Domain walls as integrable boundary states in N=4 SYM

Charlotte Kristjansen Niels Bohr Institute

Based on:

- A. Gimenez-Grau, C.K., M. Volk & M. Wilhelm, arXiv:1912.02468[hep-th],
- JHEP 04 (2020) 132
- M. de Leeuw, T. Gombor, C.K., G. Linardopoulos & B. Pozsgay ArXiv:1912.09338[hep-th], JHEP 01, (2020) 176
- C.K., D. Müller & K. Zarembo, ArXiv:2005.01392[hep-th], to appear in JHEP

IGST2020 Sao Paolo, Brazil August 27th, 2020

Motivation

- Insights on the interplay between conformal symmetry, supersymmetry and integrability
- Exact results for novel types of observables such as one-point functions
- Positive tests of AdS/dCFT dictionary for set-ups with and without supersymmetry
- Interesting connections to statistical physics: matrix product states and quantum quenhes.
- Possible cross-fertilization with the boundary conformal bootstrap program.

The defect set-up

$$\mathcal{N} = 4$$
 SYM

$$U(N-k)$$

$$\langle \phi \rangle = 0$$

$$(x_0, x_1, x_2)$$

$$U(N)$$
 for $x_3 \to \infty$

$$\langle \phi \rangle \neq 0$$

Classical Fields (simplest case)

Assume only x_3 -dependence and $x_3 > 0$, $A_{\mu}^{cl} = 0$, $\Psi_A^{cl} = 0$

Classical e.o.m.:
$$\frac{d^2\phi_i^{\rm cl}}{dx_3^2} = \left[\phi_j^{\rm cl}, \left[\phi_j^{\rm cl}, \phi_i^{\rm cl}\right]\right].$$

$$\phi_i^{\text{cl}} = \frac{1}{x_3} \begin{pmatrix} (t_i)_{k \times k} & 0 \\ 0 & 0 \end{pmatrix}, i = 1, 2, 3$$

Constable, Myers & Tafjord '99

$$\phi_4^{\rm cl} = \phi_5^{\rm cl} = \phi_6^{\rm cl} = 0$$

where $t_{i,j}$ i=1,2,3, constitute a k-dimensional irreducible repr. of SU(2). (Nahm eqns. also fulfilled.)

The quantum fields

For
$$x_3 > 0$$
:
$$\Phi_i, \Psi, A_{\mu} = \begin{bmatrix} x & y & y & y \\ \hline y & z & z & z \\ y & z & z & z \\ y & z & z & z \end{bmatrix} \quad k$$

For k>1: x and y fields are massive, $m^2 \propto 1/x_3^2$, emergent AdS space. z fields are massless

de Leeuw, Ipsen, C.K, Wilhelm '16

For k=1: No classical fields, specific b.c. at the defect

	$\Phi_{4,5,6}, A_{0,1,2}, c$	$\Phi_{1,2,3}, A_3$
$\overline{x,y}$	Dirichlet	Neumann
z	no BCs	no BCs

Ipsen, & Vardinghus '19

C.K, Müller, Zarembo '20

AdS/dCFT set-ups

	D3-D5	D3-D7	D3-D7
Symmetry of vevs	SU(2)	$SU(2) \times SU(2)$	SO(5)
Dim. of rep. / Flux	k	k_1,k_2	$d = \frac{(n+1)(n+2)(n+3)}{6}$
Gauge Groups	$\mathrm{U}(N),\mathrm{U}(N-k)$	$\mathrm{U}(N),\mathrm{U}(N-k_1k_2)$	$\mathrm{U}(N),\mathrm{U}(N-d)$
Supersymmetry	1/2 BPS	None	None
Brane geometry	$AdS_4 \times S^2$	$AdS_4 \times S^2 \times S^2$	$\mathrm{AdS}_4 imes\mathrm{S}^4$

One-point functions in dCFT's

$$\langle \mathcal{O}_{\Delta}^{\text{bulk}}(x) \rangle = \frac{C}{|x_3|^{\Delta}}$$

Cardy '84 McAvity & Osborn '95

Normalization given by:

$$\lim_{x_3 \to \infty} \langle \mathcal{O}_{\Delta}^{\text{bulk}}(y+x) \mathcal{O}_{\Delta'}^{\text{bulk}}(z+x) \rangle = \frac{\delta_{\Delta\Delta'}}{|y-z|^{2\Delta}}$$

Due to vevs scalar operators can have non-zero 1-pt fcts at tree-level

$$\langle \mathcal{O}_{\Delta}(x) \rangle = (\operatorname{Tr}(\phi_{i_1} \dots \phi_{i_{\Delta}}) + \dots) \mid_{\phi_i \to \phi_i^{\text{cl}} = \frac{t_i}{x_3}}$$

Matrix Product State associated with the defect:

$$|\mathrm{MPS_k}
angle = \sum_{ec{i}} \mathrm{tr}[t_{i_i} \dots t_{i_L}] |\phi_{i_1} \dots \phi_{i_L}
angle,$$
 deLeeuw, C.K. & Zarembo '15,

Object to calculate:
$$C_k(\mathbf{u}) = \frac{\langle \text{MPS}_k | \mathbf{u} \rangle_L}{\langle \mathbf{u} | \mathbf{u} \rangle^{\frac{1}{2}}}$$

Integrability criterion

When can $\langle MPS_k | \mathbf{u} \rangle_L$ be calculated in closed form?

Integrability criterion: $\hat{Q}_{2m+1}|MPS_k\rangle = 0, \quad m \ge 1$

Ghoshal & Zamolodchikov '94

Piroli, Pozsgay Vernier '17

 $|MPS_k\rangle$ only involves excitation pairs with momenta (+p,-p)

 $|MPS_k\rangle$ boundary state which only allows pure reflection (BYB also required)

Integrability of MPS

	D3-D5	D3-D7	D3-D7
Supersymmetry	1/2 BPS	None	None
Brane geometry	$AdS_4 \times S^2$	$AdS_4 \times S^2 \times S^2$	$\mathrm{AdS}_4 imes\mathrm{S}^4$
Dim. of rep./ Flux	k	k_1, k_2	$d = \frac{(n+1)(n+2)(n+3)}{6}$
$ { m MPS} angle$	Integrable	Non-integrable	Integrable
Overlaps	Exact formula derived		Exact formula derived

Reflection matrix which fulfills BYB of SO(6) spin chain and has the appropriate symmetries can be found for the two cases with $Q_{2m+1}|MPS\rangle=0$

de Leeuw, Gombor C.K & Linardopoulos, Pozsgay '19.

Solution SO(5) symmetric D3-D7case

Result for C_n :

• Exact formula valid for any L, M, N^+, N^- and n

de Leeuw, C.K & Linardopoulos,'18. de Leeuw, Gombor C.K & Linardopoulos, Pozsgay '19.

$$\frac{\langle \mathbf{u} | \mathrm{MPS}_{n} \rangle}{\langle \mathbf{u} | \mathbf{u} \rangle^{1/2}} = \Lambda_{n} \cdot \sqrt{\frac{Q_{0}(0) Q_{0}(\frac{1}{2})}{\bar{Q}_{+}(0) \bar{Q}_{+}(\frac{1}{2}) \bar{Q}_{-}(0) \bar{Q}_{-}(\frac{1}{2})}} \cdot \sqrt{\frac{\det G_{+}}{\det G_{-}}}$$

$$\Lambda_n = 2^L \sum_{q=-\frac{n}{2}}^{\frac{n}{2}} q^L \left[\sum_{p=-\frac{n}{2}}^{q} \frac{Q_0(p-\frac{1}{2})}{Q_0(q-\frac{1}{2})} \frac{Q_-(q)Q_-(\frac{n}{2}+1)}{Q_-(p)Q_-(p-1)} \right] \left[\sum_{r=q}^{\frac{n}{2}} \frac{Q_0(r+\frac{1}{2})}{Q_0(q+\frac{1}{2})} \frac{Q_+(q)Q_+(\frac{n}{2}+1)}{Q_+(r)Q_+(r+1)} \right].$$

Q's: Baxter polynomials, G Gaudin matrix:

$$\langle \mathbf{u} | \mathbf{u} \rangle \propto \det G = \det G_+ \det G_-,$$

Higher loops: D3-D5 case (1/2 BPS)

Tree level Formula works upon modification by a flux factor (su(2) sector)

$$C_k = i^L \tilde{T}_{k-1}(0) \sqrt{\frac{Q(\frac{i}{2})Q(0)}{Q^2(\frac{ik}{2})}} \sqrt{\frac{\det G_+}{\det G_-}} \, \mathbb{F}_k$$

Buhl-Mortensen, de Leeuw, Ipsen, C.K, Wilhelm '17

$$\mathbb{F}_k = 1 + g^2 \left[\Psi(\frac{k+1}{2}) + \gamma_E - \log 2 \right] \Delta^{(1)} + O(g^4),$$

and a replacement in the Bethe equations and the transfer matrix

Beisert & Staudacher '05

Buhl-Mortensen.

$$e^{ip} = \frac{u + \frac{i}{2}}{u - \frac{i}{2}} \longrightarrow \frac{x(u + \frac{i}{2})}{x(u - \frac{i}{2})}, \qquad u(x) = x + \frac{g^2}{x}, \qquad g^2 = \frac{\lambda}{8\pi^2}$$

(plus dressing phase via bootstrap plus wrapping corrections via TBA)

NB: A non-trivial field theory calculation is needed for this statement (involving diagonalizing the mass matrix using fuzzy spherical harmonics, supersymmetric regularization and renormalization).

Higher loops: D3-D5 case (1/2 BPS)

Recently reproduced by a bootstrap argument (assuming string integrability)

Komatsu & Wang '20

 \mathbb{F}_k : Originates from boundary dressing phase

$$\sum_{-\frac{k-1}{2}}^{\frac{k-1}{2}}$$
 in $T_{k-1}(u)$ originates from sum over boundary bound states

Extended to the full theory & Bajnok'20

One-point function of chiral primaries calculated via localization

(No Bethe roots, no flux factor)

Komatsu

& Wang '20

Higher loops D3-D7 cases (No susy)

Perturbative program set up:

$$SU(2) \times SU(2)$$
 symmetric case (non-integrable)

$$SO(5)$$
 symmetric case

Gimenez-Grau, C.K, Volk, Wilhelm '18 Gimenez-Grau, C.K, Volk, Wilhelm '19

Match with string theory in d.s.l. to two leading orders for

- One-point functions of chiral primaries

 Gimenez-Grau,
 C.K, Volk,
 Wilhelm '18, '19
- Expectation values of Maldacena-Wilson lines

 Bonansea,
 Idiab, C.K,
 Volk '20

Challenges of the SO(5) case

- One-point functions only non-vanishing for full SO(6) sector
- Localization techniques do not work
- Argument against higher loop integrability in

Gombor & Bajnok '20

Other sectors & higher loops from k=1

k=1 formula is the analytical continuation of the k>1 formula

Classical fields vanishing, specific b.c. at the defect

Feynman diagrammatics is completely different

Formulas start out at a higher order in g

For
$$x_3 > 0$$
: $A_{\mu}, \Phi_i, \Psi = \begin{bmatrix} x & y & y & y \\ \hline y & z & z & z \\ y & z & z & z \\ y & z & z & z \end{bmatrix}$ $N-1$

	$\Phi_{4,5,6}, A_{0,1,2}, c$	$\Phi_{1,2,3}, A_3$
x, y	Dirichlet	Neumann
z	no BCs	no BCs

Leading order contribution

Propagators for scalars:

$$D_{\kappa}(x,y) = \frac{1}{4\pi^2} \left(\frac{1}{|x-y|^2} + \frac{\kappa}{|\bar{x}-y|^2} \right), \quad \kappa = \begin{cases} 1 & \text{Neumann} \\ -1 & \text{Dirichlet} \\ 0 & \text{no BCs.} \end{cases}$$

$$\bar{x} = (x_0, x_1, x_2, -x_3)$$

$$\langle X^{1a}(x)X^{b1}(y)\rangle = \frac{g_{YM}^2\delta^{ab}}{2} \Big(D_1(x,y) - D_{-1}(x,y)\Big) = \frac{g_{YM}^2\delta^{ab}}{4\pi^2|\bar{x} - y|^2},$$

$$X = \phi_1 + i\phi_4$$
, etc.

Propagators for fermions in the SU(2|3) sector

$$\langle \Psi_{\alpha}^{1a}(x)\Psi_{\beta}^{b1}(y)\rangle = \frac{g_{\mathrm{YM}}^2}{8\pi^2} \,\epsilon_{\alpha\beta} \,\delta^{ab} \cdot \frac{\bar{x}_3 - y_3}{|\bar{x} - y|^4}.$$

OBS: No divergences as $x \to y$

Feynman diagrams

Leading for large-N

Sub-leading for large-N

$$C_{k=1} = 2 \left(\frac{\lambda}{16\pi^2}\right)^{L/2} \frac{\langle \text{VBS}|\mathbf{u}\rangle}{\langle \mathbf{u}|\mathbf{u}\rangle^{1/2}}$$

C.K., Müller, Zarembo '20

$$\langle VBS| = (\langle XX| + \langle YY|)^{\otimes L/2}, \quad SU(2) \text{ sector}$$

$$\langle VBS | = (\langle XX | + \langle YY | + \langle ZZ | + \langle \uparrow \downarrow | - \langle \downarrow \uparrow |)^{\otimes L/2}, \quad SU(2|3) \text{ sector}$$

Closed expression of factorized determinant form Result agrees with $k \to 1$ limit of formula with flux factor (the higher order in g is encoded in the Zhukovsky map).

Summary

	D3-D5	D3-D7	D3-D7
Supersymmetry	1/2 BPS	None	None
Brane geometry	$\mathrm{AdS_4}{ imes}\mathrm{S}^2$		$\mathrm{AdS}_4 imes\mathrm{S}^4$
$ ext{MPS} angle$	Integrable	Non-integrable	Integrable
One-point functions	Exact formula derived at tree level and one-loop. Bootstrapped to all orders.		Exact formula derived at tree level.
Match with string theory: Local obs. (1-pt. fcts) Non-local obs. (Wilson lines)	yes yes	yes yes	yes yes

Future directions

- Understanding the integrability/non-integrability from the string theory side
- Higher loop integrability for D3-D7?
- Derive the TBA for D3-D5
- Wilson loops by localization
- Connections to the boundary analytic bootstrap program

Thank you