GRAVITATIONAL WAVES: FROM DETECTION TO NEW PHYSICS SEARCHES

Masha Baryakhtar New York University

Lecture 3 July 2. 2020

Superradiance and Black Holes

or

How to Extract Energy from Black Holes and Discover New Particles

- Superradiance and rotating BHs
- Gravitational Atoms
- Signs of New Particles
 - Black Hole Spindown
 - Gravitational Wave Signals

- Superradiance and rotating BHs
- Gravitational Atoms
- Signs of New Particles
 - Black Hole Spindown
 - Gravitational Wave Signals

- Rotational, or Zeldovich, superradiance: extraction of an object's rotational energy by an incident wave in the presence of dissipation
- Rotating (Kerr) black holes can superradiance and lose energy and angular momentum

- Superradiance and rotating BHs
- Gravitational Atoms
- Signs of New Particles
 - Black Hole Spindown
 - Gravitational Wave Signals

- Ultralight fields can form macroscopic gravitationally bound states with astophysical black holes, or ``gravitational atoms''
- Bosonic fields can form states with exponentially large occupation values which grow spontaneously through superradiance

- Superradiance and rotating BHs
- Gravitational Atoms
- Signs of New Particles
 - Black Hole Spindown
 - Gravitational Wave Signals

- If there is a light axion (scalar/ vector) with compton wavelength comparable to astrophysical BH sizes, it will cause astrophysical black holes to spin down
- The resulting bound states of light particles will source gravitational wave radiation that is observable by LIGO

Motivation

- Ultralight scalar particles often found in theories beyond the Standard Model
- E.g. the QCD axion solves the `strong-CP' problem
- As already discussed, ultralight scalars can make up the DM

Astrophysical Black Holes and Ultralight Particles

- Black holes in our universe provide nature's laboratories to search for light particles
- Set a typical length scale, and are a huge source of energy
- Sensitive to QCD axions with GUTto Planck-scale decay constants f_a

for a 10⁻¹² eV particle:

- A an object scattering off a **rotating** cylinder can increase in angular momentum and energy.
- Effect depends on dissipation, necessary to change the velocity

Ball incident on cylinder with lossy surface slows down due to friction

- A an object scattering off a **rotating** cylinder can increase in angular momentum and energy.
- Effect depends on dissipation, necessary to change the velocity

If the cylinder is rotating at angular velocity equal to the angular velocity of the ball about the axis, $\Omega_i = v_{\phi,i}$ the relative velocity at the point of contact is zero: no energy loss

- A an object scattering off a **rotating** cylinder can increase in angular momentum and energy.
- Effect depends on dissipation, necessary to change the velocity

- If the cylinder is rotating even faster, $\Omega_i > v_{\phi,i}$
- Ball scattering off rapidly rotating cylinder with lossy surface speeds up!
- Energy increase comes from cylinder slowing down, losing energy and angular momentum

• Scalar perturbations scattering off of rotating cylindrical medium with absorption

superradiance condition

- A wave scattering off a rotating object can increase in amplitude by extracting angular momentum and energy.
- Growth proportional to probability of absorption when rotating object is at rest: dissipation necessary to increase wave amplitude

Superradiance condition:

Angular velocity of wave slower than angular velocity of BH horizon,

 $\Omega_a < \Omega_{BH}$

Zel'dovich; Starobinskii; Misner

Gravitational wave amplified when scattering from a rapidly rotating black hole

Angular velocity of wave slower than angular velocity of BH horizon,

 $\Omega_a < \Omega_{BH}$

What is the `angular velocity' of the BH horizon?

$$ds^2 = -\left(1 - \frac{2r_g r}{\Sigma}\right)dt^2 + \frac{\Sigma}{\Delta}dr^2 + \Sigma d\theta^2 + \left(r^2 + a^2 + \frac{2r_g ra^2}{\Sigma}\sin^2\theta\right)\sin^2\theta d\phi^2 - \frac{4r_g ra}{\Sigma}\sin^2\theta dt d\phi$$

$$r_g \equiv GM, \quad a \equiv \frac{J}{M} \equiv a_* r_g, \quad \Sigma = r^2 + a^2 \cos^2 \theta, \quad \Delta = r^2 - 2r_g r + a^2$$

Symmetry axis $\theta = 0, \pi$

$$ds^2 = -\left(1 - \frac{2r_g r}{\Sigma}\right)dt^2 + \frac{\Sigma}{\Delta}dr^2 + \Sigma d\theta^2 + \left(r^2 + a^2 + \frac{2r_g ra^2}{\Sigma}\sin^2\theta\right)\sin^2\theta d\phi^2 - \frac{4r_g ra}{\Sigma}\sin^2\theta dt d\phi$$

$$r_g \equiv GM$$
, $a \equiv \frac{J}{M} \equiv a_* r_g$, $\Sigma = r^2 + a^2 \cos^2 \theta$, $\Delta = r^2 - 2r_g r + a^2$

Horizon: coordinate singularity: the purely radial component g_{rr} of the metric goes to infinity.

Angular velocity of wave slower than angular velocity of BH horizon,

 $\Omega_a < \Omega_{BH}$

What is the `angular velocity' of the BH horizon?

`Blackboard'

Angular velocity of wave slower than angular velocity of BH horizon,

 $\Omega_a < \Omega_{BH}$

For a scalar field mode with energy ω and angular momentum m ,

$$\Phi = \phi(r)e^{-i\omega t + im\varphi}$$

Angular velocity of wave slower than angular velocity of BH horizon,

 $\Omega_a < \Omega_{BH}$

For a scalar field mode with energy ω and angular momentum m ,

$$\Phi = \phi(r)e^{-i\omega t + im\varphi}$$

And a Kerr black hole,

$$\frac{\omega}{m} < \frac{1}{2r_g} \frac{a_*}{1 + \sqrt{1 - a_*^2}}$$

Angular velocity of wave slower than angular velocity of BH horizon,

 $\Omega_a < \Omega_{BH}$

For a scalar field mode with energy w and angular momentum m ,

$$\Phi = \phi(r)e^{-i\omega t + im\varphi}$$

And a Kerr black hole,

$$\frac{\omega}{m} < \frac{1}{2r_g} \frac{a_*}{1 + \sqrt{1 - a_*^2}}$$

For a nonrelativistic field with mass μ and angular momentum m, the SR condition is

$$\frac{\mu r_g}{m} < \frac{1}{2} \frac{a_*}{1 + \sqrt{1 - a_*^2}} < \frac{1}{2}$$

- Superradiance and rotating BHs
- Gravitational Atoms
- Signs of New Particles
 - Black Hole Spindown
 - Gravitational Wave Signals

- Ultralight fields can form macroscopic gravitationally bound states with astophysical black holes, or ``gravitational atoms''
- Bosonic fields can form states with exponentially large occupation values which grow spontaneously through superradiance

Particles/waves trapped in orbit around the BH repeat this process continuously

Press & Teulkosky "Black hole bomb" exponential instability when surround BH by a mirror Kinematic, not resonant condition Superradiance condition:

Angular velocity of wave slower than angular velocity of BH horizon,

 $\Omega_a < \Omega_{BH}$

Particles/waves trapped in orbit around the BH repeat this process continuously

"Black hole bomb": exponential instability when surround BH by a mirror

Kinematic, not resonant condition

Angular velocity of wave slower than angular velocity of BH horizon,

 $\Omega_a < \Omega_{BH}$

 μ_a^{-1}

- Particles/waves trapped near the BH repeat this process continuously
- For a massive particle, e.g. axion, gravitational potential barrier provides trapping

 $V(r) = -\frac{G_{\rm N}M_{\rm BH}\mu_a}{r}$

 For high superradiance rates, compton wavelength should be comparable to black hole radius:

$$r_g \lesssim \mu_a^{-1} {\sim} 3\,\mathrm{km}\,\frac{6{\times}10^{-11}\mathrm{eV}}{\mu_a}$$

[Zouros & Eardley'79; Damour et al '76; Detweiler'80; Gaina et al '78] [Arvanitaki, Dimopoulos, Dubovsky, Kaloper, March-Russell 2009; Arvanitaki, Dubovsky 2010]

 $\overline{r_g}$

Gravitational Atoms?

Gravitational Atoms?

Gravitational Atoms

Gravitational potential similar to hydrogen atom

`Fine structure constant`

 $\alpha \equiv G_{\rm N} M_{\rm BH} \mu_a \equiv r_g \mu_a$

Constraint on α from SR condition:

$$\frac{\alpha}{m} < \frac{1}{2} \frac{a_*}{1 + \sqrt{1 - a_*^2}} < \frac{1}{2}$$

Gravitational Atoms

Gravitational potential similar to hydrogen atom

`Fine structure constant`RadiusOccupation number $\alpha \equiv G_{\rm N} M_{\rm BH} \mu_a \equiv r_g \mu_a$ $r_c \simeq \frac{n^2}{\alpha \mu_a} \sim 4 - 400 r_g$ $N \sim 10^{75} - 10^{80}$

Gravitational Atoms

Gravitational potential similar to hydrogen atom

`Fine structure constant`

Radius

Occupation number

$$\alpha \equiv G_{\rm N} M_{\rm BH} \mu_a \equiv r_g \mu_a$$
 $r_c \simeq \frac{n^2}{\alpha \mu_a} \sim 4 - 400 r_g$ $N \sim 10^{75} - 10^{80}$

Boundary conditions at horizon give imaginary frequency: **exponential growth for rapidly rotating black holes**

$$E \simeq \mu \left(1 - \frac{\alpha^2}{2n^2} \right) + i\Gamma_{\rm sr}$$
33

Superradiance Timescales

$$\alpha = G_{\rm N} M_{\rm BH} \mu_a = r_g \mu_a \lesssim \frac{m}{2} a_*$$

Superradiance Timescales

Flux into horizon: $\Gamma_{\mathrm{sr}}^{\mathrm{scalar}} \sim \int_{r=r_q} \psi^* \psi \cdot dA$

Superradiance: a stellar black hole history

A black hole is born with spin $a^* = 0.95$, M = 40 M $_{\odot}$.

Superradiance: a stellar black hole history

BH spins down and fastest-growing level is formed Cloud radius Once BH angular velocity matches that of the level, growth stops $_{6 \text{ msec}}$ (2000 km)

Superradiance: a stellar black hole history

Cloud can carry up to a few percent of the black hole mass: huge energy density

~10⁷⁸ particles

- Superradiance and rotating BHs
- Gravitational Atoms
- Signs of New Particles
 - Black Hole Spindown
 - Gravitational Wave Signals

- If there is a light axion (scalar/ vector) with compton wavelength comparable to astrophysical BH sizes, it will cause astrophysical black holes to spin down
- The resulting bound states of light particles will source gravitational wave radiation that is observable by LIGO

Black Hole Spins

Five currently measured black holes combine to set limit:

$$2 \times 10^{-11} > \mu_a > 6 \times 10^{-13} \text{ eV}$$

Many BH-BH mergers detected

Each detection comes with a measurement of the initial black hole masses, and, to a lesser extent, spins

Updated 2020-05-16 LIGO-Virge | Frank Elavsky, Aaron Geller | Northwestern

Black Hole Spins at LIGO

9-240 BBHs/Gpc³/yr.: 1000s of BHs merging in low-redshift universe

42

Black Hole Spins at LIGO

If light axion exists, many initial BHs would have low spin due to superradiance, limited by age and radius of binary system

43

Gravitational Wave Signals Transitions between levels Annihilations to gravitons

 Signals coherent, monochromatic, last hours to millions of years

Superradiance: a stellar black hole histor \mathcal{F}_{ℓ}

- BH spins down: next level formed; annihilations to GWs deplete first level
- Next level has a superradiance rate exceeding age of BH

 $\ell = 2$

• Gravitational wave strain emitted from a time-varying energy density

$$h_{ij} = \frac{2G}{r} \frac{d^2 I_{ij}}{dt^2}, \quad I_{ij} = \int T_{00} x^i x^j d^3 x$$

• Gravitational wave strain emitted from a time-varying energy density

$$h_{ij} = \frac{2G}{r} \frac{d^2 I_{ij}}{dt^2}, \quad I_{ij} = \int T_{00} x^i x^j d^3 x$$

• We have a field described by

$$\phi = \frac{1}{\sqrt{2\mu}} \sum_{i} \sqrt{N_i} \left(\psi^i e^{-i\omega t} + \psi^{i*} e^{i\omega t} \right)$$

• Gravitational wave strain emitted from a time-varying energy density

$$h_{ij} = \frac{2G}{r} \frac{d^2 I_{ij}}{dt^2}, \quad I_{ij} = \int T_{00} x^i x^j d^3 x$$

• We have a field described by

$$\phi = \frac{1}{\sqrt{2\mu}} \sum_{i} \sqrt{N_i} \left(\psi^i e^{-i\omega t} + \psi^{i*} e^{i\omega t} \right)$$

• With stress-energy components of the form

$$T_{\mu\nu} \supset \mu^2 \phi^2 + \dots = \frac{1}{2\mu} \sum_{i,j} \sqrt{N_i N_j} \left(\underbrace{\psi^i \psi^j e^{-i(\omega_i + \omega_j)t}}_{\text{`annihilations'}} + \underbrace{\psi^i \psi^{j*} e^{-(\omega_i - \omega_j)t}}_{\text{`transitions'}} + \text{h.c.} \right) + \dots,$$

• Gravitational wave strain emitted from a time-varying energy density

$$h_{ij} = \frac{2G}{r} \frac{d^2 I_{ij}}{dt^2}, \quad I_{ij} = \int T_{00} x^i x^j d^3 x$$

• We have a field described by

$$\phi = \frac{1}{\sqrt{2\mu}} \sum_{i} \sqrt{N_i} \left(\psi^i e^{-i\omega t} + \psi^{i*} e^{i\omega t} \right)$$

• With stress-energy components of the form

$$T_{\mu\nu} \supset \mu^2 \phi^2 + \dots = \frac{1}{2\mu} \sum_{i,j} \sqrt{N_i N_j} \left(\underbrace{\psi^i \psi^j e^{-i(\omega_i + \omega_j)t}}_{\text{`annihilations'}} + \underbrace{\psi^i \psi^{j*} e^{-(\omega_i - \omega_j)t}}_{\text{`transitions'}} + \text{h.c.} \right) + \dots,$$

Blackboard estimate for annihilations

Superradiance Timescales

Gravitational Wave Power: $P_{GW} \sim G_N \omega^2 \overline{T}_{ij}(\omega, k) \overline{T}_{ij}^*(\omega, k)$

Time-varying energy density sources gravitational waves: two bosons annihilating into gravitational waves

- coherent and monochromatic:
- fit into searches for long, continuous, monochromatic gravitational waves ("mountains" on neutron stars)

- Weak, long signals last for ~ thousand- billion years, visible from our galaxy
 - Event rates up to 10,000 can be observed and studied in detail Arvanitaki, MB, Huang (2015)

Arvanitaki, **MB**, Dimopoulos, Dubovsky, Lasenby (2017) Brito et al (2017)

- Weak, long signals last for ~ thousand- billion years, visible from our galaxy
 - Event rates up to 10,000 can be observed and studied in detail
- Loud, short signals last for ~ days months, observable from BBH or NS-NS merger events
 - Event rates <1/year at design aLIGO sensitivity, up to 100's at future observatories
 Arvanitaki, MB, Dimopoulos, Dubovsky, Lasenby (2017) Isi, Sun, Brito, Melatos (2019)

time

Gravitational Wave Searches

- Current searches for gravitational waves from asymmetric rotating neutron stars ongoing
- Targeted as well as all-sky searches, reaching to very weak signals with large computational efforts

All-SkyOI Upper Limits

Abbott et al PRD 96, 122004 (2017)

Cambridge University Lucky Imaging Group

- Weak, long signals last for ~ million years, visible from our galaxy
- Very sensitive to number of rapidly rotating black holes
- Weak dependence on mass distribution except at low axion masses
- Up to 1000 signals above sensitivity threshold of Advanced LIGO searches today
- See also papers by Brito et al on stochastic searches for these signals when many signals are present

New Physics with Gravitational Waves

- If ultralight axions (bosons) exist, black holes spin down.
- Measurement of high spin black holes places exclusion limits; LIGO will provide more data points
- Axion clouds produce monochromatic wave radiation; we are looking for these signals in LIGO data

GRAVITATIONAL WAVES: FROM DETECTION TO NEW PHYSICS SEARCHES

- Detection at LIGO and physics of LIGO
- Pulsar timing for GWs and ultralight scalar DM
- Axion clouds around black holes and GWs

Potentially new discoveries await!