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Hexagonalisation: a generalisation of the TBA setup to world-sheet of higher genus 

— weights= [symmetric bi-local] x [antisymmetric bi-local] x [matrix factor]

Octagon: the simplest non-trivial object 

      weights =  [symmetric bi-local] x 1 x 1 ℋ1 ℋ2

(0,0)

(∞, ∞)

(1,1) (z, z̄, α, ᾱ)ℓ

— gives a prescription for summing up the virtual particles wrapping the spacial cycles.
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— In the null square limit   !   
the octagon is a tau-function for the semi-infinite Toda lattice  !

log(z /z̄) = e−s/g, g → 0
τℓ(s), ℓ ≥ 0.

where the operator Kℓ is defined by Eq. (3.16) with χ(x) = θ(s2 − x). As was already

mentioned, the same Fredholm determinant defines the probability that no eigenvalues lie
on the interval [0, s2] in the Laguerre unitary ensemble. For arbitrary ℓ, it can be computed

in terms of a Painlevé transcendent [14].
For nonnegative integer ℓ, the Fredholm determinant in (4.13) can be expressed in terms

of the modified Bessel functions [36, 37]

Oℓ = e−s2/4 τℓ(s) , τℓ(s) = det
[
Ij−k(s)

]

j,k=1,...,ℓ
. (4.14)

This relation takes into account all perturbative corrections to the octagon of the form
(g2y2)k in the null limit. For lowest values of ℓ, we have

τ0 = 1 , τ1 = I0(s) , τ2 = I20 (s)− I21 (s) , . . . (4.15)

The function τℓ(s) is closely related to the τ−function in the Okamoto’s theory of the Painlevé

V equation [38–40]. As such, it satisfies a finite-difference relation, which reads

s2
τℓ τℓ+2

τ 2ℓ+1

= (s∂s)
2 log τℓ+1 . (4.16)

It coincides with the Toda lattice equation. We immediately verify that the expansion of

(4.14) at small s agrees with (4.11). We also checked that the expressions (4.11) satisfy the
relation (4.16).

At large s, the asymptotic behavior of the Fredholm determinant (4.13) was found in

Ref. [14]

Oℓ = e−s2/4+ℓs+cℓ s−ℓ
2/2

[
1 +

ℓ

8
s−1 +

9ℓ2

128
s−2 +

(
3ℓ

128
+

51ℓ3

1024

)
s−3 + . . .

]
, (4.17)

where the Dyson-Widom constant cℓ = log(G(1 + ℓ)/(2π)ℓ/2) is expressed in terms of the
Barnes G−function. Its value was first conjectured in [14] and later proved in [41]. It is
convenient to rewrite (4.17) as

logOℓ = −s2

4
+ ℓs− ℓ2

2
log s+ cℓ +O(1/s) . (4.18)

Notice that the leading term in (4.18) is independent of the bridge length.
The relations (4.14) – (4.18) describe the asymptotic behavior of the octagon in the

double scaling limit (4.10). By definition, the coupling constant is small in this domain.
In the following sections, we compute the octagon at strong coupling and compare it with
(4.18) in Section 7.2.

5 Octagon at strong coupling

In this section, we study the octagon Oℓ at strong coupling. We use the Fredholm determi-

nant representation (3.22) to derive the first few terms of the strong coupling expansion of
logOℓ.
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 Octagon = Free fermions  !  (Fredholm) determinant !  integrability? ⇒ ⇒

𝕆ℓ = ∑
±

⟨ℓ |exp(ψ*Cψ*) exp(ψKψ) |ℓ⟩ ψ*Cψ* =
∞

∑
m,n=0

ψ*mCnmψ*n

ψKψ =
∞

∑
m,n=0

ψmKnmψn

Q. Is it possible to write Hirota equations in the general case? 
     Physical excitations by integrable deformation?

Bridge length !  = charge of Fermi vacuumℓ

Is there hidden integrability in the Octagon?
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Is it possible to rephrase the hexagonalization in terms of the 
Quantum Spectral Curve?

The weights of the  virtual particles in the deformed octagon and the 
decagon have nontrivial matrix part.

e.g. for the Decagon

Figure 6: The matrix part for the two-particle contribution. The top line explains how we
compute it using the hexagon formalism: We rewrite the middle hexagon by performing the
5�-mirror transformation to the first particle. The second line shows the pictorial repre-
sentation of the matrix part: The summation over the flavor indices corresponds to adding
dashed curves in the figure, and Wui ’s are the weight factors. The last line gives the final
result for the matrix part and the definition of Fab: It is essentially given by two intersecting
loops. At the intersection point we insert the su(2|2) S-matrix (denoted by a gray dot in
the figure) and, on each loop, we insert a twist gi. The twist comes from the insertion of the
weight factor Wui and it produces di↵erent phases depending on the flavors. (See also [5]).

Having determined the correct basis elements, one can write down9 the two-particle
contribution following the general prescription given in [5]:

M
(2)(z1, z2,↵1,↵2) =

Z
du1

2⇡

du2

2⇡

1X

a=1

1X

b=1

µa(u
�
1)µb(u

�
2)
X

I

X

J

hL
⇥
X̄b(u

��
2 )J

⇤
W [Xb(u

�
2)J ] hM

⇥
Xb(u

�
2)J X̄a(u

��
1 )I

⇤
W [Xa(u

�
1)I ] hR [Xa(u

�
1)I ] ,

(32)

Here h denote the hexagon form factors and the subscripts L,M and Rmean the left hexagon,
the middle hexagon and the right hexagon respectively, see figure 2. W ’s are the weight
factors which incorporate the cross-ratio dependence and µ’s are the measures. There are

9One also needs to average over the choices of the signs in (31), although we did not write it explicitly
here.

13

𝕆0 ≃ exp 2g∫
∞

−∞

dϑ
2π

φ cosh ϑ log(1 + Y(ϑ))
SU(2|2) 
character

The strong coupling expressions can be 
interpreted as functional determinant of the QSC 

 What about finite coupling?   

Possible approach:  diagonalise the matrix part as in the nested TBA using the 
(wrong) string hypothesis and then interpret the result in terms of functional 
equations as in TBA. Is that realistic?
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interpretation of the leading strong coupling expansion of the 
octagon in terms of minimal area attached to four BMN 
geodesics. The problem is well posed but the solution is still 
missing.

Gauge-string correspondence in the semi-classical limit

1 2
3 4 3 4 2

(a) (b)

Figure 10: (a) Several geodesics ending on the same circle are conformally equivalent to
(b) Geodesics ending on the same straight line. In the latter picture, we used conformal
symmetry to put one of the operators at infinity. We see very clearly in this frame that
the area becomes the sum of two pieces, separated by the dashed line. More general, had
we started with n points on a line, we would have ended with n ≠ 2 such world-sheet
patches. In the text, we show that the area of each patch is fi. In the left figure removing
the area below the geodesics amounts to removing the gray patches of the spherical dome,
leaving only the blue cap.

when getting rid of the 1/n obstruction to factorization, and thus find

log Ol ƒ
Ô

⁄

2fi

Œ⁄

≠Œ

d◊

2fi

A

Ï cosh(◊) + iL cosh2(◊)
sinh(◊ + i0)

B

log(1 + Y¸(◊)) , (B.2)

where Y¸(◊) is given by (2.22) with Ï cosh(◊) æ Ï cosh(◊) + iL sinh(◊), with L © ¸/2g. If
the bridge length scales with g ≥

Ô
⁄, then the bridge presence significantly a�ects the

final result, and it would be interesting to reproduce this more general result from a string
sigma-model minimal-area computation. If ¸ = O(1), then L æ 0, and the bridge has no
e�ect at strong coupling, as expected.

C Minimal Areas Ending on Geodesics

This appendix followed from the following observation by Martin Kruczenski: If we have
some concatenation of geodesics on AdS, whose endpoints lie on a common circle, then
the minimal surface which ends on those geodesics is nothing but the part of a spherical
dome ending on the circle that is enclosed by the geodesics,17 see Figure 10a. That circle
configuration can be mapped to the straight line, where the area is even simpler and given
in Figure 10b.

It then becomes a straightforward exercise to compute this area. Of course, this problem
is not the actual problem we want to solve, as here we are totally ignoring the sphere. Indeed,
instead of obtaining the rich result (2.21) in the circle limit z æ z̄ (or „ æ 0), this simpler
minimal area computation yields a simple constant, an integer multiple of fi. As explained
in the figure, for an n-point function we would simply need to consider the area of n ≠ 2

17This is in fact a general property of minimal surfaces: The condition for minimality (vanishing of the
mean curvature) is a local condition. Hence cutting o� arbitrary parts of any given minimal surface (in our
case, a half-sphere in the Poincaré plane) again yields a minimal surface, with the boundary conditions given
by the chosen cut contours.

25
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x1

x2

x3

x4

Weak coupling: interpretation of the terms in the expansion of the 
determinant as Feynman graphs 

In the fishnet limit (strong twists ~1/g in both channels and g small) the 
octagon is the generating function for the Basso-Dixon fishnets

In the determinant representation of the octagon  
!  
Diagonal minors  = !   Basso-Dixon fishnets 
𝕆ℓ = det(1 + R)

n × (n + ℓ)

How to extend the map between integrability and Feynman graphs?

Non-diagonal minors =  fishnets with defects?
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Non-planar correlators from octagons:  T. Bargheer, F. Coronado, P. Vieira, 1909.04077. 

Description in terms of a Modified Bessel kernel,  
weak+strong coupling expansions,  
Toda tau function in the null-square limit: 
  A. Belitsky, G. Korchemsky, 2003.01121,  2006.01831

The octagon as a determinant:  
V. Petkova, I. Kostov, D. Serban. arXiv:1903.05038,  arXiv:1905.11467

Relation to Basso-Dixon fishnets:  
F. Coronado, arXiv:1811.00467, 1811.033282, B. Basso, L. Dixon 1705.03545;

The original papers: F. Coronado, arXiv:1811.00467, 1811.033282 

In the null square limit [A.Belitsky, G. Korchemsky 1907.13131] 

- relation to the 6-gluon MHV amplitude and the BES kernel:  
B. Basso, L. Dixon, G. Papathanasiou 1705.03545 

Some papers on the octagon:


