Sigma models with local couplings: a new connection between integrability and RG flow

Ben Hoare

ETH Zurich

Based on arXiv:2008.01112 with Nat Levine and Arkady Tseytlin

IGST 2020

August 2020

Introduction	Lax connection
000000	0000000000

connections for models with local couplings

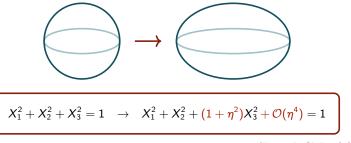
Conserved charges

Massive models

Conclusions

Introduction

- **Observation 1:** There is a remarkable link between the classical integrability of 2-d σ -models and their stability under RG flow at 1 loop.
- Integrable deformations of some of the simplest σ-models were originally constructed by looking for solutions to the RG equations:



[Fateev, Onofri, Zamolodchikov] [Lukyanov, ...]

Ben Hoare

ETH Zurich

ntroduction	Lax connections for models with local couplings
000000	0000000000000

0

- Believed that 1-loop RG trajectories stay within the class of classically integrable σ-models.
- This has been checked for numerous examples including:
 - models where the global symmetry constrains the RG flow, for example, the principal chiral model;
 - models such as integrable deformations, for which renormalisability at 1 loop with finitely many couplings is non-trivial.
- Can be extended to higher loops.
- Underlies duality with integrable massive models.
- How does the classical integrability translate into simple quantum behaviour?

Introduction	Lax connections for models with local couplings	Conserved charges	Massive models	Conclusions
000000	0000000000000	00000	00	00

 Observation 2: There is an interesting class of string σ-models with metric-dilaton backgrounds of the form

$$\mathsf{G} = -2\,\mathsf{d} u\,\mathsf{d} v + G_{ij}(x,u)\,\mathsf{d} x^i\,\mathsf{d} x^j \qquad \Phi = v + \Phi(x,u)$$

- the metric admits a covariantly constant null Killing vector;
- the transverse metric $G_{ij}(x, u)dx^i dx^j$ can be curved;
- the dilaton is linear in the null coordinate v.

Ben Hoare

[Tsevtlin]

Introduction	Lax	connections	for	models	with	local	couplings
000000	000	00000000	00	000			

Massive models

Conclusions

Introduction

• The classical worldsheet Lagrangian in conformal gauge is

$$\mathcal{L} = -2\partial_+ u\partial_- v + G_{ij}(x, u)\partial_+ x^i\partial_- x^j$$

• On a general 2-d worldsheet we have Weyl invariance at 1-loop if the σ -model

$$\mathcal{L} = G_{ij}(x, u)\partial_+ x^i\partial_- x^j$$

solves the 1-loop RG equations with u formally playing the role of RG time

$$\mathsf{R}_{\mu\nu} + 2\nabla_{\mu}\nabla_{\nu}\Phi = 0 \quad \Rightarrow \quad \partial_{u}G_{ij} = R_{ij} + 2\nabla_{i}\nabla_{j}\Phi$$

Ben Hoare

ETH Zurich

Sigma models with local couplings: a new connection between integrability and RG flow

Introduction	Lax connections for models with local couplings	Conserved
0000000	0000000000000	00000

Massive models

Conclusions

Introduction

$$\mathcal{L} = -2\partial_+ u\partial_- v + G_{ij}(x, u)\partial_+ x^i\partial_- x^j$$

- In conformal gauge the equation of motion for v is $\partial_+\partial_- u = 0$.
- We fix the residual gauge symmetry using light-cone gauge by setting $u = \tau$.
- We are left with a time-dependent theory for the transverse coordinates xⁱ

$$\mathcal{L} = G_{ij}(x,\tau)\partial_+ x^i \partial_- x^j$$

Ben Hoare

ETH Zurich

Introduction	
0000000	

Lax connections for models with local couplings

Conserved charges

Massive models

Conclusions

Introduction

• **Motivated** by the goal of finding new solvable string *σ*-models, these observations lead us to the following question:

Take a σ -model $\mathcal{L} = G_{ij}(x; h)\partial_+ x^i \partial_- x^j$ that is classically integrable and renormalisable at 1 loop with only the couplings h_a running.

This σ -model can be embedded into a Weyl-invariant σ -model with $h_a(u)$ determined by the 1-loop RG flow:

$$\mathcal{L} = -2\partial_+ u\partial_- v + G_{ij}(x;h(u))\partial_+ x^i\partial_- x^j$$

Question: Is the light-cone gauge-fixed theory classically integrable?

$$\mathcal{L} = G_{ij}(x; h(\tau))\partial_+ x^i \partial_- x^j$$

Ben Hoare

ETH Zurich

Sigma models with local couplings: a new connection between integrability and RG flow

Introduction	Lax connections for models with local couplings
000000	0000000000000

Massive models

Conclusions

Outline

- Introduction
- Lax connections for models with local couplings
- Conserved charges
- Massive models
- Conclusions

Massive models

Conclusions

PCM with local coupling

• As a working example we consider the principal chiral model (PCM) for the simple Lie group G

$$\mathcal{L} = -h \operatorname{Tr}[g^{-1}\partial_+g g^{-1}\partial_-g]$$

- 2-d σ -model whose target space is the Lie group G with the round metric:
 - $\partial_{\pm}=\partial_{ au}\pm\partial_{\sigma}$ are light-cone derivatives on the worldsheet;
 - g is a G-valued field so that $g^{-1}\partial_{\pm}g$ ∈ Lie(G) are pull-backs of the Maurer-Cartan 1-form;
 - - Tr is the positive-definite ad-invariant bilinear form on Lie(G);
 - $G_L \times G_R$ global symmetry.
 - h is the σ -model coupling, proportional to the radius squared;

Lax connections for models with local couplings

Conserved charges

Massive models

Conclusions

PCM with local coupling

The PCM is integrable: its equations of motion are encoded in the zero-curvature of the Lax connection [Zakharov, Mikhailov]

$$\mathcal{L}_{\pm}=rac{1+z^{\pm1}}{2}\,g^{-1}\partial_{\pm}g$$

where $z \in \mathbb{C}$ is the constant spectral parameter.

The PCM for a simple Lie group G is renormalisable at 1 loop with only the coupling *h* running: [McKane, Stone; Friedan]

$$\frac{\mathsf{d}}{\mathsf{d}t}h=c\quad\Rightarrow\quad h=ct$$

where c is the dual Coxeter number of G and $t = \log \mu$ is the RG time. (from now on c = 1 for simplicity)

Ren Hoare

Lax connections for models with local couplings ${\tt OOOOOOOOOOOOO}$

Conserved charges

Massive models

Conclusions

PCM with local coupling

• The PCM can be used to construct the conformal gauge string σ -model

$$\mathcal{L} = -2\partial_+ u\partial_- v - u \operatorname{Tr}[g^{-1}\partial_+ g g^{-1}\partial_- g]$$

whose light-cone gauge fixing is

$$\mathcal{L} = - au \operatorname{\mathsf{Tr}}[g^{-1}\partial_+g \, g^{-1}\partial_-g]$$

• This is the PCM with time-dependent local coupling.

Question: Is this model classically integrable?

Lax connections for models with local couplings $\texttt{OOO} \bullet \texttt{OOOOOOOOOO}$

Conserved charges

Massive models

Conclusions

Lax connection: $RG \Rightarrow Lax$

• Let us try to construct a Lax connection for this model

$$\mathcal{L} = - au \operatorname{\mathsf{Tr}}[g^{-1}\partial_+g \, g^{-1}\partial_-g]$$

• The equations of motion in first-order form are $(J_{\pm} = g^{-1}\partial_{\pm}g)$

$$\partial_+(\tau J_-)+\partial_-(\tau J_+)=0 \qquad \qquad \partial_+J_--\partial_-J_++[J_+,J_-]=0$$

• We assume the following ansatz for the Lax connection

$$L_{\pm}=rac{1+z^{\pm1}}{2}J_{\pm}$$
 $z=z(w; au,\sigma)$

where $w \in \mathbb{C}$ is now the constant spectral parameter.

Ben Hoare

ETH Zurich

Lax connections for models with local couplings ${\tt OOOOOOOOOOOOOO}$

Conserved charges

Massive models

Conclusions

Lax connection: $RG \Rightarrow Lax$

• It turns out that if

$$L_{\pm} = rac{1+z^{\pm 1}}{2} J_{\pm} \qquad z = \pm \sqrt{rac{w+\sigma- au}{w+\sigma+ au}}$$

then the corresponding curvature is

$$egin{aligned} \partial_+ L_- & -\partial_- L_+ + [L_+, L_-] = rac{z^{-1} - z}{4} rac{1}{ au} \left[\partial_+ (au J_-) + \partial_- (au J_+)
ight] \ & + rac{(1+z)(1+z^{-1})}{4} \left[\partial_+ J_- - \partial_- J_+ + [J_+, J_-]
ight] \end{aligned}$$

• Demanding that this vanishes for all w indeed implies the equations of motion.

Ben Hoare

ETH Zurich

Lax connections for models with local couplings

Conserved charges

Massive models

Conclusions

Lax connection: $RG \Rightarrow Lax$

$$L_{\pm} = rac{1+z^{\pm 1}}{2} J_{\pm} \qquad z = \pm \sqrt{rac{w+\sigma- au}{w+\sigma+ au}}$$

- This Lax connection has a number of unusual new features:
 - -z is now a function of au and σ , while w is constant;
 - the σ-model coupling only depends on τ; however the Lax connection depends explicitly on the spatial coordinate σ;
 - w and σ always come in the combination $w + \sigma$;
 - complicated analytic properties including position-dependent branch cuts.

Conserved charges

Massive models

Conclusions

Lax connection: Lax \Rightarrow RG

- So far we have established that when the local coupling is determined by the 1-loop RG flow we can construct a Lax connection.
- What about the converse?
 - For which local couplings can we construct a Lax connection?
- Consider the PCM with a coupling that is a general function of τ and σ : (ignoring boundary/periodicity conditions for now)

$$\mathcal{L} = -h(au, \sigma) \operatorname{Tr}[g^{-1}\partial_+ g g^{-1}\partial_- g]$$

• The equations of motion in first-order form are $(J_{\pm}=g^{-1}\partial_{\pm}g)$

$$\partial_+(h(\tau,\sigma)J_-) + \partial_-(h(\tau,\sigma)J_+) = 0$$
 $\partial_+J_- - \partial_-J_+ + [J_+,J_-] = 0$

Lax connections for models with local couplings

Conserved charges

Massive models

Conclusions

Lax connection: Lax \Rightarrow RG

• We again assume the following ansatz for the Lax connection

(this can be further relaxed to $L_{\pm}=z_{\pm}J_{\pm},\,z_{\pm}=z_{\pm}(w; au,\sigma))$

$$L_{\pm}=rac{1+z^{\pm1}}{2}J_{\pm}$$
 $z=z(w; au,\sigma)$

• The corresponding curvature is

$$\begin{split} \partial_{+}L_{-} &- \partial_{-}L_{+} + [L_{+}, L_{-}] = \frac{z^{-1} - z}{4} \left(\partial_{+}J_{-} + \partial_{-}J_{+} \right) \\ &- \frac{\partial_{+}\log z}{2z} J_{-} - \frac{z\partial_{-}\log z}{2} J_{+} \\ &+ \frac{(1 + z)(1 + z^{-1})}{4} \left[\partial_{+}J_{-} - \partial_{-}J_{+} + [J_{+}, J_{-}] \right] \end{split}$$

• The term in red should vanish on the equations of motion.

Lax connections for models with local couplings

Conserved charges

Massive models

Conclusions

Lax connection: Lax \Rightarrow RG

• Comparing coefficients of J_{\pm} and its derivatives, a Lax connection exists if

$$h(au,\sigma)=f^+(\xi^+)+f^-(\xi^-)\qquad \xi^\pm=rac{1}{2}\,(au\pm\sigma)$$

- For $f^{\pm}(\xi^{\pm}) = \xi^{\pm}$, $h(\tau, \sigma) = \tau$ and we recover the time-dependent case.
- Different $h(\tau, \sigma)$ correspond to 2-d conformal transformations of this case.
- $-\,$ This freedom is expected as they preserve the form of the Lagrangian.
- Can also be understood from the conformal gauge string σ -model: to fix the residual gauge symmetry we can take $u = f^+(\xi^+) + f^-(\xi^-)$.
- Therefore, the existence of a Lax connection implies that the local coupling is determined by the 1-loop RG flow (up to conformal transformations).

Lax connections for models with local couplings ${\tt OOOOOOOOOOOOOOO}$

Conserved charges

Massive models

Conclusions

Lax connection: Lax \Leftrightarrow RG

• There are various special cases:

$$\mathcal{L} = - \left(f^+(\xi^+) + f^-(\xi^-) \right) \operatorname{Tr}[g^{-1}\partial_+gg^{-1}\partial_-g]$$

- $f^+ + f^- = \text{const:}$ the PCM with constant coupling, invariant under conformal transformations;
- $f^- = \text{const:}$ the "chiral model,"

invariant under "half" the conformal transformations;

- $f^+ + f^- = \tau$: the time-dependent model,

natural in string context, spatial momentum is conserved;

- $f^+ + f^- = \sigma$: the space-dependent model, energy is conserved.

Ben Hoare

ETH Zurich

Lax connections for models with local couplings

Lax connection: Lax \Leftrightarrow RG – further examples

- The Lax connection for the PCM with local coupling is not accidental.
- The same construction works for a number of other integrable σ -models: .
 - the symmetric space σ -model; [Eichenherr, Forger]

Conserved charges

- the PCM plus WZ term; [Veselov, Takhtajan]
- the *q*-deformation of the PCM; (otherwise known as the inhomogeneous Yang-Baxter deformation or η -deformation, generalises the squashed 3-sphere and is a 2-coupling model) [Klimčík]
- the isotropic current-current deformation of the WZW model; (otherwise known as the λ -deformation)
- an analogous deformation of gauged WZW with no global symmetry.
- For many of these the RG flow is more complicated and the existence of a • Lax connection is particularly non-trivial.

Ben Hoare

[Sfetsos]

Lax connections for models with local couplings

Conserved charges

Massive models

Conclusions

Lax connection: Lax \Leftrightarrow RG – further examples

• As a more involved example, consider the q-deformation of the PCM

[Klimčík; Delduc, Magro, Vicedo] [Valent, Klimčík, Squellari]

$$\mathcal{L} = -h \operatorname{Tr}[g^{-1}\partial_+g \ rac{1}{1-\eta R} \ g^{-1}\partial_-g]$$

where R annihilates Cartan generators and acts on roots as $R: e_{\pm} \rightarrow \mp i e_{\pm}$.

- This is a 2-coupling model:
 - the radius squared h;
 - the deformation parameter η .
- Symmetry is broken to $G_L \times U(1)^{\operatorname{rank} G}$.

Conserved charges

Massive models

Conclusions

Lax connection: Lax \Leftrightarrow RG – further examples

• The model is integrable with Lax connection

$$L_{\pm} = - \, rac{1+z^{\pm 1}}{2} \, (1+\eta^2) \, {
m Ad}_{g} \, rac{1}{1\pm \eta R} \, J_{\pm}$$

• The model is renormalisable at 1 loop with the couplings η and h running

$$\frac{d}{dt}h = c(1+\eta^2)^2 \qquad \frac{d}{dt}(\eta h^{-1}) = 0$$

$$\Rightarrow$$

$$\nu \equiv \eta(t)h(t)^{-1} = \text{const} \qquad \arctan \eta(t) + \frac{\eta(t)}{1+\eta(t)^2} = 2c\nu t$$

Ben Hoare

ETH Zurich

Sigma models with local couplings: a new connection between integrability and RG flow

Conserved charges

Massive models

Conclusions

Lax connection: Lax \Leftrightarrow RG – further examples

• Using these functions we construct the time-dependent model

$$\mathcal{L} = -h(au) \operatorname{Tr}[g^{-1}\partial_+g \; rac{1}{1-\eta(au)R} \, g^{-1}\partial_-g]$$

• Again admits a Lax connection of the same form as the original model with

$$\eta
ightarrow \eta(au) \qquad h
ightarrow h(au)$$
arctan $igg(rac{1}{\eta(t)} rac{1-z}{1+z} igg) - rac{1-z}{1+z} rac{\eta(au)}{1+\eta(au)^2} = -2c
u(w+\sigma)$

• Again, the existence of a Lax connection implies that the local couplings are determined by the 1-loop RG flow (up to conformal transformations).

Massive models

Conclusions

Lax connection: Lax \Leftrightarrow RG

Take a classically integrable σ -model and let its couplings be time-dependent functions; then the Lax connection generalises to the time-dependent theory if the coupling functions are determined by the 1-loop RG flow of the original model.

- We have tested this construction on a number of integrable 2-d σ -models.
- Establishes a new connection between classical integrability and RG flow.

ntroduction	Lax connections for models with local couplings	Conserved charges
000000	0000000000000	●0000

Massive models

Conclusions

Non-local charges

In

• Consider the time-dependent PCM on 2-d Minkowski space and choose the following branch of the Lax connection:

$$L_{\pm} = rac{1+z^{\pm 1}}{2} J_{\pm} \qquad z = -\sqrt{rac{w+\sigma- au}{w+\sigma+ au}}$$

- At spatial infinity $\sigma \to \pm \infty$, $z \to -1$, and L_{\pm} vanish if J_{\pm} are bounded.
- Therefore, the monodromy matrix

$$M(\tau) = \operatorname{Pexp}^{\longrightarrow} \int_{-\infty}^{\infty} \mathrm{d}\sigma L \qquad L = \frac{1}{2} (L_{+} - L_{-})$$

is conserved:
$$\partial_{\tau}M = ML_{\tau}\Big|_{\sigma \to +\infty} - L_{\tau}\Big|_{\sigma \to -\infty}M = 0.$$
 [Lüscher, Pohlmeyer, ...]

Ben Hoare

ETH Zurich

Sigma models with local couplings: a new connection between integrability and RG flow

Introduction	Lax connections for models with local couplings	Conserved charges	Massive models	Conclusions
0000000	0000000000000	0000	00	00

Non-local charges

• Expanding the monodromy around $w = -\infty$ we find

$$\begin{split} \mathcal{M}(\tau) &= 1 + \frac{1}{2w} \int_{-\infty}^{\infty} \mathsf{d}\sigma \left(\tau J_{\tau}\right) \\ &- \frac{1}{4w^2} \left(\int_{-\infty}^{\infty} \mathsf{d}\sigma \left(\tau^2 J_{\tau} + 2\tau\sigma J_{\sigma}\right) + \mathsf{bi-local term} \right) + \dots \end{split}$$

- The $\mathcal{O}(w^{-1})$ term is the Noether charge from one of the global G symmetries.
- At higher orders we find generalisations of the multi-local Yangian charges.
- The integrals explicitly depend on σ and for term-by-term convergence we require increasingly strong decaying boundary conditions on J_{\pm} .

Introduction	Lax connections for models with local couplings	Conserved charges	Massive models	Conclusions
0000000	0000000000000	0000	00	00

Non-local charges

• What about if we consider the model on the cylinder, $\sigma \sim \sigma + 2\pi$.

$$L_{\pm} = rac{1+z^{\pm 1}}{2} J_{\pm}$$
 $z = -\sqrt{rac{w+\sigma- au}{w+\sigma+ au}}$

- The explicit σ dependence in the Lax connection breaks periodicity and it is not clear how to construct conserved charges.
- Could the fact that w and σ always appear in the combination $w + \sigma$ help: can $\sigma \rightarrow \sigma + 2\pi$ be compensated by a shift in w?
- Suggests that w and σ should be treated on a more equal footing.

troduction	Lax connections for models with local couplings
000000	0000000000000

Massive models

Conclusions

Local charges

In

- Working with a general local coupling, we can also try to construct "higher-spin" local charges
- Motivated by the form these charges take in the PCM, we consider the ansatz

[Evans, Hassan, MacKay, Mountain, ...]

$$Q^{(n)} = - rac{1}{2} \int {
m d} \sigma \, \, {
m Tr} \, ig(\sum_{i=0}^n \mu_{i,n}(au,\sigma) J^{n-i}_\sigma J^i_ au ig)$$

• Let us comment on the two simplest cases: n = 2 and n = 3.

Ben Hoare

ETH Zurich

Introduction	Lax connections for models with local couplings	Conserved charges	Massive models	Conclusions
0000000	0000000000000	00000	00	00

Local charges

- For the general case, $f^{\pm \prime} \neq 0$, we find that:
 - taking n = 2 we can construct one quadratic conserved charge;

(for $f^+ + f^- = \tau$ this is the spatial momentum, for $f^+ + f^- = \sigma$ it is the energy)

- taking n = 3 the ansatz does not give a cubic conserved charge.
- As expected, for the case of constant coupling we can construct both quadratic and cubic charges.
- For the "chiral" case of f⁺ = 0 (or f⁻ = 0) we can construct "half" the number of quadratic and cubic charges.

Introduction	Lax connections for models with local coupling
0000000	0000000000000

Massive models

Conclusions

Massive models

• The construction also works for the sine-Gordon model:

$$\mathcal{L} = \frac{1}{g^2} \left(\partial_+ x \partial_- x - m^2 \sin^2 x \right)$$

- Replacing the couplings g and m by functions of τ , the existence of a Lax connection (assuming a natural ansatz) requires that these should solve the 1-loop RG equations: $m^2(\tau) = e^{(-2+g^2)\tau}m_0^2$ $g(\tau) = g$.
- The resulting time-dependent model indeed appears to be integrable

$$\mathcal{L} = \frac{1}{g^2} \left(\partial_+ x \partial_- x - e^{(-2+g^2)\tau} m_0^2 \sin^2 x \right)$$

as the time dependence can be eliminated by a conformal transformation.

Lax connections for models with local couplings

Conserved charges

Massive models ○● Conclusions

Massive models

- What about other time-dependent integrable massive models: complex sine-Gordon, Toda models, etc.?
- For sine-Gordon integrability is more direct than for σ-models: massive models may help to better understand this relation.
- 1-d reductions of integrable massive models and σ-models can coincide: massive models may provide specific insights into certain σ-models.
- For example, the time-dependent analogue of sine-Gordon mechanics:

$$\mathcal{L}_{1-\mathsf{d}} = au(\dot{ heta}^2 - m^2\sin^2 heta)$$

can be found from the time-dependent SU(2) PCM or sine-Gordon.

Lax connections for models with local couplings

Conserved charges

Massive models

Conclusions ●○

Conclusions

• We have established a new, rather surprising, connection between classical integrability and RG flow in 2-d σ-models:

Take a classically integrable σ -model and let its couplings be time-dependent functions; then the Lax connection generalises to the time-dependent theory if the coupling functions are determined by the 1-loop RG flow of the original model.

- The Lax connections have unusual new features:
 - they depend on both au and σ ;
 - they have a more complicated analytic structure.
- Gives rise to a classical origin of quantum RG flow.

Massive models

Conclusions ○●

Conclusions

- Is a general proof of the relation possible?
- Can the construction be used to solve string σ -models?
- Is there an underlying algebraic structure?
- Can we understand these theories at the quantum level?
- Is there an origin from 4-d Chern-Simons?

[Costello, Yamazaki, (Witten); ...]