The pure spinor b ghost in curved backgrounds

Osvaldo Chandía

Universidad Adolfo Ibáñez, Chile

2020 Workshop on String Field Theory and Related Aspects

based on 1311.7012
1403.2429 (with N. Berkovits)
1910.04791
Plan of the talk

• Review of the pure spinor string in a flat background
• Pure spinor string in a curved background
• Non-minimal variables in a curved background
• Construction of the b ghost in the heterotic string in a curved background
• Final remarks
Review of pure spinor in a flat background

(Berkovits, hep-th/0001035)

Given the superspace coordinates in ten dimensions \((X^m, \theta^\alpha)\), their momenta and a pair of conjugate pure spinor variables.

\[
S = \int d^2z \frac{1}{2} \partial X^m \bar{\partial} X^m + p_\alpha \bar{\partial} \theta^\alpha + \omega_\alpha \bar{\partial} \lambda^\alpha,
\]

\[
Q = \oint \lambda^\alpha \left(p_\alpha - \frac{1}{2} (\gamma_m \theta)_\alpha \partial X^m - \frac{1}{8} (\gamma_m \theta)_\alpha (\theta \gamma^m \partial \theta) \right) \equiv \oint \lambda^\alpha d_\alpha.
\]

\(Q\) is nilpotent because the pure spinor constraint \(\lambda \gamma^m \lambda = 0\)

\[
Q^2 = \oint (\lambda \gamma_m \lambda) \Pi^m, \quad \left(\Pi^m = \partial X^m + \frac{1}{2} (\theta \gamma^m \partial \theta) \right)
\]

⇒ \(Q\) is declared as the BRST charge of the theory.

Note that \(\omega_\alpha\) is defined up to \((\lambda \gamma_m)_\alpha \Lambda^m\).
Review of pure spinor in a flat background

It reproduces the superstring physical spectrum through the cohomology of Q.

$$Q(\lambda^\alpha A_\alpha(X, \theta)) = 0, \quad \lambda^\alpha A_\alpha(X, \theta) \sim \lambda^\alpha A_\alpha(X, \theta) + \lambda^\alpha D_\alpha \Omega.$$

For example,

$$A_\alpha(X, \theta) = (\gamma^m \theta)_\alpha a_m(X) + (\theta \gamma^{mnp} \theta)(\gamma_{mnp} \psi(X))_\alpha + \cdots ,$$

a_m describes a photon and ψ a photino.

This model is conformal, spacetime supersymmetric and BRST invariant.

This is the minimal pure spinor string in a flat background.
Review of pure spinor in a flat background

The stress-energy tensor of the traditional strings is trivial because the existence of the reparametrization ghost \(b \). That is, \(Qb = T \).

For the pure spinor string, the stress-energy tensor

\[
T = -\frac{1}{2} \Pi_m \Pi^m - d_\alpha \partial \theta^\alpha - \omega_\alpha \partial \lambda^\alpha,
\]

is annihilated by \(Q \) and the \(b \) ghost is given with the help of new variables. They are the conjugate pairs

\[
(\hat{\omega}_\alpha^\alpha, \hat{\lambda}_\alpha), \quad (s^\alpha, r^\alpha),
\]

and are the non-minimal variables (they are constrained). They contribute to the BRST charge with \(\int \hat{\omega}_\alpha^\alpha r_\alpha \) and

\[
Q\hat{\lambda}_\alpha = -r_\alpha, \quad Qs^\alpha = \hat{\omega}_\alpha^\alpha, \quad Qr_\alpha = Q\hat{\omega}_\alpha^\alpha = 0.
\]

They do not change the cohomology of the BRST charge (Berkovits, hep-th/0509120).
Review of pure spinor in a flat background

The non-minimal pure spinor has action

\[S = \int d^2z \left(\frac{1}{2} \partial X_m \bar{\partial} X^m + p_\alpha \bar{\partial} \theta^\alpha + \omega_\alpha \bar{\partial} \lambda^\alpha + Q \left(\int d^2z \ s^\alpha \bar{\partial} \hat{\lambda}_\alpha \right) \right) \]

The BRST charge is

\[Q = \oint \lambda^\alpha d_\alpha + \hat{\omega}^\alpha r_\alpha, \]

and the complete stress-energy tensor is

\[T = -\frac{1}{2} \Pi_m \Pi^m - d_\alpha \partial \theta^\alpha - \omega_\alpha \partial \lambda^\alpha - Q(s^\alpha \partial \hat{\lambda}_\alpha). \]

The \(b \) ghost is constructed to satisfy \(Qb = T \).
Review of pure spinor in a flat background

The b ghost satisfying $Qb = T$ is

$$b = -s^\alpha \partial \hat{\lambda}_\alpha - \omega_\alpha \partial \theta^\alpha + \prod_m \bar{\Gamma}^m - \frac{1}{4(\lambda \lambda)} (\lambda \gamma_{mn} r) \bar{\Gamma}^m \bar{\Gamma}^n$$

$$+ \frac{1}{2(\lambda \lambda)} (\omega \gamma_m \hat{\lambda}) (\lambda \gamma^m \partial \theta),$$

where

$$\bar{\Gamma}^m = \frac{1}{2(\lambda \lambda)} (d \gamma^m \hat{\lambda}) + \frac{1}{8(\lambda \lambda)^2} (r \gamma^{mnp} \hat{\lambda}) \frac{1}{2} (\lambda \gamma_{np} \omega).$$

$Q\bar{\Gamma}^m$ is such that $Qb = T$.

Note that b is invariant under $\delta \omega_\alpha = (\lambda \gamma^m)_\alpha \Lambda_m$.

The idea is to do this construction in a curved background.
Pure spinor string in a curved background

Given the curved superspace coordinates Z^M, the variable d_α and the pure spinor variables. The world-sheet action in curved background is

$$S = \int d^2z \left\{ \frac{1}{2} \partial Z^M \bar{\partial} Z^N (G_{NM} + B_{NM}) - \bar{\partial} Z^M E_M^\alpha d_\alpha + \omega_\alpha \bar{\nabla} \lambda^\alpha \\
+ \xi D_\xi + \alpha' r^{(2)} \Phi , \right\},$$

where

$$\bar{\nabla} \lambda^\alpha = \bar{\partial} \lambda^\alpha + \lambda^\beta \bar{\partial} Z^M \Omega_{M\beta}^\alpha ,$$

$$\Omega_{M\beta}^\alpha = \delta_\beta^\alpha \Omega^M + \frac{1}{4} (\gamma^{ab})_\beta^\alpha \Omega^{Mab} .$$

The background superfields are the supervielbein E, the superconnection Ω and the NSNS two-form B. They will be constrained by the BRST invariance.
The BRST charge is $Q = \oint d\sigma \lambda^\alpha d_{\alpha}$. $Q^2 = 0$ and $\bar{\partial}(\lambda^\alpha d_{\alpha}) = 0$ put the background to satisfy constraints (Berkovits & Howe, hep-th/0112160).

$$Q^2 = 0 \Rightarrow \lambda^\alpha \lambda^\beta T_{\alpha\beta}^A = 0, \quad \lambda^\alpha \lambda^\beta H_{\alpha\beta a} = 0, \quad \lambda^\alpha \lambda^\beta \lambda^\gamma R_{\alpha\beta\gamma\delta} = 0.$$

Some non-vanishing components of the background superfields are

$$T_{\alpha\beta a} = H_{\alpha\beta a} = -(\gamma_a)_{\alpha\beta}, \quad T_{\alpha ab} = 2(\gamma_{ab})_{\alpha}^\beta \Omega_{\beta}, \quad \Omega_{\alpha} = \frac{1}{4} \nabla_{\alpha} \Phi$$

This model is one-loop conformal invariant (Chandía, Vallilo, hep-th/0401226).
Pure spinor string in a curved background

Define the one-forms $E^A = dZ^M E_M{}^A$ and $\Omega^B{}_A = dZ^M \Omega_{MA}{}^B$, here $A = (a, \alpha)$. The torsion two-form is

$$T^A = \nabla E^A = dE^A + E^B \Omega^A{}_B = \frac{1}{2} E^B E^C T_{CB}{}^A,$$

the curvature two-form is

$$R^A{}_B = d\Omega^A{}_B + \Omega^C{}_B \Omega^A{}_C = \frac{1}{2} E^C E^D R_{DCB}{}^A$$

and

$$H = dB = \frac{1}{6} E^C E^B E^A H_{ABC}.$$

The Bianchi identities are

$$\nabla T^A = T^B R^A{}_B, \quad \nabla R^A{}_B = 0, \quad dH = 0.$$

The covariant derivative on a super p-form $\Psi^A{}_B$ is

$$\nabla \Psi^A{}_B = d \Psi^A{}_B + \Psi^C{}_A \Omega^A{}_C + (-1)^{p+1} \Omega^A{}_C \Psi^C{}_B.$$
Pure spinor string in a curved background

The transformation of the variables under Q
(Chandía, hep-th/0604115)

$$QZ^M = \lambda^\alpha E_\alpha^M, \quad Q\lambda^\alpha = -\lambda^\beta \Sigma_\beta^\alpha, \quad Q\omega_\alpha = d_\alpha + \Sigma_\alpha^\beta \omega_\beta,$$

$$Qd_\alpha = - (\lambda \gamma_a)_\alpha \Pi^a + \lambda^\beta \lambda^\gamma \omega_\delta R_{\alpha\beta\gamma\delta} + \Sigma_\alpha^\beta d_\beta,$$

where $\Pi^A = \partial Z^M E_M^A$ and $\Sigma_\alpha^\beta = \lambda^\gamma \Omega_{\gamma\alpha}^\beta$ gives a local Lorentz rotation. As a check

$$Q\Pi^\alpha = \nabla \lambda^\alpha + \Pi^\beta \Sigma_\beta^\alpha, \quad Q\Pi^a = (\lambda \gamma^a \Pi) + \lambda^\alpha \Pi^b T_{\alpha b}^a - \Pi^b \Sigma_b^a,$$

where $\Sigma_b^a = \lambda^\gamma \Omega_{\gamma a}^b$.

The combination $(\lambda \hat{\lambda}) = \lambda^\alpha \hat{\lambda}_\alpha$ appears in the b ghost \Rightarrow
non-minimal variables are not inert under BRST transformations.
Non-minimal variables in a curved background

The BRST transformation of \((\hat{\lambda}_\alpha, \hat{\omega}^\alpha, r_\alpha, s^\alpha)\)

\[
Q\hat{\lambda}_\alpha = -r_\alpha + \lambda^\gamma X_{\gamma\alpha}^\beta \hat{\lambda}_\alpha + \Sigma_\alpha^\beta \hat{\lambda}_\alpha, \quad Q\hat{\omega}^\alpha = -\hat{\omega}^\beta \lambda^\gamma X_{\gamma\beta}^\alpha - \hat{\omega}^\beta \Sigma_\beta^\alpha
\]

\[
Qs^\alpha = \hat{\omega}^\alpha + s^\beta \lambda^\gamma X_{\gamma\beta}^\alpha + s^\beta \Sigma_\beta^\alpha, \quad Qr_\alpha = \lambda^\gamma X_{\gamma\alpha}^\beta r_\beta + \Sigma_\alpha^\beta r_\beta,
\]

where \(X\) is constrained by \(Q^2 = 0\) and it is given by

\[
X_{\gamma\alpha}^\beta = 3\delta_\beta^\alpha \Omega_\gamma - \frac{1}{4} (\gamma^{ab})_\alpha^\beta T_{\gamma ab}.
\]

Let me call \(\tilde{\Sigma} = X + \Sigma\), and the BRST transformations are simplified to

\[
Q\hat{\lambda}_\alpha = -r_\alpha + \tilde{\Sigma}_\alpha^\beta \hat{\lambda}_\alpha, \quad Q\hat{\omega}^\alpha = -\hat{\omega}^\beta \tilde{\Sigma}_\beta^\alpha
\]

\[
Qs^\alpha = \hat{\omega}^\alpha + s^\beta \tilde{\Sigma}_\beta^\alpha, \quad Qr_\alpha = \tilde{\Sigma}_\alpha^\beta r_\beta.
\]

It is the transformation in flat spacetime plus a Lorentz rotation by \(\tilde{\Sigma}\).
Non-minimal variables in a curved background

The non-minimal pure spinor variables contribute to the world-sheet action with

\[Q \left(\int d^2 z \ s^\alpha \nabla \hat{\lambda}_\alpha - 3(\Pi^\alpha \Omega_\alpha)(s^\beta \hat{\lambda}_\beta) + \frac{1}{4} \Pi^A T_{Aab}(s_\gamma^{ab} \hat{\lambda}) \right) \]

The Noether charge of the BRST transformations is

\[Q = \int \lambda^\alpha d_\alpha + \hat{\omega}^\alpha r_\alpha \]

And the energy-momentum tensor is

\[T = -\frac{1}{2} \Pi_a \Pi^a - d_\alpha \Pi^\alpha - \omega_\alpha \nabla \lambda^\alpha - Q \left(s^\alpha \nabla \hat{\lambda}_\alpha - 3(\Pi^\alpha \Omega_\alpha)(s^\beta \hat{\lambda}_\beta) + \frac{1}{4} \Pi^A T_{Aab}(s_\gamma^{ab} \hat{\lambda}) \right) \]

Next step: find b ghost.
Construction of the b ghost

In flat spacetime we had

$$\tilde{\Gamma}^m = \frac{1}{2(\lambda \hat{\lambda})}(d\gamma^m \hat{\lambda}) + \frac{1}{8(\lambda \hat{\lambda})^2}(r\gamma^{mnp} \hat{\lambda}) \frac{1}{2}(\lambda \gamma_{np} \omega),$$

with

$$Qd_{\alpha} = -(\lambda \gamma_m)_{\alpha} \Pi^m, \quad Q\omega_{\alpha} = d_{\alpha},$$

$$Q\lambda_{\alpha} = 0, \quad Qr_{\alpha} = 0, \quad Q\hat{\lambda}_{\alpha} = -r_{\alpha}.$$

With this,

$$Q\tilde{\Gamma}^m = -\frac{1}{2(\lambda \hat{\lambda})} \Pi^n(\hat{\lambda} \gamma^m \gamma_n \lambda) - \frac{1}{4(\lambda \hat{\lambda})^2}(\lambda \gamma^{np} r)(\hat{\lambda} \gamma_p \gamma^m \lambda)\tilde{\Gamma}_n$$
Construction of the b ghost

In curved spacetime we have

$$\tilde{\Gamma}^a = \frac{1}{2(\lambda \hat{\lambda})}(D \gamma^a \hat{\lambda}) + \frac{1}{8(\lambda \hat{\lambda})^2}(r \gamma^{abc} \hat{\lambda}) \frac{1}{2}(\omega \gamma_{bc} \lambda),$$

where

$$D_\alpha = d_\alpha - \lambda \gamma \chi_{\gamma \alpha} \beta \omega_\beta,$$ well defined under $\delta \omega_\alpha = (\lambda \gamma^a)_\alpha \Lambda_a.$

And

$$QD_\alpha = -(\lambda \gamma_a)_\alpha \Pi^a + \tilde{\Sigma}_\alpha^\beta D_\beta, \quad Q\omega_\alpha = D_\alpha + \tilde{\Sigma}_\alpha^\beta \omega_\beta,$$

$$Q\lambda^\alpha = 8(\lambda \Omega) \lambda^\alpha - \lambda^\beta \tilde{\Sigma}_\beta^\alpha.$$

It turns out that

$$Q\tilde{\Gamma}^a = -\frac{1}{2(\lambda \hat{\lambda})}\Pi^b(\hat{\lambda} \gamma_a \gamma_b \lambda) - \frac{1}{4(\lambda \hat{\lambda})^2}(\lambda \gamma^{bc} r)(\hat{\lambda} \gamma_c \gamma^a \lambda) \tilde{\Gamma}_b - \tilde{\Sigma}_a^b \tilde{\Gamma}_b.$$
Construction of the b ghost

The b ghost becomes

$$
b = - \left(s^\alpha \nabla \hat{\lambda}_\alpha - 3(\Pi^\alpha \Omega_\alpha)(s^\beta \hat{\lambda}_\beta) + \frac{1}{4} \Pi^A T_{Aab}(s_{\gamma}^{ab} \hat{\lambda}) \right)$$

$$- \omega_\alpha \Pi^\alpha + \Pi_a \bar{\Gamma}^a - \frac{1}{4(\lambda \hat{\lambda})}(\lambda \gamma_{ab} r) \bar{\Gamma}^a \bar{\Gamma}^b + \frac{1}{2(\lambda \hat{\lambda})}(\omega \gamma_a \hat{\lambda})(\lambda \gamma^a \Pi).$$

Using

$$Q \Pi^a = (\lambda \gamma^a \Pi) - \Pi^b \tilde{\Sigma}_b^a,$$

$$Q \Pi^\alpha = \nabla \lambda^\alpha - 3(\lambda \Omega) \Pi^\alpha - \frac{1}{2}(\lambda \gamma_{ab} \Omega)(\Pi \gamma^{ab})^\alpha + \Pi^\beta \tilde{\Sigma}_\beta \alpha,$$

one obtains

$$Qb = T.$$
Final remarks

The background fields have an effect on the BRST transformations of the non-minimal pure spinor variables.

The construction of the b ghost in a curved background is possible for the case shown here.

The corresponding analysis for the type II superstring in curved background has been problematic (for me).
Thank you!!