Physics exploration with the LHCb experiment

List of the interested scientists in the community

<table>
<thead>
<tr>
<th>Researcher</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alberto Reis</td>
<td>CBPF</td>
</tr>
<tr>
<td>André Massafferri</td>
<td>CBPF</td>
</tr>
<tr>
<td>Álvaro Gomes</td>
<td>CBPF / UFTM</td>
</tr>
<tr>
<td>Bruno S. de Paula</td>
<td>UFRJ</td>
</tr>
<tr>
<td>Carla Göbel</td>
<td>PUC-Rio</td>
</tr>
<tr>
<td>Érica Polycarpo</td>
<td>UFRJ</td>
</tr>
<tr>
<td>Fernando Rodrigues</td>
<td>UFRJ</td>
</tr>
<tr>
<td>Ignacio Bediaia</td>
<td>CBPF</td>
</tr>
<tr>
<td>Irina Nasteva</td>
<td>UFRJ</td>
</tr>
<tr>
<td>José Helder Lopes</td>
<td>UFRJ</td>
</tr>
<tr>
<td>Juan Otalora</td>
<td>UFRJ</td>
</tr>
<tr>
<td>Jussara Miranda</td>
<td>CBPF</td>
</tr>
<tr>
<td>Leandro de Paula</td>
<td>UFRJ</td>
</tr>
<tr>
<td>Melissa Cruz</td>
<td>CBPF / UAH</td>
</tr>
<tr>
<td>Miriam Gandelman</td>
<td>UFRJ</td>
</tr>
<tr>
<td>Murilo Rangel</td>
<td>UFRJ</td>
</tr>
<tr>
<td>Sandra Amato</td>
<td>UFRJ</td>
</tr>
</tbody>
</table>
This document summarizes the participation of the Brazilian institutes in the LHCb experiment during the next 15 years. We focus on the expected challenges and costs to maintain and improve these contributions.
Why LHCb?

++ Dedicated heavy flavour experiment at LHC
 -- CP-violation in b/c-sector
 -- Rare b/c-hadron decays

++ Indirect searches for unknown Physics

++ Electroweak, QCD, direct searches and heavy ion

>>> General Purpose Detector in forward region

Why Upgrade?

++ Hints of beyond SM phenomena
 … Lepton flavour (non-)universality?
 … Deviations in angular analysis

++ Precision tests with very rare decays

++ Several complementary studies w.r.t. GPD

++ Higher luminosities and more efficient triggers
The Brazilian institutes have been contributing to the LHCb experiment in different projects and in the best way possible. Although it would be fair to list the successful results of these contributions despite the adversities, we will describe below only the expected challenges.

We plan to participate in the experiment operations until 2031. If the LHCb Upgrade II is approved to collect data during the High Luminosity LHC (HL-LHC) operational period, the timeline would be extended by at least five years.

Challenges and costs

** formalize commitments to LHC experiments

** infrastructure and engineering capabilities to perform detector research and development (R&D) in the institutes
 … properly train our students in the local institutes

** financial support for mission trips to CERN

In summary, the costs to maintain a fruitful collaboration with the LHCb experiment, the Brazilian institutes need 2855 kCHF in the next 15 years.
Backup
LHCb is a single arm spectrometer fully instrumented in the forward region (2.0<\(\eta\)<5.0)

Designed for heavy flavour physics and also exploited for general purpose physics

[Int. J. Mod. Phys. A 30, 1530022 (2015)]

VELO

~20\(\mu\)m IP resolution

Muon

\(\varepsilon\approx 97\%\) for misID\(\approx 2\%\)

Tracking (magnet)

0.4%-0.6% momentum resolution (0.2-100 GeV)
LHCb
→ Unique coverage complementary to ATLAS/CMS
→ Soft trigger and forward acceptance → lower masses reach
→ Excellent secondary/tertiary vertex reconstruction → lower lifetimes reach (~ 1 ps).
→ Fixed target physics program
LHCb Upgrade
CERN-LHCC-2012-007

New VELO (Pixel Detector)

SciFi (new scintillating fibre tracker)

UT (new silicon tracker)

New mirrors and photon detectors

New readout electronics for the entire detector
LHCb Upgrade

Run 1+Run 2: 9.1/ fb
Run 3: 25/ fb
Run 2 trigger

Trigger structure:

- **Hardware**: energies deposited in calorimeters and muon stations hits are used to bring 40 MHz to 1 MHz

- **Software**: events built at 1 MHz (~27000 physical cores)
 - HLT1: fast tracking and inclusive selections
 - HLT2: complete event reconstruction and selections
Run 2 trigger

LHCb Trigger Run 2
- Bunch crossing rate: 40 MHz
- L0 Hardware trigger:
 - high p_T/E_T signatures
 - 1 MHz
- High Level Trigger 1:
 - partial event reconstruction
 - 110 kHz
- Software trigger:
 - 10 PB buffer
 - Alignment & Calibration
 - 110 kHz
- High Level Trigger 2:
 - full event reconstruction
 - 12.5 kHz
- Storage

HLT Farm with 10 PB disk space
At an average event size of 55 kB with 100 kHz:
 up to 2 weeks before HLT2 has to be executed
2x trigger CPU capacity since Farm is used twice for HLT (excess used for simulation)
Run 2 trigger

LHCb Trigger Run 2
- Bunch crossing rate: 40 MHz
- L0 Hardware trigger
 - high p_T/E_T signatures: 1 MHz

High Level Trigger 1
- partial event reconstruction: 110 kHz

Software trigger
- 10 PB buffer: 110 kHz
- High Level Trigger 2
 - full event reconstruction: 12.5 kHz

Storage

- Real-time alignment and calibration
- Dedicated HLT1 trigger lines supply samples for the alignment
- Alignment & calibration tasks run in parallel while events are being processed by HLT1

~50% improvement in mass resolution
Run 2 trigger: Turbo

\[\text{Bandwidth \, [GB s}^{-1}] \propto \text{Trigger output rate \, [kHz]} \times \text{Average event size \, [kB]} \]

Turbo data processing model

Analyses that can be done using trigger objects can profit of reduced event size and higher trigger rate.

Event size can be reduced from 70 kB to 7 kB depending on the persistence level

Calibration samples increased, reducing systematic uncertainties on efficiency measurements

50% of HLT2 trigger lines are Turbo counting 10% of the bandwidth
Run 2 Trigger: Turbo Analyses

Study of J/ψ Production in Jets
R. Aaij et al. (LHCb Collaboration)
Phys. Rev. Lett. 118, 192001 – Published 8 May 2017

Observation of the Doubly Charmed Baryon Ξ_{cc}^{++}
R. Aaij et al. (LHCb Collaboration)
Phys. Rev. Lett. 119, 112001 – Published 11 September 2017
Run 2 trigger: Efficiencies

$$\epsilon = \frac{N(\text{TOS and TIS})}{N(\text{TIS})}$$

TOS: events triggered on the signal
TIS: events triggered independently of the presence of the signal

If entire L0 bandwidth is granted
If there is bandwidth division

Simulation 2017
Run 2 trigger: Plots

LHCb-CONF-2016-005

1.17 billion dimuons

630 million candidates

Rare events: high efficiency
Copious production: high purity
Increase instantaneous luminosity: \(4 \times 10^{32} \rightarrow 2 \times 10^{33} \text{ cm}^{-2} \text{ s}^{-1}\)

Replacement of tracking detectors
- finer granularity to cope with higher particle density
- new front-end electronics compatible with 30 MHz readout

Remove hardware trigger stage and operate software trigger at 30 MHz input rate with 5 x more pileup than Run 2.

- HLT1 output: from 100 kHz to 1 MHz
- Disk buffer contingency: from weeks to days
- HLT2 output: from 0.6 GB/s to 10 GB/s