UNRAVELLING THE MISTÉRIES OF ULTRAENERGETIC COSMIC RAYS WITH AUGERPRIME

C. DOBRIGKEIT
II LATIN AMERICAN STRATEGY FORUM FOR RESEARCH INFRASTRUCTURE

10 JULY 2020
The Pierre Auger Collaboration

More than 450 collaborators from 90 institutions in 16 countries

Argentina – Australia – Brazil – Colombia – Czech Republic – France – Germany – Italy – Mexico – Netherlands – Poland – Portugal – Romania – Slovenia – Spain – United States
The Pierre Auger Collaboration

More than 450 collaborators from 90 institutions in 16 countries

Argentina – Australia – Brazil – Colombia – Czech Republic – France – Germany – Italy – Mexico – Netherlands – Poland – Portugal – Romania – Slovenia – Spain – United States
Latin-America in Auger:

• Argentina: 11 institutions, 70 members

• Brazil: 12 institutions, 26 members

• Colombia: 2 institutions, 6 members

• México: 5 institutions, 13 members
The Pierre Auger Observatory

• The Auger Observatory was built twenty years ago to study the most energetic cosmic particles that reach the Earth, those with energies above 10^{17} eV.

• The Observatory has been collecting data now for over more than 16 years, accumulating the world’s largest exposure to ultrahigh-energy cosmic rays. Data taken over these years have already led to major breakthroughs in the field.

• In the last four years, the Auger Collaboration began an effort dubbed **AugerPrime**, aiming to improve the determination of the primary mass composition.
The Auger Observatory: 3000 km²

- 1660 water-Cherenkov surface detectors
- 27 fluorescence telescopes
- 7 underground muon detectors
- Array of radio antennas
- Atmospheric monitoring devices (CLF, XLF, Lidar,..)
The energy spectrum

$J(E) \times E^3 [km^{-2} yr^{-1} sr^{-1} eV^2]$

$\gamma_0 = 2.92 \pm 0.05$

$\gamma_1 = 3.27 \pm 0.05$

$\gamma_2 = 2.2 \pm 0.2$

$\gamma_3 = 3.2 \pm 0.1$

$\gamma_4 = 5.4 \pm 0.6$

Events 891972
Exposure $\sim 80000 km^2 sr yr$

$E_{01} = 0.15 \pm 0.02$

$E_{12} = 6.2 \pm 0.9$

$E_{23} = 12 \pm 2$

$E_{34} = 50 \pm 7$

(energies in EeV units)
Studying mass composition through the X_{max}
Large scale anisotropy

Amplitude above 8 EeV:

\[(6.6^{+1.2}_{-0.8})\% \]

\[(\alpha, \delta) = (98^\circ, -25^\circ) \]

125° off the Galactic center
Intermediate scale anisotropy

Total SD events with $E > 32$ EeV: 2157
Total exposure $101,400$ km2 sr yr

Muon content in air showers

(UMD = Underground Muon Detector)

Simulations fail to reproduce the data in the energy range 3×10^{17} eV to 2×10^{18} eV.

Motivation for the upgrade:

With the upgrade of the detectors we aim at:

- Studying the origin of the observed suppression in the energy spectrum at the highest energies,
- Select showers initiated by light particles to allow for the identification of sources and charged particle astronomy,
- Improve estimates of neutrino and photon fluxes,
- Improve measurements of shower components to study hadronic interactions at UHE and looking for Physics beyond the SM.
AugerPrime
The upgrade AugerPrime

• New plastic scintillator detectors on top of each existing water-Cherenkov station.
• Extension of underground muon detectors and of the array of radio antennas.
• Substitution of the electronics for faster data acquisition.
• Adding a fourth photomultiplier tube in the surface detector to prevent saturation of the signal of the high-energy showers.
• Extending the operation time of the fluorescence telescopes into periods with higher background light.
• Extending the data taking up to ≥ 2025.
In Brazil,

• Over the years, we could count with the continuous support of FAPESP, FAPERJ, CNPq, RENAFAE, and for our contribution to the construction of the Observatory, also from FINEP and MCTI.