Preparatory Group — Cosmology —

Diana L. López Nacir

CONICET

Consejo Nacional de Investigaciones Científicas y Técnicas

Open Symposium on Latin American Research Infraestructura in HECAP – July 8 (2020)

Main science drivers in cosmology

Evolution of initial gaussian distribution of adiabatic density perturbations

...several observables...

Lyman-alpha forest

Gravitational lensing

Massey et. al., Rept. Prog. Phys. 73 (2010)

Hot gas (X Rays) Galaxies Density contours (lens)

Del Popolo, Int. J. Mod. Phys. D23 (2014)

Credit: X-ray: NASA/CXC/CfA/M.Markevitch et al.; Optical: NASA/STScl; Magellan/U.Arizona/D.Clowe et al.; Lensing Map: NASA/STScl; ESO WFI; Magellan/U.Arizona/D.Clowe et al.

Clusters

... and new windows

Radio surveys

- 21 cm line emission from HI as a tracer of the 3-D LSS distribution
- Fast Radio Bursts (FRBs)

Gravitational waves and "multi-messenger" astronomy

- Detection of GW170817 and the coincident Gamma Ray Burst (GW170817A) allowed to constant the relative velocity of GW and photons: $|c_g/c 1| \le 5 \cdot 10^{-16}$
- Standard sirens \longrightarrow Independent measurement of H_0
- Black Holes: many events of coalescence of two BHs observed since GW150914

Primordial Gravitational waves

Inflation Generates Two Types of Waves	Gravitational Waves	
	Density Waves	Waves Imprint Characteristic Polarization Signals

Theoretical work is needed and access to data too

- To analyze data and obtain physical quantities, test robustness
- To deepen the understanding of data and how they are analyzed
- To connect results from cosmological, astrophysical and laboratory experiments
- To study alternative theories, their consistency, robustness, connections with particle physics and with the fundamental physics laws
- To evaluate the validity of the standard assumptions

Human Resources and Research Infrastructure Crucial to join forces and different expertises !

Picture taken from Shutterstock

• ...etc.

Main science drivers in cosmology

- What are the nature, the properties and the origin of the Dark components? E.g., What is Dark Matter? What is Lambda? Do they have non-gravitational interactions?
- What is the origin of the matter-antimatter asymmetry?
- What are the nature and the properties of neutrinos? E.g., What is the total mass?
- What are the nature and the properties of Black Holes?
- What are the origin and the nature of the primordial perturbations?
 E.g., Are they non-gaussian? How many degrees of freedom? Are there primordial gravitational waves?
- Are the standard assumptions wrong? E.g., Modification of gravity, Lorentz violation, non-standard history

Overview of the received contributions

- Large Synoptic Survey Telescope (LSST) ---- NSF-funded Wide-field Telescope (in Chile)

Photometric survey, billions of galaxies, <u>20 Terabytes of data/night</u>!

Main science drivers: What is the nature of the Dark Sector? Are the standard assumptions wrong?

Members in Brazil: 9 PIs + 19 juniors (student and postdocs), and funding for up to 10 PIs with 40 juniors. **Institutions:** LineA,MCTIC,UNESP, UFES, UFRGS,Unicamp,UdB

Methodology: Analyzing different observational quantities in a bayesian framework.

- Measurements of galaxy distribution
- Weak lensing
- Supernova
- Cluster counts

Challenges: The access to data and the big amount of data.

- Q&U Bolometric Interferometer for Cosmology (QUBIC) --> To measure CMB polarization (site in Argentina, next to LLAMA)

Unique instrument, a spectro-imager, designed to control systematics and remove foreground

International collaboration with participating laboratories in France, Italy, UK, Ireland, USA and Argentina

Main science drivers: Are there primordial gravitational waves?

Context:	Project	Frequencies (GHz)	ℓ range	Ref.	$\sigma(r)$ goal (no fg.)	$\sigma(r)$ goal (with fg.)
	QUBIC	150,220	30 - 200		6.0×10^{-3}	1.0×10^{-2}
r maggura tha ralativa	Bicep3/Keck	95,150,220	50 - 250	[18]	$2.5 imes 10^{-3}$	$1.3 imes 10^{-2}$
r=measure me relative	CLASS \star	38, 93, 148, 217	2 - 100	[20]	1.4×10^{-3}	3.0×10^{-3}
strength of primordial	SPT-3G †	95,148,223	50 - 3000	[19]	$1.7 imes 10^{-3}$	$5.0 imes 10^{-3}$
gravitational waves.	AdvACT [‡]	90,150,230	60 - 3000	[21]	1.3×10^{-3}	4.0×10^{-3}
5	Simons Array	90,150,220	30-3000	[22]	$1.6 imes 10^{-3}$	$5.0 imes 10^{-3}$
	SO (SAT) **	27, 39, 93, 145, 225, 280	30 - 300	[23]	$1.3 imes 10^{-3}$	$3.9 imes 10^{-3}$

Currently, r<0.06 [Planck 2018]

* CLASS: Cosmology Large Angular Scale Surveyor; † SPT-3G: South Pole Telescope—3rd generation; ‡ AdvACT: Advanced Atacama Cosmology Telescope; ** SO (SAT=: Simons Observatory Small Aperture Telescopes.

Members in Argentina: ~22 Institutions: UNLP, ITeDA,CAB,CNEA,IAR

Methodology: Simulations and data analysis, mounting the experiment, infrastructure in site.

Timeline: Being built. First module- two frequencies- ready by 2020. Target: r ~ 0.01 in 2 years of data In the future, more modules at additional frequencies could be added.

- BAO from Integrated Neutral Gas Observations (BINGO) ----- New radio telescope

(to be built in Brazil)

Radio telescope designed to measure the BAO scale at 0.13 < z < 0.48

Main science drivers: What is the nature of Dark Sector? Are the standard assumptions wrong?

Context: Intensity Mapping technique (fluctuations in HI as a tracer of the 3-D LSS)

Challenge: Galactic as well as extragalactic foregrounds with intensity as large as 10⁴ times the HI signal. Cross correlation with other surveys will help.

- Ground for testing different separation methods, pathfinder to the upcoming SKA telescope.
- Lower redshift than ongoing CHIME Canadian for BAO at z~0.8-2.5, and Tianlai China -

Members in Brazil: 3PIs (of 5) in the steering committee and ~37 researchers (+1 in Uruguay) **Institutions in Brazil:** USP,UFCG,IFPB,UFPB,UFPE,UnB.Construction and operational costs granted by FAPESP, FINEP, MCTIC and smaller fraction by non-Brazilian institutions

Methodology: To design and to build the radio telescope

Timeline: Under design/construction. First commissioning actions expected for 2021

- The South American Gravitational wave Observatory (SAGO) -----> Final Goal

(in South America)

Main science drivers: What is the nature and properties of Black Holes, of the Dark Sector? Are the standard assumptions wrong?

[Front. Astron. Space Sci. 5:44 (2018)]

Context: Several detections of GWs from the coalescence of binary systems, since GW150914.

Methodology: step by step

First step:

- To build a local community with enough expertise in experimental activities and data analysis.
- To involve Latin American students and post-docs in the present projects: LIGO, Virgo, KAGRA, LIGO India, Einstein Telescope (3G), Cosmic Explorer (3G), and attract them and foreign researchers with knowledge on third generation detectors to shape research groups in Latin America.

Final goal: To construct and to operate the 3G interferometer in South America as a third partner of ET and CE in ~ 20 years

Challenge: Only a few Latin American researchers are involved in laser interferometric projects (~ 12).

Main science drivers: What is the nature and the properties of the Dark Sector? Modification of gravity, Lorentz violation.

Context: Gravitational waves and "multi-messenger" astronomy: Use GW as standard sirens, test Lorentz Invariance.

Methodology: To develop a new astronomical site in Macón Ridge-Salta-Argentina

First step: ABRAS & TOROS: Complementary projects dedicated to electromagnetic counterparts of GW events, in the near-infrared and optical range. Mainly BNS transient events.

ABRAS: Argentinean-Brazil Astronomical Center **Main institutions**: IATE, IAG. **Funding institutions**: MINCyT-Argentina- and USP -Brazil-

TOROS: Transient Optical Robotic Observatory in the South **Members in LA:** 13 (8-Argentina- 4-Chile-1-Mexico). **Outside LA:** 7 US-1 Poland. **Main institutions in LA:** IATE, ULS, PUC, INAOE. **Funds from:** Brazil, Argentina, NSF

Timeline: TOROS is ready to start. If funding is secured, ABRAS could start in 2020.

A Latin American graduate school — A graduate program in Astrophysics and Cosmology

Main science drivers: All listed

Context: Theoretical work is needed and access to data is too

Methodology:

- To increase the amount of human resources dedicated to theoretical aspects of Astrophysics and Cosmology, and to the use of the astronomical facilities installed in the Latin America
- To promote the integration of the Latin American community working in Astrophysics and Cosmology
- Use the <u>PPGCosmo experience</u>

Thematic areas: Dark Matter, Astroparticle Physics, Cosmology, Gravitational Waves, Dark Energy, High Energy Theory, Astronomy and Astrophysics.

Mobility: Must include an internship period in a second institution belonging to the network.

