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Motivation

Insights on the interplay between conformal symmetry,
supersymmetry and integrability

Exact results for novel types of observables such as one-point
functions

Positive tests of AAS/dCFT dictionary for set-ups with
and without supersymmetry

Interesting connections to statistical physics: matrix product
states and quantum quenbhes.

Possible cross-fertilization with the boundary conformal
bootstrap program.



The defect set-up

N =4 SYM
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Classical Fields (simplest case)

Assume only x, -dependence and x,>0, A% =0, U=

d2 cl
i = 05 [o5h 8],

Classical e.o.m.:

(x, is distance to defect)

Solution: P = 1 <(t’i)k><k O) 1 =1,2,3
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where t; i=1,2,3, constitute a k-dimensional irreducible repr.

of SU(2). (Nahm eqns. also fulfilled.)

Set—up 154 BPS (Gaiotto & Witten ‘08)



The quantum fields

For x3 > 0:
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For k>1: x and y fields are massive, m* o< 1/z3, emergent AdS space.

7 fields are massless

Buhl-Mortensen,

de Leeuw, Ipsen,
C.K, Wilhelm ‘16

For k=1: No classical fields, specific b.c. at the defect

| Pas6, Aoz, c | Pros, As

x,ly Dirichlet
2z no BCs

Neumann

no BCs

Ipsen, &
Vardinghus ‘19

C.K, Miller,
Zarembo 20



AdS/dCFT set-ups

D3-D5 D3-D7 D3-D7
Symmetry of vevs SU(2) SU(2) x SU(2) SO(5)
Dim. of rep. / Flux k k1, ko d= (”+1)(n22)(n+3)
Gauge Groups | U(N), UN — k) | UN), UN — kiks) | U(N), UN — d)
Supersymmetry 1/2 BPS None None
Brane geometry AdS,x S2 AdS,x S? x S? AdS,x S*




One-point functions in dCFT’s

- C Cardy "84
<O ( )> = ‘;U3|A McAvity & Osborn '95
OAA’
. . . . bulk bulk .
Normalization given by: x;gnoow (y +2)OX" (2 +2)) = y— 28

Due to vevs scalar operators can have non-zero 1-pt fcts at tree-level

(Oa@)) = (Te(¢iy - Pin) + - ) g, g s

Matrix Product State associated with the defect:
delLeeuw, C.K.
|MPSk Z tr e zL ‘¢21 SR ¢iL>a & Zarembo ‘15,

<MPSk ]u)
(ulu)?

Object to calculate: () (u) =




Integrability criterion

When can (MPSy |u),; be calculated in closed form?

Ghoshal &

Integrability criterion: Q2m+1|M PSy) =0, m > 1 Zamolodchikov ‘94

Piroli, Pozsgay
Vernier ‘17

M PS}) only involves excitation pairs with momenta (+p, —p)

|M PS})) boundary state which only allows pure reflection
(BYB also required)

Also inspired by
Korepin ‘82, lzgerzin ’87,Tsuchiya '98, Pozsgay ‘13, Brockmann et al '14, Buhl-Mortensen, de Leeuw, CK &

Zarembo ’15, Foda and Zarembo ‘15



Integrability of MPS

D3-D5 D3-D7 D3-D7
Supersymmetry 1/2 BPS None None
Brane geometry AdS,x S? AdS,;x S? x S2 AdS,x S*
Dim. of rep./ Flux k k1, ko d= (n+1)(n—6|—2)(n—|—3)
|IMPS ) Integrable Non-integrable Integrable
Overlaps Exact formula derived — Exact formula derived

Reflection matrix which fulfills BYB of SO(6) spin chain and has the appropriate

symmetries can be found for the two cases with Q2m+1|MPS) =0

de Leeuw, Gombor C.K &
Linardopoulos, Pozsgay '19.



Solution SO(5) symmetric D3-D7case

de Leeuw, C.K &
Result for C,,: Linardopoulos,’18.

de Leeuw, Gombor C.K &
e Exact formula valid for any L, M, N*, N~ and n  Llinardopoulos, Pozsgay '19.

(w[MPS,) _ \/ Qo (0) Qo (3) Jaetc,

(ulu)'/?

(Q’s: Baxter polynomials, G Gaudin matrix:

(ulu) x det G = det G det G_,



Higher loops: D3-D5 case (1/2 BPS)

Tree level Formula works upon modification by a flux factor (su(2) sector)

Buhl-Mortensen,

l de Leeuw, Ipsen,
Cy = z’LTkl(O)\/Q<2)Q(O) \/det G, F C.K, Wilhelm ‘17

Beisert &
and a replacement in the Bethe equations and the transfer matrix  Staudacher ‘o5
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(plus dressing phase via bootstrap plus wrapping corrections via TBA)

Buhl-Mortensen,

de Leeuw, Ipsen,
NB: A non-trivial field theory calculation is needed for this statement CX, Wilhelm ‘16

(involving diagonalizing the mass matrix using fuzzy spherical harmonics,
supersymmetric regularization and renormalization).



Higher loops: D3-D5 case (1/2 BPS)

Recently reproduced by a bootstrap argument Komatsu
(assuming string integrability) & Wang 20

[F1.: Originates from boundary dressing phase

k—1
> 2_, in Tk_1(u) originates from sum over boundary bound states
T

Extended to the full theory o™

& Bajnok 20

One-point function of chiral primaries calculated via localization

(No Bethe roots, no flux factor) Komatsu
& Wang 20



Higher loops D3-D7 cases (No susy)

Perturbative program set up:

Gimenez-Grau,

SU(2) x SU(2) symmetric case (non-integrable) ‘'

Wilhelm ‘18

Gimenez-Grau,

SO(5) symmetric case CK, Volk,
Wilhelm ‘19

Match with string theory in d.s.l. to two leading orders for

Gimenez-Grau,

e One-point functions of chiral primaries ck, volk,
Wilhelm 18, ‘19

Bonansea,

e Expectation values of Maldacena-Wilson lines 4., cx
Volk 20

Challenges of the SO(5) case

e One-point functions only non-vanishing for full SO(6) sector

e [ocalization techniques do not work

. ° . e o . Gombor
e Argument against higher loop integrability in & Bajnok 20



. C.K, Miiller,
Other sectors & higher loops from k=1 Zarembo 20

k = 1 formula is the analytical continuation of the £ > 1 formula
Classical fields vanishing, specific b.c. at the defect
Feynman diagrammatics is completely different

Formulas start out at a higher order in g

1 N-1

For z3 > 0: A, ®;, ¥ =

N NN
N NN
N NN

SRR

| Dus6,A01,2,¢ | Pras, As
Boundary conditions T,y Dirichlet Neumann
z no BCs no BCs




Leading order contribution

Propagators for scalars:

)
1 Neumann

1 1 K
D (x,y) = 12 ( + — ), k = ¢ —1 Dirichlet
0 no BCs.
\

-yl T —yl?

T = (xg,x1, T2, —X3)

2 ab 2 ab
la bl ~ 9ymO B _ 9yMmO
(X1(@) X" (9) = DU (Dalwy) = Da(wy)) = 52

X = ¢1 + 104, etc.

Propagators for fermions in the SU(2|3) sector

T3 — Y3
1z — yl|*

2
a g a
(WL (@)W () = L0 €55

OBS: No divergences as t — vy



Feynman diagrams

W, ./
AT AT
WOC ﬁ

Leading for large-N Sub-leading for large-N
A\ 2 (VBS|u) C.K., Miiller,
Ci=1 =2 1672 <u‘u>1/2 Zarembo ‘20

(VBS| = ((XX|+ (YY|)®L/2  SU(2) sector

(VBS| = ((XX| + (YY[+(ZZ| + (1} | = (4 N®F/2, SU(2[3) sector

Closed expression of factorized determinant form
Result agrees with k — 1 limit of formula with flux factor
(the higher order in g is encoded in the Zhukovsky map).



Summary

D3-D5 D3-D7 D3-D7
Supersymmetry 1/2 BPS None None
Brane geometry AdS,x S? AdS,;x S? x S2 AdS,x S*
IMPS) Integrable Non-integrable Integrable
Exact formula derived Exact formula derived
One-point functions at tree level and one-loop. — at tree level.
Bootstrapped to all orders.
Match with string theory:
Local obs. (1-pt. fcts) yes yes yes
Non-local obs. (Wilson lines) yes yes yes




Future directions

Understanding the integrability/non-integrability from the string
theory side

Higher loop integrability for D3-D77?
Derive the TBA for D3-D5
Wilson loops by localization

Connections to the boundary analytic bootstrap program



Thank you



