Ellwood invariant are obtained by using some regularization
- EOM is broken. (difficulty: the double limit from $1 / \mathrm{Ks}$)
- $n>2$? (c.f. Hata 2019, Kojita 2019)

(3-1) A new formula for S matrix

On another note..

On the basis of gauge invariance etc., we (I and H.Matsunaga) find a formula which expresses S-matrix around Ψ by using Ψ, Ψ_{T}.

$$
\mathrm{I}_{\Psi}^{(\mathrm{N})} \equiv \mathrm{I}_{\Psi}^{(\mathrm{N})}\left(\mathcal{O}_{1}, \ldots, \mathcal{O}_{\mathrm{N}} ; \Psi_{\mathrm{T}}\right)
$$

Typically, this expresses S-matrix by using 1/K.

In the previous paper, we showed the calculation of $N=4$ and proved that it agrees with the S matrix. (However, there was no proof for general N.) In this calculation, we seem to be dealing with 1/K well.

(3-2) Unconventional propagator

Later on, we proposed a gauge-fixing condition for a Feynman rule with a very "unconventional" propagator \mathcal{P}_{M}, which utilizes $1 / \mathrm{K}$.

This \mathcal{P}_{M} is derived by using Homological Perturbation Lemma, though a part of assumption ($\operatorname{ker} \mathcal{P}_{M}=\mathcal{H}_{\text {phys }}$) is not justified. (so its theoretical ground is not complete at present)

From this Feynman rule, we obtain an expression for S-matrices with B/K. Apparently, it looks different from $I_{\Psi}^{(N)}$ for $N \geq 5$, though the two are very similar. (Only the weight for each term is different.)

Geometry

Winding \#

MS solution

2.1. S-matrix from clsscl solutions

We had obtained the following formula for S-matrix from gauge invariance etc.:

$$
I_{\Psi}^{(N)}=-\frac{N}{N-3} \sum^{\prime} \int \prod_{j=1}^{N}\left(A+W_{\Psi}\right) \mathcal{O}_{j}
$$

where

$$
\begin{gathered}
W_{\Psi}=Q_{\Psi} A_{T}-1 \quad\left(\rightarrow-e^{K}\right) \\
A=A_{T}-A_{\Psi} \quad\left(\rightarrow e^{K} \frac{B}{K}\right) \\
\mathcal{O}_{j}: \text { external states satisfying } Q_{\Psi} O_{j}=0
\end{gathered}
$$

$$
\Sigma^{\prime}=\text { symmetrization over }\{j\}
$$

Example: for $\mathrm{N}=5$,

$$
\begin{aligned}
\mathrm{I}_{\Psi}^{(5)}=-\frac{5}{2}(& \int W_{\Psi} \mathcal{O}_{1} W_{\Psi} \mathcal{O}_{2} W_{\Psi} \mathcal{O}_{3} A \mathcal{O}_{4} A \mathcal{O}_{5} \\
& +\int W_{\Psi} \mathcal{O}_{1} W_{\Psi} \mathcal{O}_{2} A \mathcal{O}_{3} W_{\Psi} \mathcal{O}_{4} A \mathcal{O}_{5} \\
& +\ldots \\
& +\int W_{\Psi} \mathcal{O}_{2} W_{\Psi} \mathcal{O}_{1} W_{\Psi} \mathcal{O}_{3} A \mathcal{O}_{4} A \mathcal{O}_{5} \\
& +\ldots)
\end{aligned}
$$

We call these terms using W_{Ψ}, \mathcal{A}, and O_{j} "urchins"

$$
\int W_{\Psi} \mathcal{O}_{1} A \mathcal{O}_{2} W_{\Psi} \mathcal{O}_{3} W_{\Psi} \mathcal{O}_{4} A \mathcal{O}_{5}
$$

We proved

$$
\mathrm{I}_{\Psi}^{(\mathrm{N})}=\text { S-matrix }
$$

by relating $\mathrm{I}_{\Psi}^{(\mathrm{N})}$ with the Feynman rules in the dressed \mathcal{B}_{0} gauge.

The dressed B_{0} gauge is... (We will review from the next slide)

- a "singular" gauge condition in the sense that the propagator does not generate propagation of the open string midpoint.
- However, we can use it for the tree-level calculation.
- For a proper treatment of loop amplitudes, we need to consider it as a limit of a class of regular gauges, as discussed in Kiermaier-Sen-Zwiebach [arXiv:0712.0627]

Reminder: the dressed \mathcal{B}_{0} gauge

Reference: Appendix C of Erler-Schnabl [arXiv: 0906.0979]. The gauge fixing condition is

$$
\mathcal{B}_{\mathrm{F}, \mathrm{G}} \Psi=0 .
$$

Here $\mathcal{B}_{F, G}$ is defined by

$$
\mathcal{B}_{\mathrm{F}, \mathrm{G}} \bullet=\frac{1}{2} \mathrm{~F}(\mathrm{~K}) \mathcal{B}_{0}^{-}\left[\mathrm{F}(\mathrm{~K})^{-1} \bullet \mathrm{G}(\mathrm{~K})^{-1}\right] \mathrm{G}(\mathrm{~K})
$$

with $\mathcal{B}_{0}^{-}=\mathcal{B}_{0}-\mathcal{B}_{0}^{\star}$. Let us also introduce

$$
\mathcal{L}_{\mathrm{F}, \mathrm{G}} \bullet=\frac{1}{2} \mathrm{~F}(\mathrm{~K}) \mathcal{L}_{\mathrm{O}}^{-}\left[\mathrm{F}(\mathrm{~K})^{-1} \bullet \mathrm{G}(\mathrm{~K})^{-1}\right] \mathrm{G}(\mathrm{~K})
$$

with $\mathcal{L}_{0}^{-}=\mathcal{L}_{0}-\mathcal{L}_{0}^{\star}$.

Notably, \mathcal{B}_{0}^{-}and \mathcal{L}_{0}^{-}are derivatives (under star products) and mutually commuting. Their action on $\{K, B, c\}$ reads

$$
\begin{array}{ll}
\frac{1}{2} \mathcal{B}_{0}^{-} \mathrm{K}=\mathrm{B}, & \frac{1}{2} \mathcal{L}_{0}^{-} \mathrm{K}=\mathrm{K} \\
\frac{1}{2} \mathcal{B}_{0}^{-} \mathrm{B}=0, & \frac{1}{2} \mathcal{L}_{0}^{-} \mathrm{B}=\mathrm{B} \\
\frac{1}{2} \mathcal{B}_{0}^{-} \mathrm{c}=0, & \frac{1}{2} \mathcal{L}_{0}^{-} \mathrm{c}=-\mathrm{c}
\end{array}
$$

$\frac{1}{2} \mathcal{B}_{0}^{-}$is trivial in the matter sector and $\frac{1}{2} \mathcal{L}_{0}^{-}$simply counts the scaling dimension of the operator inserted to the wedge state of zero width.

$$
\text { For } F=G=e^{\frac{K}{2}}, \quad \mathcal{B}_{F, G}=\mathcal{B}_{0}, \quad \mathcal{L}_{F, G}=\mathcal{L}_{0}
$$

and this gauge condition reduces to the Schnabl gauge.

Propagator

We will use the following "simplified" propagator

$$
\mathcal{P}_{\mathrm{D}} \equiv \frac{\mathcal{B}_{\mathrm{F}, \mathrm{G}}}{\mathcal{L}_{\mathrm{F}, \mathrm{G}}}=\int_{0}^{\infty} \mathrm{ds} \mathrm{e}^{-s \mathcal{L}_{\mathrm{F}, \mathrm{G}}} \mathcal{B}_{\mathrm{F}, \mathrm{G}}
$$

Actually, this \mathcal{P} is incomplete, because it violates the BPZ property $\left(\mathcal{P}^{\star} \neq \mathcal{P}\right)$. The genuine propagator is given by

$$
\mathcal{P}_{\mathrm{D}}^{\prime}=\mathcal{P}_{\mathrm{D}}^{\star} \mathrm{Q} \mathcal{P}_{\mathrm{D}} .
$$

Nevertheless, we cen use the simplified propagator to calculate on-shell, tree-level amplitudes,

$$
A_{N}\left(\varphi_{1}, \ldots, \varphi_{\mathrm{N}}\right)=\left.A_{\mathrm{N}}\left(\varphi_{1}, \ldots, \varphi_{\mathrm{N}}\right)\right|_{\mathcal{P}_{\mathrm{D}}^{\prime} \rightarrow \mathcal{P}_{\mathrm{D}}}
$$

(We confirmed this proposition.)

Physical states

Let us assume $F=G$. The physical states in this gauge is

$$
\varphi_{i}=\mathrm{F}(\mathrm{~K}) \mathcal{O}_{i} \mathrm{~F}(\mathrm{~K})
$$

where $\mathcal{O}_{i}=\mathrm{c} V_{i}$ is an identity-based state at the ghost number 1, satisfying $\mathrm{QO}_{i}=0$.

In terms of $W_{\Psi}, A, \mathcal{O}_{i}$,

$$
\varphi_{i}=\sqrt{-W_{\Psi}} \mathcal{O}_{i} \sqrt{-W_{\Psi}}
$$

Notation for Feynman rules

Feynman diagrams are expressed by using the following three maps:
i. star product $\mathrm{m}: \mathcal{H} \otimes \mathcal{H} \rightarrow \mathcal{H}$

$$
\mathfrak{m}\left(\phi_{i}, \phi_{j}\right)=\phi_{i} * \phi_{j}
$$

ii. propagator \mathcal{P}_{D},
iii. inner product $\mathrm{I}: \mathcal{H} \otimes \mathcal{H} \rightarrow \mathbb{C}$

$$
\mathrm{I}\left(\phi_{\mathfrak{i}}, \phi_{\mathfrak{j}}\right)=\int \phi_{\mathfrak{i}} * \phi_{\mathfrak{j}}
$$

We also define $\mathrm{Y}\left(\phi_{\mathfrak{i}}, \phi_{\mathfrak{j}}\right)=\mathcal{P}_{\mathrm{D}}\left[\mathrm{m}\left(\phi_{\mathfrak{i}}, \phi_{\mathfrak{j}}\right)\right]$ for notational simplicity.

Now, the formula to convert Feynman graphs and urchins is given by

$$
T_{n}\left(\varphi_{1}, \ldots, \varphi_{n}\right)=\sqrt{-W} \mathcal{O}_{1} A \ldots \mathcal{O}_{n-1} A \mathcal{O}_{n} \sqrt{-W}
$$

where $T_{n}\left(\varphi_{1}, \ldots, \varphi_{n}\right)$ is recursively defined by

$$
\begin{gathered}
T_{1}\left(\varphi_{1}\right)=\varphi_{1} \\
T_{n}\left(\varphi_{1}, \ldots, \varphi_{n}\right)=\sum_{i=1}^{n-1} Y\left(T_{i}\left(\varphi_{1}, \ldots, \varphi_{i}\right), T_{n-i}\left(\varphi_{i+1}, \ldots, \varphi_{n}\right)\right)
\end{gathered}
$$

For $n=3$,

$$
=\sqrt{W_{\Psi}} \mathcal{O}_{1} A \mathcal{O}_{2} A \mathcal{O}_{3} \sqrt{W_{\Psi}}
$$

Derivation of this formula for $\mathfrak{n}=2$,

$$
\begin{aligned}
& \frac{\mathcal{B}_{\mathrm{F}, \mathrm{~F}}}{\mathcal{L}_{\mathrm{F}, \mathrm{~F}}}\left[\left(\mathrm{~F}(\mathrm{~K}) \mathcal{O}_{\mathrm{K}} \mathrm{~F}(\mathrm{~K})\right)\left(\mathrm{F}(\mathrm{~K}) \mathcal{O}_{\mathrm{l}} \mathrm{~F}(\mathrm{~K})\right)\right] \\
& =\int_{0}^{\infty} \operatorname{dsF}(K) e^{-s \frac{1}{2} \mathcal{L}_{0}^{-}} \frac{1}{2} \mathcal{B}_{0}^{-}\left[\mathcal{O}_{k} F(K)^{2} \mathcal{O}_{l}\right] F(K) \\
& =-\int_{0}^{\infty} \operatorname{dsF}(K) e^{-s \frac{1}{2} \mathcal{L}_{0}^{-}}\left[\mathcal{O}_{k} H^{\prime}(K) B \mathcal{O}_{l}\right] F(K) \\
& =-\int_{0}^{\infty} \mathrm{dsF}(\mathrm{~K})\left[\mathcal{O}_{\mathrm{K}} \mathrm{H}^{\prime}\left(\mathrm{Ke}^{-s}\right) \mathrm{Be}^{-s} \mathcal{O}_{l}\right] \mathrm{F}(\mathrm{~K}) \\
& =\mathrm{F}(\mathrm{~K})\left[\mathcal{O}_{\mathrm{k}} \mathrm{H}\left(\mathrm{e}^{-s} \mathrm{~K}\right) \frac{\mathrm{B}}{\mathrm{~K}} \mathcal{O}_{\mathrm{l}}\right]_{s=0}^{s=\infty} \mathrm{F}(\mathrm{~K}) \\
& =F(K) \mathcal{O}_{k}\left(1-F(K)^{2}\right) \frac{B}{K} \mathcal{O}_{l} F(K)
\end{aligned}
$$

where $H(K)=F(K)^{2}$. This equals $\sqrt{-W_{\Psi}} \mathcal{O}_{K} \mathcal{A}_{T} \mathcal{O}_{l} \sqrt{-W_{\Psi}}$.

Closer look: To obtain the A_{Ψ} term, we need to use the regularized propagator. There are several options. Let us take..

$$
\begin{aligned}
& \overline{\mathcal{P}}_{\mathrm{D}} \equiv\left(\int_{0}^{\Lambda} e^{-s \mathcal{L}_{\mathrm{F}, \mathrm{~F}}}+\int_{\Lambda}^{\Lambda+i \infty} e^{-s\left(\mathcal{L}_{\mathrm{F}, \mathrm{~F}}-\mathrm{i}\right)}\right) \mathcal{B}_{\mathrm{F}, \mathrm{~F}} \quad(\Lambda \epsilon \ll 1) . \\
& \int_{\Lambda}^{\wedge+i \infty} e^{-s\left(\mathcal{L}_{F}, \mathrm{~F}-\mathrm{ie}\right)} \mathcal{B}_{\mathrm{F}, \mathrm{~F}}\left[\left(\mathrm{FO} \mathcal{O}_{1} \mathrm{~F}\right)\left(\mathrm{F} \mathcal{O}_{2} \mathrm{~F}\right)\right] \\
& =\mathrm{F}\left[\int_{\Lambda}^{\Lambda+i \infty} \mathrm{dse} \mathrm{e}^{-s\left(\frac{1}{2} \mathcal{L}_{\mathrm{o}}^{-}-i e\right)} \frac{1}{2} \mathcal{B}_{0}^{-}\left(\mathcal{O}_{1} H \mathcal{O}_{2}\right)\right] \mathrm{F} \\
& =F\left[\int_{\Lambda}^{\wedge+i \infty} d s e^{i \epsilon s} e^{-s} \mathcal{O}_{1} B H^{\prime}\left(e^{-s} K\right) \mathcal{O}_{2}\right] F \\
& =\mathrm{F} \mathcal{O}_{1}\left[\frac{1}{\mathrm{~K}} \mathrm{H}\left(e^{-\wedge} \mathrm{K}\right)\right] \mathrm{BO}_{2} \mathrm{~F}+\mathrm{O}(\epsilon),
\end{aligned}
$$

Also in the last equality we used

$$
\begin{aligned}
& \int_{\Lambda}^{\Lambda+i \infty} d s e^{i \epsilon s} e^{-s} H^{\prime}\left(e^{-s} K\right) \\
& =\int_{e^{-(\Lambda+i \infty)}}^{e^{-\Lambda}} d x x^{-i \epsilon} H^{\prime}(x K) \\
& =\left[x^{-i \epsilon} \frac{1}{K} H(x K)\right]_{e^{-(\Lambda+i \infty)}}^{e^{-\Lambda}}+i \epsilon \int_{e^{-(\Lambda+i \infty)}}^{e^{-\Lambda}} d x x^{-1-i \epsilon} \frac{1}{K} H(x K) \\
& =\frac{1}{K} H\left(e^{-\Lambda} K\right)+O(\epsilon),
\end{aligned}
$$

where we used $\lambda^{\epsilon}=e^{-\epsilon \Lambda} \simeq 1$ and assumed that the integral in the third line does not give any $1 / \epsilon$ singularity.

Note: In our previous work, we observed that $A_{\Psi}(=B / K)$ works as "a boundary term" which removes world-sheet UV divergence (c.f. Sen [arXiv:1902.00263 [hep-th]]).

Now, we understand that A_{ψ} corresponds to a regularization term for \mathcal{P}_{D} in the dressed \mathcal{B}_{0} gauge.

We are halfway down the road to the proof; by a combinatorial argument, we can confirm " $\mathrm{I}_{\Psi}^{(\mathrm{N})}=$ S-matrix in tree level".
(But I would like to omit this part because it is too technical.)

Note: from relation to Feynman diagrams, we find that the urchins satisfy the following relation, which is very important in our proof:

$$
\sum_{i=1}^{y-1}[x, i, y-i]=\sum_{j=1}^{x-1}[y, j, x-j]
$$

Here $[l, m, n]$ is the partial sum of the urchins, given by
$\sum \int(A \mathcal{O})_{1}^{l-1} W_{\Psi} \mathcal{O}_{l}(A \mathcal{O})_{l+1}^{l+m-1} W_{\Psi} \mathcal{O}_{l+m}(A \mathcal{O})_{l+m+1}^{l+m+n-1} W_{\Psi} \mathcal{O}_{l+m+n}$
where

$$
(A \mathcal{O})_{p}^{q}=A \mathcal{O}_{p} A \mathcal{O}_{p+1} A \mathcal{O}_{p+2} \ldots A \mathcal{O}_{q}
$$

This satisfies

$$
[l, m, n]=[m, n, l]
$$

Example of our notation $[l, m, n]$

$$
=\sum_{(i, j, k, l, m)} \int W_{\Psi} \mathcal{O}_{i} A \mathcal{O}_{j} W_{\Psi} \mathcal{O}_{k} W_{\Psi} \mathcal{O}_{l} A \mathcal{O}_{\mathfrak{m}}=[2,1,2]
$$

2.2. "Unconventional" propagator

There is another way to obtain a similar expression for the S-matrix; a Feynman rule with what we call "the tachyon vacuum's A_{T} gauge" and the following "propagator," $\mathcal{P}_{M}{ }^{* 1}$

$$
\mathcal{P}_{M} \phi=\frac{1}{2 W_{\Psi}} A * \phi+\phi * A \frac{1}{2 W_{\Psi}} .
$$

I was sceptical when my collaborator proposed this based on HPL, but..

This Feynman rule gives a correct result at least for tree S-matrices. The result is sum of urchins, but their weight is different from $\mathrm{I}_{\Psi}^{(\mathrm{N})}$. By a combinatorial discussion, we proved agreement with $\mathrm{I}_{\Psi}^{(\mathrm{N})}$.

[^0]Example: A Feynman graph for a 5 point amplitude

External states: $\phi_{j}=\sqrt{W_{\Psi}} \mathcal{O}_{j} \sqrt{W_{\Psi}}$

A notable feature of this Feynman rule is that most of the Feynman diagrams vanish except for those of the following two types:

I-type: After removing all the external lines, the resulting subgraph is "I-shape"

Y-type: After removing all the external lines, the resulting subgraph is "Y-shape"

The contribution from the Feynman diagrams of I-type is

$$
\left(\frac{1}{2}\right)^{N-3} \sum_{p=0}^{N-4}\binom{N-4}{p}[N-p-2, p+2]
$$

while the contribution from the Feynman diagrams of Y-type is

$$
\frac{1}{3}\left(\frac{1}{2}\right)^{N-3} \sum_{p+q+r=N-6} 2 f(p, q, r)[p+2, q+2, r+2]
$$

where
$f(p, q, r)=\sum_{p_{1}=0}^{p} \sum_{q_{1}=0}^{q} \sum_{r_{1}=0}^{r}\binom{p_{1}+r-r_{1}}{p_{1}}\binom{q_{1}+p-p_{1}}{q_{1}}\binom{r_{1}+q-q_{1}}{r_{1}}$.
We can prove that the sum of these expressions equals $\mathrm{I}_{\Psi}^{(\mathrm{N})}$.

Concluding remarks

Main references for this talk:

- 1908.09784 [hep-th], w. H. Matsunaga (Charles Univ., Czech A.S.) ... presentation of $\mathrm{I}_{\Psi}^{(\mathrm{N})}$
- 2003.05021 [hep-th], w. H. Matsunaga:
... presentation of the "unconventional propagator"
- to appear soon, w. H. Matsunaga, and T. Noumi (Kobe Univ.):
... relation to Feynman diagrams in the dressed \mathcal{B}_{0} gauge; combinatorial proof of
- " $\mathrm{I}_{\Psi}^{(\mathrm{N})}=$ S-matrix in tree leel,"
- "S-matrix from the unconventional propagator $=I_{\Psi}^{(N)}$ "

[^0]: ${ }^{* 1}$ To be precise, we used the expression $A_{T} /\left(1+W_{\Psi}\right)$ instead of A_{Ψ}.

