Modular invariants in strongly-coupled $\mathcal{N} = 4$ SYM

Silviu S. Pufu, Princeton University

Based on:

- arXiv:1902.06263 with D. Binder, S. Chester, and Y. Wang
- arXiv:1912.13365 with S. Chester, M. Green, Y. Wang, and C. Wen
- arXiv:2008.02713 with S. Chester, M. Green, Y. Wang, and C. Wen

IGST, August 26, 2020
This talk is on correlators of local operators in 4d $\mathcal{N} = 4$ SYM.

Approaches:
- integrability
- weak coupling expansion
- holography (large N 't Hooft limit)
- numerical bootstrap
- analytic bootstrap
- supersymmetric localization

Most studied: 1/2-BPS single trace scalar operators O_p in $[0p0]$ of $SU(4)_R$ R-symmetry and dimension $\Delta = p$.
This talk: 4-pt function of $O_2 \equiv S_{IJ} = \text{tr}(X_I X_J - \frac{\delta_{IJ}}{6} X_K X^K)$, i.e. the 20' single trace scalar op. of dimension $\Delta = 2$.

$$\langle S(\vec{x}_1, Y_1) S(\vec{x}_2, Y_2) S(\vec{x}_3, Y_3) S(\vec{x}_4, Y_4) \rangle, \quad S(\vec{x}, Y) \equiv Y^I Y^J S_{IJ}(\vec{x})$$

S is in the same superconf. multiplet as the stress-energy tensor.

In fact, SUSY Ward identities \implies all 4-pt correlators of stress tensor multiplet operators are determined by a single function $\mathcal{T}(U, V)$ [Belitsky, Hohenegger, Korchemsky, Sokatchev '14]. Schematically:

$$\langle SSSS \rangle = \text{(free part)} + \frac{(Y_1 \cdot Y_2)^2 (Y_3 \cdot Y_4)^2 (V + UV \sigma^2 + U \tau^2 + \cdots)}{\vec{x}_{12}^4 \vec{x}_{34}^4} \mathcal{T}(U, V)$$

where $U \equiv \frac{\vec{x}_{12}^2 \vec{x}_{34}^2}{\vec{x}_{13}^2 \vec{x}_{24}^2}$, $V \equiv \frac{\vec{x}_{14}^2 \vec{x}_{23}^2}{\vec{x}_{13}^2 \vec{x}_{24}^2}$, and $\sigma \equiv \frac{Y_1 \cdot Y_3 Y_2 \cdot Y_4}{Y_1 \cdot Y_2 Y_3 \cdot Y_4}$ and $\tau \equiv \frac{Y_1 \cdot Y_4 Y_2 \cdot Y_3}{Y_1 \cdot Y_2 Y_3 \cdot Y_4}$.
This talk: 4-pt function of $\mathcal{O}_2 \equiv S_{IJ} = \text{tr}(X_I X_J - \frac{\delta_{IJ}}{6} X_K X^K)$, i.e. the $20'$ single trace scalar op. of dimension $\Delta = 2$.

$$\langle S(\vec{x}_1, Y_1)S(\vec{x}_2, Y_2)S(\vec{x}_3, Y_3)S(\vec{x}_4, Y_4) \rangle, \quad S(\vec{x}, Y) \equiv Y^I Y^J S_{IJ}(\vec{x})$$

- S is in the same superconf. multiplet as the stress-energy tensor
- In fact, SUSY Ward identities \Rightarrow all 4-pt correlators of stress tensor multiplet operators are determined by a single function $\mathcal{T}(U, V)$ [Belitsky, Hohenegger, Korchemsky, Sokatchev '14]. Schematically:

$$\langle SSSS \rangle = \text{(free part)} + \frac{(Y_1 \cdot Y_2)^2(Y_3 \cdot Y_4)^2(V + UV\sigma^2 + U\tau^2 + \ldots)}{\vec{x}_{12}^4 \vec{x}_{34}^4} \mathcal{T}(U, V)$$

where $U \equiv \frac{\vec{x}_{12}^2 \vec{x}_{34}^2}{\vec{x}_{13}^2 \vec{x}_{24}^2}$, $V \equiv \frac{\vec{x}_{14}^2 \vec{x}_{23}^2}{\vec{x}_{13}^2 \vec{x}_{24}^2}$, and $\sigma \equiv \frac{Y_1 \cdot Y_3 Y_2 \cdot Y_4}{Y_1 \cdot Y_2 Y_3 \cdot Y_4}$ and $\tau \equiv \frac{Y_1 \cdot Y_4 Y_2 \cdot Y_3}{Y_1 \cdot Y_2 Y_3 \cdot Y_4}$.
SL(2, ℤ) in \(\mathcal{N} = 4 \) SYM

- Define complexified gauge coupling

 \[
 \tau = \frac{\theta}{2\pi} + \frac{4\pi i}{g_{\text{YM}}^2}, \quad \bar{\tau} = \frac{\theta}{2\pi} - \frac{4\pi i}{g_{\text{YM}}^2}
 \]

- \(\mathcal{N} = 4 \) SYM w/ gauge algebra \(\mathfrak{su}(N) \) exhibits \(SL(2, \mathbb{Z}) \) duality:

 \[
 \tau \rightarrow \frac{a\tau + b}{c\tau + d}, \quad a, b, c, d \in \mathbb{Z}, \quad ad - bc = 1.
 \]

- **S generator:** \(\tau \rightarrow -1/\tau \)

- **T generator:** \(\tau \rightarrow \tau + 1, \) or \(\theta \rightarrow \theta + 2\pi. \)

- 1/2-BPS ops, and in particular the 20\(^l\) op. S and its 4-point function, are invariant under \(SL(2, \mathbb{Z}). \)
SL(2, ℤ) in superstring theory

- Related topic: $SL(2, ℤ)$ in type IIB superstring theory, e.g. for superstring scattering amplitudes

\[\tau = C + ie^{-i\phi}. \]

- Example: R^4 interaction \rightarrow scattering amplitude \propto non-holomorphic Eisenstein series $E\left(\frac{3}{2}, \tau, \bar{\tau}\right)$ (more on this later).

- Connection:

 \[
 \text{CFT} \quad \text{4-point on function} \quad \xleftrightarrow{\text{AdS/CFT}} \quad \text{scattering amplitude in } AdS_5 \times S^5 \quad \xrightarrow{\text{flat space limit}} \quad 10d \text{ flat space scattering amplitude}
 \]

Flat space limit:

Mellin amplitude $\mathcal{M}(s, t) \xrightarrow{\text{large } s, t} \text{scattering amplitude } \mathcal{A}(s, t)$
Very strong coupling expansion

To exhibit $SL(2,\mathbb{Z})$ in $\mathcal{N} = 4$ SYM correlators in holographic regime, need “very strong coupling” limit:

$$N \to \infty \quad \text{with} \quad g_{YM} \text{ fixed}.$$

(in the ’t Hooft limit, g_{YM} is necessarily small)

With normalization

$$\left\langle S(\vec{x}, Y_1)S(0, Y_2) \right\rangle = \frac{(N^2-1)(Y_1 \cdot Y_2)^2}{4|\vec{x}|^4},$$

schematically (suppressed position and R-symm)

$$\left\langle SSSS \right\rangle_{\text{conn}} = N^2 + f(\tau, \bar{\tau})\sqrt{N} + N^0 + \frac{g(\tau, \bar{\tau})}{\sqrt{N}} + \frac{h(\tau, \bar{\tau})}{N} + O(N^{-3/2}).$$

In terms of Witten diagrams:

- N^2: tree level SUGRA
- \sqrt{N}: tree level R^4
- N^0: regularized 1-loop SUGRA
- $N^{-1/2}$: tree level D^4R^4
- N^{-1}: tree level D^6R^4
- N^{-n}: n derivs $\propto N^{-n/4}$

(Recall $L/\ell_s \sim \lambda^{1/4}$ and $\lambda = g_{YM}^2 N$)
Very strong coupling expansion

- **Highlighted terms completely determined:**
 - N^2: [D’Hoker, Freedman, Mathur, Matusis, Rastelli ’99; Arutyunov, Frolov ’00; Dolan, Osborn ’04; Rastelli, Zhou ’16]
 - \sqrt{N}: [Goncalves ’14; Binder, Chester, SSP, Wang ’19; Chester, Green, SSP, Wang, Wen ’19]
 - N^0: [Alday, Bissi, Perlmutter, Heslop, Paul, . . . ; Chester ’19]
 - $N^{-\frac{1}{2}}$, N^{-1}: [Binder, Chester, SSP, Wang ’19; Chester, Green, SSP, Wang, Wen ’19; Chester, SSP ’20; Chester, Green, SSP, Wang, Wen ’20]

- **Procedure:**
 - SUSY Ward identities, crossing symmetry, analyticity in Mellin space determine the position dependence at each order in $1/N$, up to a few undetermined constants.
 - SUSic localization: can compute **integrated** 4-pt functions, which can be used to determine some of the constants.
 - Flat space limit can be used to fix the large s, t behavior at each order in $1/N$.
Very strong coupling expansion

- **Highlighted terms completely determined:**
 - N^2: [D’Hoker, Freedman, Mathur, Matusis, Rastelli ’99; Arutyunov, Frolov ’00; Dolan, Osborn ’04; Rastelli, Zhou ’16]
 - \sqrt{N}: [Goncalves ’14; Binder, Chester, SSP, Wang ’19; Chester, Green, SSP, Wang, Wen ’19]
 - N^0: [Alday, Bissi, Perlmutter, Heslop, Paul, . . . ; Chester ’19]
 - $N^{-\frac{1}{2}}, N^{-1}$: [Binder, Chester, SSP, Wang ’19; Chester, Green, SSP, Wang, Wen ’19; Chester, SSP ’20; Chester, Green, SSP, Wang, Wen ’20]

- **Procedure:**
 - SUSY Ward identities, crossing symmetry, analyticity in Mellin space determine the position dependence at each order in $1/N$, up to a few undetermined constants.
 - SUSic localization: can compute integrated 4-pt functions, which can be used to determine some of the constants.
 - Flat space limit can be used to fix the large s, t behavior at each order in $1/N$.
Very strong coupling expansion

- Highlighted terms completely determined:
 - N^2: [D’Hoker, Freedman, Mathur, Matusis, Rastelli ’99; Arutyunov, Frolov ’00; Dolan, Osborn ’04; Rastelli, Zhou ’16]
 - \sqrt{N}: [Goncalves ’14; Binder, Chester, SSP, Wang ’19; Chester, Green, SSP, Wang, Wen ’19]
 - N^0: [Alday, Bissi, Perlmutter, Heslop, Paul, . . . ; Chester ’19]
 - $N^{-\frac{1}{2}}, N^{-1}$: [Binder, Chester, SSP, Wang ’19; Chester, Green, SSP, Wang, Wen ’19; Chester, SSP ’20; Chester, Green, SSP, Wang, Wen ’20]

- Procedure:
 - SUSY Ward identities, crossing symmetry, analyticity in Mellin space determine the position dependence at each order in $1/N$, up to a few undetermined constants.
 - SUSic localization: can compute integrated 4-pt functions, which can be used to determine some of the constants.
 - Flat space limit can be used to fix the large s, t behavior at each order in $1/N$.

Very strong coupling expansion

- **Highlighted terms completely determined:**
 - N^2: [D’Hoker, Freedman, Mathur, Matusis, Rastelli ’99; Arutyunov, Frolov ’00; Dolan, Osborn ’04; Rastelli, Zhou ’16]
 - \sqrt{N}: [Goncalves ’14; Binder, Chester, SSP, Wang ’19; Chester, Green, SSP, Wang, Wen ’19]
 - N^0: [Alday, Bissi, Perlmutter, Heslop, Paul, . . . ; Chester ’19]
 - $N^{-1/2}$, N^{-1}: [Binder, Chester, SSP, Wang ’19; Chester, Green, SSP, Wang, Wen ’19; Chester, SSP ’20; Chester, Green, SSP, Wang, Wen ’20]

- **Procedure:**
 - SUSY Ward identities, crossing symmetry, analyticity in Mellin space determine the position dependence at each order in $1/N$, up to a few undetermined constants.
 - SUSic localization: can compute *integrated* 4-pt functions, which can be used to determine some of the constants.
 - Flat space limit can be used to fix the large s, t behavior at each order in $1/N$.
\[\langle \text{SSSS} \rangle \text{ in very strong coupling expansion} \]

- Can relate \(T(U, V) \) to the Mellin transform \(\mathcal{M}(s, t) \):

\[
T(U, V) = \int \frac{ds \, dt}{(4\pi i)^2} U^s_2 V^{u_2-3} \Gamma^2 \left(2 - \frac{s}{2}\right) \Gamma^2 \left(2 - \frac{t}{2}\right) \Gamma^2 \left(2 - \frac{u}{2}\right) \mathcal{M}(s, t),
\]

where \(u \equiv 4 - s - t \).

- Result:

\[
\mathcal{M}(s, t) = \frac{2N^2}{(s-2)(t-2)(u-2)} + \frac{15E(\frac{3}{2}, \tau, \bar{\tau})}{8\sqrt{\pi^3}} \sqrt{N} + \mathcal{M}_{1\text{-loop}}(s, t)
\]
\[
+ \frac{315E(\frac{5}{2}, \tau, \bar{\tau})}{128\sqrt{\pi^5}} \left[s^2 + t^2 + u^2 - 3 \right] \frac{1}{\sqrt{N}}
\]
\[
+ \frac{315E(3, \frac{3}{2}, \frac{3}{2}, \tau, \bar{\tau})}{32\pi^3} \left[stu - \frac{1}{4} (s^2 + t^2 + u^2) - 4 \right] \frac{1}{N} + O(N^{-3/2}).
\]

- The modular invariants \(E(\frac{3}{2}, \tau, \bar{\tau}), E(\frac{5}{2}, \tau, \bar{\tau}), \mathcal{E}(3, \frac{3}{2}, \frac{3}{2}, \tau, \bar{\tau}) \) (defined on next slide) are known from superstring scattering amplitudes

[Green, Gutperle '97; Green, Sethi '98; Wang, Yin '15, …].
\[\langle \text{SSSS} \rangle \text{ in very strong coupling expansion} \]

- Can relate \(T(U, V) \) to the Mellin transform \(\mathcal{M}(s, t) \):

\[
T(U, V) = \int \frac{ds \, dt}{(4\pi i)^2} U^s V^{u/2 - 3} \Gamma^2 \left(2 - \frac{s}{2} \right) \Gamma^2 \left(2 - \frac{t}{2} \right) \Gamma^2 \left(2 - \frac{u}{2} \right) \mathcal{M}(s, t),
\]

where \(u \equiv 4 - s - t \).

- Result:

\[
\mathcal{M}(s, t) = \frac{2N^2}{(s - 2)(t - 2)(u - 2)} + \frac{15E(\frac{3}{2}, \tau, \bar{\tau})}{8\sqrt{\pi}^3} \frac{1}{\sqrt{N}} + \mathcal{M}_{1\text{-loop}}(s, t)
\]

\[
+ \frac{315E(\frac{5}{2}, \tau, \bar{\tau})}{128\sqrt{\pi}^5} \left[s^2 + t^2 + u^2 - 3 \right] \frac{1}{\sqrt{N}}
\]

\[
+ \frac{315E(3, \frac{3}{2}, \frac{3}{2}, \tau, \bar{\tau})}{32\pi^3} \left[stu - \frac{1}{4}(s^2 + t^2 + u^2) - 4 \right] \frac{1}{N} + O(N^{-3/2}).
\]

- The modular invariants \(E(\frac{3}{2}, \tau, \bar{\tau}), E(\frac{5}{2}, \tau, \bar{\tau}), E(3, \frac{3}{2}, \frac{3}{2}, \tau, \bar{\tau}) \) (defined on next slide) are known from superstring scattering amplitudes

[Green, Gutperle '97; Green, Sethi '98; Wang, Yin '15, ...].
The non-holomorphic Eisenstein series $E(r, \tau, \bar{\tau})$ are modular-invariant functions defined as ($\tau = \tau_1 + i\tau_2$):

$$E(s, \tau, \bar{\tau}) = \sum_{(m,n) \neq (0,0)} \frac{\tau_2^s}{|m + n\tau|^{2s}}.$$

They are eigenfunctions of the hyperbolic Laplacian

$$\left(4\tau_2^2 \partial_\tau \partial_\bar{\tau} - s(s - 1)\right) E(s, \tau, \bar{\tau}) = 0.$$

normalized s.t. $E(s, \tau, \bar{\tau}) \sim 2\zeta(2s)\tau_2^s$ at large τ_2.

Expanded at large τ_2 (i.e. small g_{YM}), they have a finite number of perturbative contributions + non-perturbative contributions. Example for $\tau_1 = 0$ and $\tau_2 = 4\pi/g_{YM}^2$:

$$E\left(\frac{3}{2}, \tau, \bar{\tau}\right) = 2\zeta(3)\tau_2^{3/2} + \frac{2\pi^2}{3\tau_2^{1/2}} + e^{-2\pi\tau_2} \left[4\pi + \frac{3}{4\tau_2} + \cdots \right] + e^{-4\pi\tau_2} \left[\cdots\right] + \cdots$$
The non-holomorphic Eisenstein series $E(r, \tau, \bar{\tau})$ are modular-invariant functions defined as $(\tau = \tau_1 + i\tau_2)$:

$$E(s, \tau, \bar{\tau}) = \sum_{(m,n) \neq (0,0)} \frac{\tau_2^s}{|m + n\tau|^{2s}}.$$

They are eigenfunctions of the hyperbolic Laplacian

$$\left(4\tau_2^2 \partial_\tau \partial_{\bar{\tau}} - s(s - 1)\right) E(s, \tau, \bar{\tau}) = 0.$$

normalized s.t. $E(s, \tau, \bar{\tau}) \sim 2\zeta(2s)\tau_2^s$ at large τ_2.

Expanded at large τ_2 (i.e. small g_{YM}), they have a finite number of perturbative contributions $+ \text{non-perturbative contributions}$.

Example for $\tau_1 = 0$ and $\tau_2 = 4\pi/g_{YM}^2$:

$$E(\frac{3}{2}, \tau, \bar{\tau}) = 2\zeta(3)\tau_2^{3/2} + \frac{2\pi^2}{3\tau_2^{1/2}}e^{-2\pi\tau_2} \left[4\pi + \frac{3}{4\tau_2} + \cdots\right] + e^{-4\pi\tau_2} \left[\cdots\right] + \cdots$$
The non-holomorphic Eisenstein series $E(r, \tau, \bar{\tau})$ are modular-invariant functions defined as $(\tau = \tau_1 + i\tau_2)$:

$$E(s, \tau, \bar{\tau}) = \sum_{(m,n) \neq (0,0)} \frac{\tau_2^s}{|m + n\tau|^{2s}}.$$

They are eigenfunctions of the hyperbolic Laplacian

$$\left(4\tau_2^2 \partial_\tau \partial_{\bar{\tau}} - s(s - 1)\right) E(s, \tau, \bar{\tau}) = 0.$$

normalized s.t. $E(s, \tau, \bar{\tau}) \sim 2\zeta(2s)\tau_2^s$ at large τ_2.

Expanded at large τ_2 (i.e. small g_{YM}), they have a finite number of perturbative contributions $+$ non-perturbative contributions.

Example for $\tau_1 = 0$ and $\tau_2 = 4\pi / g_{YM}^2$:

$$E\left(\frac{3}{2}, \tau, \bar{\tau}\right) = 2\zeta(3)\tau_2^{3/2} + \frac{2\pi^2}{3\tau_2^{1/2}} + e^{-2\pi\tau_2} \left[4\pi + \frac{3}{4\tau_2} + \cdots\right] + e^{-4\pi\tau_2} \left[\cdots\right] + \cdots$$
Generalized Eisenstein series

- The coefficient of $1/N$ (contact D^6R^4 interaction) is a “generalized Eisenstein series” $\mathcal{E}(3, \frac{3}{2}, \frac{3}{2}, \tau, \bar{\tau})$.

- For general $r, s_1, s_2 \geq 0$, with $r \geq s_1 + s_2$, define $\mathcal{E}(r, s_1, s_2, \tau, \bar{\tau})$ as the unique $SL(2, \mathbb{Z})$-invariant solution of inhomogeneous eigenvalue equation

\[
\left(4\tau_2^2 \partial_\tau \partial_{\bar{\tau}} - r(r + 1)\right) \mathcal{E}(r, s_1, s_2, \tau, \bar{\tau}) = -E(s_1, \tau, \bar{\tau})E(s_2, \tau, \bar{\tau}).
\]

that grows slower than τ_2^{r+1} at large τ_2.

- Also has a finite number of perturbative terms:

\[
\mathcal{E} = a_1 \tau_2^{s_1+s_2} + a_2 \tau_2^{1+s_1-s_2} + a_3 \tau_2^{1+s_2-s_1} + a_4 \tau_2^{2-s_1-s_2} + \beta_r \tau_2^{-r} + \text{non-pert.}
\]
Generalized Eisenstein series

The coefficient of $1/N$ (contact $D^6 R^4$ interaction) is a "generalized Eisenstein series" $\mathcal{E}(3, \frac{3}{2}, \frac{3}{2}, \tau, \bar{\tau})$.

For general $r, s_1, s_2 \geq 0$, with $r \geq s_1 + s_2$, define $\mathcal{E}(r, s_1, s_2, \tau, \bar{\tau})$ as the unique $SL(2, \mathbb{Z})$-invariant solution of inhomogeneous eigenvalue equation

$$
\left(4\tau_2^2 \partial_\tau \partial_{\bar{\tau}} - r(r + 1) \right) \mathcal{E}(r, s_1, s_2, \tau, \bar{\tau}) = -E(s_1, \tau, \bar{\tau})E(s_2, \tau, \bar{\tau}).
$$

that grows slower than τ_2^{r+1} at large τ_2.

Also has a finite number of perturbative terms:

$$
\mathcal{E} = a_1 \tau_2^{s_1 + s_2} + a_2 \tau_2^{1 + s_1 - s_2} + a_3 \tau_2^{1 + s_2 - s_1} + a_4 \tau_2^{2 - s_1 - s_2} + \beta_r \tau_2^{-r} + \text{non-pert.}
$$
Generalized Eisenstein series

- The coefficient of $1/N$ (contact $D^6 R^4$ interaction) is a \textit{“generalized Eisenstein series”} $\mathcal{E}(3, \frac{3}{2}, \frac{3}{2}, \tau, \bar{\tau})$.

- For general $r, s_1, s_2 \geq 0$, with $r \geq s_1 + s_2$, define $\mathcal{E}(r, s_1, s_2, \tau, \bar{\tau})$ as the unique $SL(2, \mathbb{Z})$-invariant solution of inhomogeneous eigenvalue equation

$$
(4\tau_2^2 \partial_\tau \partial_{\bar{\tau}} - r(r+1)) \mathcal{E}(r, s_1, s_2, \tau, \bar{\tau}) = -\mathcal{E}(s_1, \tau, \bar{\tau}) \mathcal{E}(s_2, \tau, \bar{\tau}).
$$

that grows slower than τ_2^{r+1} at large τ_2.

- Also has a finite number of perturbative terms:

$$
\mathcal{E} = a_1 \tau_2^{s_1+s_2} + a_2 \tau_2^{1+s_1-s_2} + a_3 \tau_2^{1+s_2-s_1} + a_4 \tau_2^{2-s_1-s_2} + \beta_r \tau_2^{-r} + \text{non-pert.}
$$
Supersymmetric localization results

Specific setup \cite{Pestun '07, Hama, Hosomichi '12}:

\[\mathcal{N} = 4 \text{ SYM on } \mathbb{R}^4 \rightarrow \mathcal{N} = 4 \text{ SYM on } S^4 \rightarrow \]

SUSY-preserving deformation by mass parameter \(m \) and squashing parameter \(b \)

\((b, m) = (1, 0) \) corresp. to \(\mathcal{N} = 4 \) SYM on round sphere.

Can compute \(Z(m, b, \tau, \bar{\tau}) \) exactly \cite{Pestun '07, Hama, Hosomichi '12}.

Two messages:

- Derivatives of \(Z(m, b, \tau, \bar{\tau}) \) evaluated at \((b, m) = (1, 0) \) give integrated correlators in \(\mathcal{N} = 4 \) SYM. (Take 4 ders for 4-pt function.)
- Can obtain Eisenstein and generalized Eisenstein series by expanding in the very strong coupling limit.
Supersymmetric localization results

- **Specific setup** [Pestun ’07, Hama, Hosomichi ’12]:

 $\mathcal{N} = 4$ SYM on \mathbb{R}^4 → $\mathcal{N} = 4$ SYM on S^4 → SUSY-preserving deformation by mass parameter m and squashing parameter b

 \[(b, m) = (1, 0)\] corresp. to $\mathcal{N} = 4$ SYM on round sphere.

- Can compute $Z(m, b, \tau, \bar{\tau})$ exactly [Pestun ’07, Hama, Hosomichi ’12].

- Two messages:
 - Derivatives of $Z(m, b, \tau, \bar{\tau})$ evaluated at $(b, m) = (1, 0)$ give integrated correlators in $\mathcal{N} = 4$ SYM. (Take 4 ders for 4-pt function.)
 - Can obtain Eisenstein and generalized Eisenstein series by expanding in the very strong coupling limit.
Supersymmetric localization results

- **Specific setup** [Pestun ’07, Hama, Hosomichi ’12]:

 \[
 \mathcal{N} = 4 \text{ SYM on } \mathbb{R}^4 \quad \rightarrow \quad \mathcal{N} = 4 \text{ SYM on } S^4
 \]

 SUSY-preserving deformation by mass parameter \(m \) and squashing parameter \(b \)

 \((b, m) = (1, 0)\) corresp. to \(\mathcal{N} = 4 \text{ SYM on round sphere.} \)

- Can compute \(Z(m, b, \tau, \bar{\tau}) \) exactly [Pestun ’07, Hama, Hosomichi ’12].

- **Two messages:**
 - Derivatives of \(Z(m, b, \tau, \bar{\tau}) \) evaluated at \((b, m) = (1, 0)\) give integrated correlators in \(\mathcal{N} = 4 \text{ SYM.} \) (Take 4 ders for 4-pt function.)
 - Can obtain Eisenstein and generalized Eisenstein series by expanding in the very strong coupling limit.
Integrated correlators

For \(b = 1 \) (round sphere), we derived [Binder, Chester, SSP, Wang ’19]:

\[
\tau_2^2 \partial_m^2 \partial_\tau \partial_{\bar{\tau}} \log Z \bigg|_{m=0} = -\frac{8}{\pi} \int dr d\theta \ r^3 \sin^2 \theta \frac{T(U, V)}{U^2} \bigg|_{U=1+r^2-2r \cos \theta} \quad V=r^2
\]

and [Chester, SSP ’20]

\[
\partial_m^4 \log Z \bigg|_{m=0} = 12 \zeta(3)(N^2 - 1) + \frac{32}{\pi} \int dr d\theta \ r^3 \sin^2 \theta (1 + U + V) \times \bar{D}_{1111}(U, V) \frac{T(U, V)}{U^2} \bigg|_{U=1+r^2-2r \cos \theta} \quad V=r^2
\]

where \(\bar{D}_{1111}(U, V) \) is \(\propto \bar{x}_{13}^2 \bar{x}_{24}^2 \) times the Witten diagram for the contact interaction of four \(\Delta = 1 \) scalar operators.

- Similar relations for derivs w.r.t. squashing not available yet.
Matrix model for $\mathcal{N} = 2^*$ partition function

Pestun computed the S^4 partition function of the $\mathcal{N} = 2^*$ theory

[Pestun ’07; Russo, Zarembo ’13] :

$$Z = \int d^{N-1}a \frac{\prod_{i<j}(a_i - a_j)^2 H^2(a_i - a_j)}{H(m)^{N-1} \prod_{i\neq j} H(a_i - a_j + m)} e^{-\frac{8\pi^2 N}{\lambda} \sum_i a_i^2 |Z_{\text{inst}}(m, \tau)|^2}$$

where H is the product of two Barnes G-functions, and Z_{inst} represents the contribution of instantons (Nekrasov partition function) localized at the N and S poles of S^4.

- Perturbatively in $1/N$ and $1/\lambda$ (in the ’t Hooft limit) one can ignore the instanton contributions, but they are very important in the very strong coupling limit.

- Taking derivatives w.r.t. m, τ, $\bar{\tau}$ evaluated at $m = 0 \implies$ insertions in the Gaussian matrix model.
Matrix model for $\mathcal{N} = 2^*$ partition function

Pestun computed the S^4 partition function of the $\mathcal{N} = 2^*$ theory

$[\text{Pestun '07; Russo, Zarembo '13}] :$

$$Z = \int d^{N-1} a \frac{\prod_{i<j}(a_i - a_j)^2 H^2(a_i - a_j)}{H(m)^{N-1} \prod_{i \neq j} H(a_i - a_j + m)} e^{-\frac{8\pi^2}{\lambda} \sum_i a_i^2 |Z_{\text{inst}}(m, \tau)|^2}$$

where H is the product of two Barnes G-functions, and Z_{inst} represents the contribution of instantons (Nekrasov partition function) localized at the N and S poles of S^4.

- Perturbatively in $1/N$ and $1/\lambda$ (in the 't Hooft limit) one can ignore the instanton contributions, but they are very important in the very strong coupling limit.

- Taking derivatives w.r.t. $m, \tau, \bar{\tau}$ evaluated at $m = 0 \Rightarrow$ insertions in the Gaussian matrix model.
Matrix model for $\mathcal{N} = 2^*$ partition function

Pestun computed the S^4 partition function of the $\mathcal{N} = 2^*$ theory

[Pestun ’07; Russo, Zarembo ’13]:

$$Z = \int d^{N-1}a \frac{\prod_{i<j}(a_i - a_j)^2 H^2(a_i - a_j)}{H(m)^{N-1} \prod_{i \neq j} H(a_i - a_j + m)} e^{-\frac{8\pi^2 N}{\lambda} \sum_i a_i^2 |Z_{\text{inst}}(m, \tau)|^2}$$

where H is the product of two Barnes G-functions, and Z_{inst} represents the contribution of instantons (Nekrasov partition function) localized at the N and S poles of S^4.

- Perturbatively in $1/N$ and $1/\lambda$ (in the ’t Hooft limit) one can ignore the instanton contributions, but they are very important in the very strong coupling limit.

- Taking derivatives w.r.t. m, τ, $\bar{\tau}$ evaluated at $m = 0 \implies$ insertions in the Gaussian matrix model.
Derivatives of the S^4 partition function

For $\tau_2^2 \partial_\tau \partial_{\bar{\tau}} \partial_m^2 \log Z \big|_{m=0}$, the mass derivatives either both act on H (\implies pert terms, harder to compute), both act on Z_{inst}, or both act on Z_{inst}^* (\implies non-pert terms, easier to compute):

$$\tau_2^2 \partial_\tau \partial_{\bar{\tau}} \partial_m^2 \log Z \big|_{m=0} = \frac{N^2}{4} - \frac{3\sqrt{N}}{2^4 \pi^{3/2}} E\left(\frac{3}{2}, \tau, \bar{\tau}\right) + \frac{45}{2^8 \sqrt{N} \pi^{5/2}} E\left(\frac{5}{2}, \tau, \bar{\tau}\right)$$

$$+ \frac{1}{N^{3/2}} \left[- \frac{39}{2^{13} \pi^{3/2}} E\left(\frac{3}{2}, \tau, \bar{\tau}\right) + \frac{4725}{2^{15} \pi^{7/2}} E\left(\frac{7}{2}, \tau, \bar{\tau}\right) \right]$$

$$+ \frac{1}{N^{5/2}} \left[- \frac{1125}{2^{16} \pi^{5/2}} E\left(\frac{5}{2}, \tau, \bar{\tau}\right) + \frac{99225}{2^{18} \pi^{9/2}} E\left(\frac{9}{2}, \tau, \bar{\tau}\right) \right]$$

$$+ \frac{1}{N^{7/2}} \left[\frac{4599}{2^{22} \pi^{3/2}} E\left(\frac{3}{2}, \tau, \bar{\tau}\right) - \frac{2811375}{2^{25} \pi^{7/2}} E\left(\frac{7}{2}, \tau, \bar{\tau}\right) + \frac{245581875}{2^{27} \pi^{11/2}} E\left(\frac{11}{2}, \tau, \bar{\tau}\right) \right]$$

$$+ O(N^{-9/2})$$

No integer powers of $1/\sqrt{N}$. (Probably due to SUSY.)

Eisenstein series all the way! (No generalized Eisensteins)
Derivatives of the S^4 partition function

For $\tau_2^2 \partial_\tau \partial_{\bar{\tau}} \partial_m^2 \log Z \big|_{m=0}$, the mass derivatives either both act on H (\implies pert terms, harder to compute), both act on Z_{inst}, or both act on Z_{inst}^* (\implies non-pert terms, easier to compute):

$$\tau_2^2 \partial_\tau \partial_{\bar{\tau}} \partial_m^2 \log Z \big|_{m=0} = \frac{N^2}{4} - \frac{3 \sqrt{N}}{2^4 \pi^{3/2}} E\left(\frac{3}{2}, \tau, \bar{\tau}\right) + \frac{45}{2^8 \sqrt{N} \pi^{5/2}} E\left(\frac{5}{2}, \tau, \bar{\tau}\right)$$

$$+ \frac{1}{N^{3/2}} \left[- \frac{39}{2^{13} \pi^{3/2}} E\left(\frac{3}{2}, \tau, \bar{\tau}\right) + \frac{4725}{2^{15} \pi^{7/2}} E\left(\frac{7}{2}, \tau, \bar{\tau}\right) \right]$$

$$+ \frac{1}{N^{5/2}} \left[- \frac{1125}{2^{16} \pi^{5/2}} E\left(\frac{5}{2}, \tau, \bar{\tau}\right) + \frac{99225}{2^{18} \pi^{9/2}} E\left(\frac{9}{2}, \tau, \bar{\tau}\right) \right]$$

$$+ \frac{1}{N^{7/2}} \left[\frac{4599}{2^{22} \pi^{3/2}} E\left(\frac{3}{2}, \tau, \bar{\tau}\right) - \frac{2811375}{2^{25} \pi^{7/2}} E\left(\frac{7}{2}, \tau, \bar{\tau}\right) + \frac{245581875}{2^{27} \pi^{11/2}} E\left(\frac{11}{2}, \tau, \bar{\tau}\right) \right]$$

$$+ O(N^{-9/2}),$$

- No integer powers of $1/\sqrt{N}$. (Probably due to SUSY.)
- Eisenstein series all the way! (No generalized Eisensteins)
Derivatives of the S^4 partition function

\[\partial_m^4 \log Z \bigg|_{m=0} \] is much harder b/c the m derivatives can act on different factors. Evidence for [Chester, Green, SSP, Wang, Wen '20]:

\[
\partial_m^4 \log Z \bigg|_{m=0} = 6N^2 + \frac{6\sqrt{N}}{\pi^{\frac{3}{2}}} E\left(\frac{3}{2}, \tau, \bar{\tau}\right) + C_0 - \frac{9}{2\sqrt{N}\pi^{\frac{5}{2}}} E\left(\frac{5}{2}, \tau, \bar{\tau}\right)
\]

\[
- \frac{27}{2^3\pi^3 N} E\left(3, \frac{3}{2}, \frac{3}{2}, \tau, \bar{\tau}\right) + \frac{1}{N^\frac{3}{2}} \left[\frac{117}{2^8\pi^{\frac{3}{2}}} E\left(\frac{3}{2}, \tau, \bar{\tau}\right) - \frac{3375}{2^{10}\pi^{\frac{7}{2}}} E\left(\frac{7}{2}, \tau, \bar{\tau}\right) \right]
\]

\[
+ \frac{1}{N^2} \left[C_1 + \frac{14175}{704\pi^4} E\left(6, \frac{5}{2}, \frac{3}{2}, \tau, \bar{\tau}\right) - \frac{1215}{88\pi^4} E\left(4, \frac{5}{2}, \frac{3}{2}, \tau, \bar{\tau}\right) \right]
\]

\[
+ \frac{1}{N^\frac{5}{2}} \left[\frac{675}{2^{10}\pi^{\frac{5}{2}}} E\left(\frac{5}{2}, \tau, \bar{\tau}\right) - \frac{33075}{2^{12}\pi^{\frac{9}{2}}} E\left(\frac{9}{2}, \tau, \bar{\tau}\right) \right]
\]

\[
+ \frac{1}{N^3} \sum_{r=3,5,7,9} \left[\alpha_r E\left(r, \frac{3}{2}, \frac{3}{2}, \tau, \bar{\tau}\right) + \beta_r E\left(r, \frac{5}{2}, \frac{5}{2}, \tau, \bar{\tau}\right) + \gamma_r E\left(r, \frac{7}{2}, \frac{3}{2}, \tau, \bar{\tau}\right) \right]
\]

\[+ O(N^{-\frac{7}{2}}), \]

Eisenstein series at odd orders in $N^{-1/2}$, generalized Eisenstein series at even orders in $N^{-1/2}$.

Silviu Pufu (Princeton University)
Derivatives of the S^4 partition function

- $\partial_m^4 \log Z \big|_{m=0}$ is much harder b/c the m derivatives can act on different factors. Evidence for [Chester, Green, SSP, Wang, Wen ’20]:

\[
\partial_m^4 \log Z \big|_{m=0} = 6N^2 + \frac{6\sqrt{N}}{\pi^{3/2}} E\left(\frac{3}{2}, \tau, \bar{\tau}\right) + C_0 - \frac{9}{2\sqrt{N} \pi^{5/2}} E\left(\frac{5}{2}, \tau, \bar{\tau}\right) \\
- \frac{27}{2^3 \pi^3 N} E\left(3, \frac{3}{2}, \frac{3}{2}, \tau, \bar{\tau}\right) + \frac{1}{N^{3/2}} \left[\frac{117}{2^8 \pi^{3/2}} E\left(\frac{3}{2}, \tau, \bar{\tau}\right) - \frac{3375}{2^{10} \pi^{7/2}} E\left(\frac{7}{2}, \tau, \bar{\tau}\right) \right] \\
+ \frac{1}{N^2} \left[C_1 + \frac{14175}{704 \pi^4} E\left(6, \frac{5}{2}, \frac{3}{2}, \tau, \bar{\tau}\right) - \frac{1215}{88 \pi^4} E\left(4, \frac{5}{2}, \frac{3}{2}, \tau, \bar{\tau}\right) \right] \\
+ \frac{1}{N^{5/2}} \left[\frac{675}{2^{10} \pi^{5/2}} E\left(\frac{5}{2}, \tau, \bar{\tau}\right) - \frac{33075}{2^{12} \pi^{9/2}} E\left(\frac{9}{2}, \tau, \bar{\tau}\right) \right] \\
+ \frac{1}{N^3} \sum_{r=3,5,7,9} \left[\alpha_r E\left(r, \frac{3}{2}, \frac{3}{2}, \tau, \bar{\tau}\right) + \beta_r E\left(r, \frac{5}{2}, \frac{5}{2}, \tau, \bar{\tau}\right) + \gamma_r E\left(r, \frac{7}{2}, \frac{3}{2}, \tau, \bar{\tau}\right) \right] \\
+ O\left(N^{-7/2}\right),
\]

- Eisenstein series at odd orders in $N^{-1/2}$, generalized Eisenstein series at even orders in $N^{-1/2}$.

Silviu Pufu (Princeton University)
Up to $1/N$, the two integrated correlators $+$ flat space limit are sufficient to determine the $\langle SSSS \rangle$ at separated points (including position dependence).

Coeffs of \sqrt{N} and $1/\sqrt{N}$ can be determined entirely from localization, and they agree in the flat space limit with superstring amplitude \rightarrow precision test of AdS/CFT beyond SUGRA.

CFT data obtained from $\langle SSSS \rangle$ has the same structure of the expansion in the very strong coupling limit. For example, anomalous dimensions of double trace op $S_{\mu \nu} S^{\mu \nu}$

$$\gamma = \frac{a_1}{N^2} + \frac{a_2 E(\frac{3}{2}, \tau, \bar{\tau})}{N^{7/2}} + \frac{a_3}{N^4} + \frac{a_4 E(\frac{5}{2}, \tau, \bar{\tau})}{N^{9/2}} + \frac{a_5 \mathcal{E}(3, \frac{3}{2}, \frac{3}{2}, \tau, \bar{\tau})}{N^5} + \ldots$$

Relation to 't Hooft expansion: the terms $N^2(g_{YM}^2 N)^{-k}$ from the very strong coupling limit recombine into $N^2 f(\lambda)$, etc.
Up to $1/N$, the two integrated correlators + flat space limit are sufficient to determine the $\langle SSSS \rangle$ at separated points (including position dependence).

Coeffs of \sqrt{N} and $1/\sqrt{N}$ can be determined entirely from localization, and they agree in the flat space limit with superstring amplitude \Rightarrow precision test of AdS/CFT beyond SUGRA.

CFT data obtained from $\langle SSSS \rangle$ has the same structure of the expansion in the very strong coupling limit. For example, anomalous dimensions of double trace op $S_{IJ}S^{IJ}

\gamma = \frac{a_1}{N^2} + \frac{a_2 E(\frac{3}{2}, \tau, \bar{\tau})}{N^{7/2}} + \frac{a_3}{N^4} + \frac{a_4 E(\frac{5}{2}, \tau, \bar{\tau})}{N^{9/2}} + \frac{a_5 E(3, \frac{3}{2}, \frac{3}{2}, \tau, \bar{\tau})}{N^5} + \ldots

Relation to 't Hooft expansion: the terms $N^2 (g_{YM}^2 N)^{-k}$ from the very strong coupling limit recombine into $N^2 f(\lambda)$, etc.
Up to $1/N$, the two integrated correlators + flat space limit are sufficient to determine the $\langle SSSS \rangle$ at separated points (including position dependence).

Coeffs of \sqrt{N} and $1/\sqrt{N}$ can be determined entirely from localization, and they agree in the flat space limit with superstring amplitude \Longrightarrow precision test of AdS/CFT beyond SUGRA.

CFT data obtained from $\langle SSSS \rangle$ has the same structure of the expansion in the very strong coupling limit. For example, anomalous dimensions of double trace op $S_{IJ}S^{IJ}$

$$\gamma = \frac{a_1}{N^2} + \frac{a_2 E(\frac{3}{2}, \tau, \bar{\tau})}{N^{7/2}} + \frac{a_3}{N^4} + \frac{a_4 E(\frac{5}{2}, \tau, \bar{\tau})}{N^{9/2}} + \frac{a_5 E(3, \frac{3}{2}, \frac{3}{2}, \tau, \bar{\tau})}{N^5} + \cdots$$

Relation to 't Hooft expansion: the terms $N^2(g_{YM}^2 N)^{-k}$ from the very strong coupling limit recombine into $N^2 f(\lambda)$, etc.
Up to $1/N$, the two integrated correlators + flat space limit are sufficient to determine the $\langle SSSS \rangle$ at separated points (including position dependence).

Coeffs of \sqrt{N} and $1/\sqrt{N}$ can be determined entirely from localization, and they agree in the flat space limit with superstring amplitude \Longrightarrow precision test of AdS/CFT beyond SUGRA.

CFT data obtained from $\langle SSSS \rangle$ has the same structure of the expansion in the very strong coupling limit. For example, anomalous dimensions of double trace op $S_{IJ}S^{IJ}$

$$\gamma = \frac{a_1}{N^2} + \frac{a_2 E(\frac{3}{2}, \tau, \bar{\tau})}{N^{7/2}} + \frac{a_3}{N^4} + \frac{a_4 E(\frac{5}{2}, \tau, \bar{\tau})}{N^{9/2}} + \frac{a_5 E(3, \frac{3}{2}, \frac{3}{2}, \tau, \bar{\tau})}{N^5} + \cdots$$

Relation to ’t Hooft expansion: the terms $N^2(g_{YM}^2 N)^{-k}$ from the very strong coupling limit recombine into $N^2 f(\lambda)$, etc.
Conclusion

- A combination of techniques (supersymmetric localization, analytic bootstrap in Mellin space) can be used to study holographic correlators beyond the SUGRA approximation in $\mathcal{N} = 4$ SYM (and other theories).
- In the very strong coupling limit, $\mathcal{N} = 4$ SYM correlators can be written in terms of Eisenstein series and generalized Eisenstein.

For the future:
- Connection with integrability?
- Use integrated constraints away from strong coupling limit, e.g. in numerical bootstrap (ongoing).
- Convergence / resummation of $1/N$ expansion.
Conclusion

- A combination of techniques (supersymmetric localization, analytic bootstrap in Mellin space) can be used to study holographic correlators beyond the SUGRA approximation in $\mathcal{N} = 4$ SYM (and other theories).

- In the very strong coupling limit, $\mathcal{N} = 4$ SYM correlators can be written in terms of Eisenstein series and generalized Eisenstein.

For the future:

- Connection with integrability?

- Use integrated constraints away from strong coupling limit, e.g. in numerical bootstrap (ongoing).

- Convergence / resummation of $1/N$ expansion.