
Note added: In my talk on 10 June, the information on our past and
forthcoming papers was not presented. They are listed on the last page
of this pdf file. Accordingly, I could not acknowledge one of my essential
collaborators, Toshifumi Noumi (Kobe University).
I apologize that these important information was missing in my talk.
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What is K ? : line integral of T(z) in the sliver coordinate

ξ z: sliver coordinate

z = 2
π

arctan ξ

K =

∫−i∞
+i∞ T(z)

dz

2πi

Why interesting/important?



What is K :

a cone of infinite height

→

K =

∫−i∞
+i∞ T(z)

dz

2πi

Why interesting/important?



Because... 1/K may be related to

• Possible underlying geometry of (Witten’s) Open SFT
• New Expression for Amplitudes

? Geometry

Open SFT CS theory



Outline

I. Overview (History)

II. S-matrix in tree level
III. 1/K and classical solution

I quit to take up this today.



Emergence of (1/K)

1. Classical solutions formally being pure-gauge
(Okawa 2006; Ellwood 2009; Erler-Maccaferri 2012 ...)

2. Murata-Schnabl solution (Murata-Schnabl 2011);
Winding number (Hata-Kojita 2012, ...): Geometric interpretation

3. Tree level S-matrix (2019);
Unconventional propagator (2020)



(1) Classical solutions are pure gauge (formally)

If we use 1/K, all the classical solutions can be written as

Ψ = U−1QU

1/K appears in U or U−1 unless Ψ is a pure-gauge solution.

In other words, 1/K is regarded as a singular object. This singularity
symbolizes the non-triviality of Ψ.

Q. Why is 1/K considered to be singular ?

Because 1/K cannot be expressed as a superposition of wedge states
exK (0 < x < ∞). Usually f(K) is defined by using it.



•K, B, c

K

x → 0

B

x → 0

eaK

a

c

x → 0

∫
−i∞

i∞

dz
2πi

b(z)∫
−i∞

i∞

dz
2πi

T(z)

c(0)



[K, B] = 0, {B, c} = 1,

•KBc algebra

QB = K, Qc = cKc



∫ cBex1Kcex2Kcex3Kcex4K = ∫ dz
2πi ⟨c(0)b(z)c(x1)c(x1 + x2)c(x1 + x2 + x3)⟩Cx1+ x2+ x3+ x4

Relation with correlation functions on semi-infinite cylinders: an example

Cx1+ x2+ x3+ x4

∫
−i∞

i∞

dz
2πi

b(z)

c(0) c(x1) c(x1 + x2) c(x1 + x2 + x3)

x1 + x2 + x3 + x4



Note that: many of expressions with 1/K in this talk are formal.

(For example, "formally written as pure gauge" does not mean pure
gauge. )

I hope that after a good understanding, we will be able to distinguish
between correct and inappropriate expressions with 1/K. That is also
the goal I would like to achieve.



1/K also appears in (formal) homotopy states, which represents
(non-)emptiness of the physical excitations around Ψ

"QΨAΨ = 1"

(QΨϕ = Qϕ+ Ψ ∗ ϕ+ (−)|ϕ|ϕ ∗ Ψ)

• if such a AΨ exists, there are no open string excitation around Ψ

• if AΨ exists only formally, there are phisical open string excitation
around Ψ

Example: for Ψ = 0,

"Q
B

K
= 1"



(2) Murata-Schnabl solution

Ansatz for classical solution for n-multiple of the initial D-brane. For
n = 2,

Ψdouble =
1

K
c
K2B

K− 1
c.

They are almost solution but not rigorously realized so far:

• desirable energy and the Ellwood invariant are obtained by using
some regularization

• EOM is broken. (difficulty: the double limit from 1/Ks)
• n > 2? (c.f. Hata 2019, Kojita 2019)



(3-1) A new formula for S matrix

On another note..

On the basis of gauge invariance etc., we (I and H.Matsunaga) find a
formula which expresses S-matrix around Ψ by using Ψ, ΨT .

I
(N)
Ψ ≡ I

(N)
Ψ (O1, ...,ON;ΨT )

Typically, this expresses S-matrix by using 1/K.

In the previous paper, we showed the calculation of N = 4 and
proved that it agrees with the S matrix. (However, there was no
proof for general N.) In this calculation, we seem to be dealing with
1/K well.



(3-2) Unconventional propagator

Later on, we proposed a gauge-fixing condition for a Feynman rule
with a very "unconventional" propagator PM, which utilizes 1/K.

This PM is derived by using Homological Perturbation Lemma,
though a part of assumption (kerPM = Hphys) is not justified. (so its
theoretical ground is not complete at present)

From this Feynman rule, we obtain an expression for S-matrices with
B/K. Apparently, it looks different from I

(N)
Ψ for N ≥ 5, though the

two are very similar. (Only the weight for each term is different. )



Geometry

Winding #

MS solution



expectation/ conjecture/ guess, ...

Geometry

Winding #

MS solution new formula
tree S-matrix

"unusual"
propagator

theoretical
ground

new formula
for loop

equivalent ?

not completelacking proof for general N
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today’s main subject

I don’t talk much about this today,
just few comments

Geometry

Winding #

MS solution new formula
tree S-matrix

"unusual"
propagator

theoretical
ground

new formula
for loop

prescription
of 1/K



2.1. S-matrix from clsscl solutions

We had obtained the following formula for S-matrix from gauge
invariance etc.:

I
(N)
Ψ = −

N

N− 3

∑ ′
∫ N∏

j=1

(A+WΨ)Oj,

where
WΨ = QΨAT − 1 (→ −eK),

A = AT −AΨ (→ eK
B

K
),

Oj: external states satisfying QΨOj = 0,∑ ′
= symmetrization over {j}



Example: for N = 5,

I
(5)
Ψ = −

5

2

( ∫
WΨO1WΨO2WΨO3AO4AO5

+

∫
WΨO1WΨO2AO3WΨO4AO5

+ ...

+

∫
WΨO2WΨO1WΨO3AO4AO5

+ ...

)



From PIXABAY

We call these terms using WΨ, A, and Oj "urchins"

WΨWΨ

A

WΨA

O1 O2

O5 O3

O4

∫
WΨO1AO2WΨO3WΨO4AO5



We proved
I
(N)
Ψ = S-matrix

by relating I
(N)
Ψ with the Feynman rules in the dressed B0 gauge.

The dressed B0 gauge is... (We will review from the next slide)

• a "singular" gauge condition in the sense that the propagator does
not generate propagation of the open string midpoint.

• However, we can use it for the tree-level calculation.

• For a proper treatment of loop amplitudes, we need to consider it
as a limit of a class of regular gauges, as discussed in
Kiermaier-Sen-Zwiebach [arXiv:0712.0627]



Reminder: the dressed B0 gauge

Reference: Appendix C of Erler-Schnabl [arXiv: 0906.0979].
The gauge fixing condition is

BF,GΨ = 0.

Here BF,G is defined by

BF,G • =
1

2
F(K)B−

0

[
F(K)−1 •G(K)−1

]
G(K)

with B−
0 = B0 − B⋆

0. Let us also introduce

LF,G • =
1

2
F(K)L−

0

[
F(K)−1 •G(K)−1

]
G(K)

with L−
0 = L0 − L⋆

0.



Notably, B−
0 and L−

0 are derivatives (under star products) and
mutually commuting. Their action on {K, B, c} reads

1

2
B−
0 K = B ,

1

2
L−
0 K = K ,

1

2
B−
0 B = 0 ,

1

2
L−
0 B = B ,

1

2
B−
0 c = 0 ,

1

2
L−
0 c = −c .

1
2
B−
0 is trivial in the matter sector and 1

2
L−
0 simply counts the scaling

dimension of the operator inserted to the wedge state of zero width.

For F = G = e
K
2 ,

BF,G = B0, LF,G = L0

and this gauge condition reduces to the Schnabl gauge.



Propagator

We will use the following “simplified" propagator

PD ≡ BF,G

LF,G

=

∫∞
0

dse−sLF,GBF,G .

Actually, this P is incomplete, because it violates the BPZ property
(P⋆ ̸= P). The genuine propagator is given by

P ′
D = P⋆

DQPD.

Nevertheless, we cen use the simplified propagator to calculate
on-shell, tree-level amplitudes,

AN(φ1, ..., φN) = AN(φ1, ..., φN)
∣∣
P ′

D
→PD

.

(We confirmed this proposition.)



Physical states

Let us assume F = G. The physical states in this gauge is

φi = F(K)OiF(K)

where Oi = cVi is an identity-based state at the ghost number 1,
satisfying QOi = 0.

In terms of WΨ, A, Oi,

φi =
√
−WΨOi

√
−WΨ



Notation for Feynman rules

Feynman diagrams are expressed by using the following three maps:

i. star product m : H⊗H → H

m(ϕi, ϕj) = ϕi ∗ ϕj,

ii. propagator PD,
iii. inner product I : H⊗H → C

I(ϕi, ϕj) =

∫
ϕi ∗ ϕj.

We also define Y(ϕi, ϕj) = PD[m(ϕi, ϕj)] for notational simplicity.

ϕ1 ϕ2



Now, the formula to convert Feynman graphs and urchins is given
by

Tn(φ1, ..., φn) =
√
−WO1A...On−1AOn

√
−W.

where Tn(φ1, ..., φn) is recursively defined by

T1(φ1) = φ1

Tn(φ1, ..., φn) =

n−1∑
i=1

Y(Ti(φ1, ..., φi), Tn−i(φi+1, ..., φn)).

For n = 3,

+ =
√

WΨO1AO2AO3

√
WΨ.

φ1 φ2 φ3 φ1 φ2 φ3



Derivation of this formula for n = 2,

BF,F

LF,F

[(F(K)OkF(K))(F(K)OlF(K))]

=

∫∞
0

dsF(K)e−s 1
2
L−

0
1

2
B−
0

[
OkF(K)

2Ol

]
F(K)

= −

∫∞
0

dsF(K)e−s 1
2
L−

0 [OkH
′(K)BOl] F(K)

= −

∫∞
0

dsF(K)
[
OkH

′(Ke−s)Be−sOl

]
F(K)

= F(K)

[
OkH(e−sK)

B

K
Ol

]s=∞
s=0

F(K)

= F(K)Ok(1− F(K)2)
B

K
OlF(K)

where H(K) = F(K)2. This equals
√
−WΨOkATOl

√
−WΨ.



Closer look: To obtain the AΨ term, we need to use the regularized
propagator. There are several options. Let us take..

P̄D ≡

(∫Λ
0

e−sLF,F +

∫Λ+i∞
Λ

e−s(LF,F−iϵ)

)
BF,F (Λϵ ≪ 1).

∫Λ+i∞
Λ

e−s(LF,F−iϵ)BF,F [(FO1F)(FO2F)]

= F

[∫Λ+i∞
Λ

dse−s( 1
2
L−

0 −iϵ) 1

2
B−
0 (O1HO2)

]
F

= F

[∫Λ+i∞
Λ

dseiϵse−sO1BH
′(e−sK)O2

]
F

= FO1

[
1

K
H(e−ΛK)

]
BO2F+O(ϵ) ,



Also in the last equality we used∫Λ+i∞
Λ

dseiϵse−sH ′(e−sK)

=

∫e−Λ

e−(Λ+i∞)

dxx−iϵH ′(xK)

=

[
x−iϵ 1

K
H(xK)

]e−Λ

e−(Λ+i∞)

+ iϵ

∫e−Λ

e−(Λ+i∞)

dxx−1−iϵ 1

K
H(xK)

=
1

K
H(e−ΛK) +O(ϵ) ,

where we used λϵ = e−ϵΛ ≃ 1 and assumed that the integral in the
third line does not give any 1/ϵ singularity.



Note: In our previous work, we observed that AΨ (= B/K) works as
"a boundary term" which removes world-sheet UV divergence (c.f.
Sen [arXiv:1902.00263 [hep-th]]).

Now, we understand that AΨ corresponds to a regularization term
for PD in the dressed B0 gauge.

We are halfway down the road to the proof; by a combinatorial
argument, we can confirm "I(N)

Ψ = S-matrix in tree level".

(But I would like to omit this part because it is too technical.)



Note: from relation to Feynman diagrams, we find that the urchins
satisfy the following relation, which is very important in our proof:

y−1∑
i=1

[x, i, y− i] =

x−1∑
j=1

[y, j, x− j].

Here [l,m, n] is the partial sum of the urchins, given by∑∫
(AO)

l−1
1 WΨOl (AO)

l+m−1
l+1 WΨOl+m (AO)

l+m+n−1
l+m+1 WΨOl+m+n

where
(AO)qp = AOpAOp+1AOp+2...AOq.

This satisfies
[l,m, n] = [m,n, l]



From PIXABAY

Example of our notation [l,m, n]

WΨWΨ

A

WΨA

Oi Oj

Om Ok

Ol

=
∑

(i,j,k,l,m)

∫
WΨOiAOjWΨOkWΨOlAOm = [2, 1, 2]

∑
(i,j,k,l,m)



2.2. "Unconventional" propagator

There is another way to obtain a similar expression for the S-matrix;
a Feynman rule with what we call "the tachyon vacuum’s AT gauge"
and the following "propagator," PM*1

PMϕ =
1

2WΨ

A ∗ ϕ+ ϕ ∗A 1

2WΨ

.

I was sceptical when my collaborator proposed this based on HPL,
but..

This Feynman rule gives a correct result at least for tree S-matrices.
The result is sum of urchins, but their weight is different from I

(N)
Ψ .

By a combinatorial discussion, we proved agreement with I
(N)
Ψ .

*1 To be precise, we used the expression AT /(1 +WΨ) instead of AΨ.



Example: A Feynman graph for a 5 point amplitude

External states: ϕj =
√
WΨOj

√
WΨ

1

2
3

4

5 → WΨ WΨ

WΨ

A A
WΨ WΨ

A

WΨ A

WΨ WΨ
A WΨ

A

=
1

4

( ∫
O1WO2AO3AO4WO5W +

∫
O1WO2WO3AO4WO5A

+

∫
O1WO2AO3WO4WO5A

)



A notable feature of this Feynman rule is that most of the Feynman
diagrams vanish except for those of the following two types:

I-type: After removing all the external lines, the resulting subgraph
is "I-shape"

Y-type: After removing all the external lines, the resulting subgraph
is "Y-shape"



The contribution from the Feynman diagrams of I-type is

(
1

2

)N−3 N−4∑
p=0

(
N− 4

p

)
[N− p− 2, p+ 2]

while the contribution from the Feynman diagrams of Y-type is

1

3

(
1

2

)N−3 ∑
p+q+r=N−6

2f(p, q, r)[p+ 2, q+ 2, r+ 2]

where

f(p, q, r) =

p∑
p1=0

q∑
q1=0

r∑
r1=0

(
p1 + r− r1

p1

)(
q1 + p− p1

q1

)(
r1 + q− q1

r1

)
.

We can prove that the sum of these expressions equals I(N)
Ψ .



Concluding remarks

Geometry
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definition
for 1/K



Main references for this talk:

• 1908.09784 [hep-th], w. H. Matsunaga (Charles Univ., Czech A.S.)
... presentation of I(N)

Ψ

• 2003.05021 [hep-th], w. H. Matsunaga:
... presentation of the "unconventional propagator"

• to appear soon, w. H. Matsunaga, and T. Noumi (Kobe Univ.):
... relation to Feynman diagrams in the dressed B0 gauge;
combinatorial proof of
– "I(N)

Ψ = S-matrix in tree leel,"
– "S-matrix from the unconventional propagator = I

(N)
Ψ "


