6d (2,0) correlators and Quantum M-theory

Luis Fernando Alday

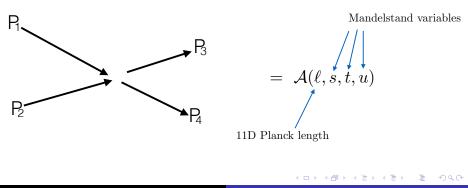
University of Oxford

IGST - August 2020

Based on work with S. Chester and H. Raj [arXiv:2005.07175] and X. Zhou [arXiv:2006.06653,arXiv:2006.12505]

Conformal Field Theories techniques to study Scattering Amplitudes in theories of Gravity, and in particular String and M-theory.

Target: 4pt (super) graviton amplitude in M-theory.



Perturbative M-theory: 11D Sugra plus higher derivative corrections

$$S_{eff}[g] = \frac{1}{2\kappa^2} \int d^{11}x \sqrt{g} \left(\mathcal{R} + \alpha \ell^6 \mathcal{R}^4 + \beta \ell^{12} D^6 \mathcal{R}^4 + \underbrace{\gamma \ell^{14} D^8 \mathcal{R}^4 + \cdots}_{\text{unknown}} \right)$$

- Higher derivative terms carry powers of ℓ , the 11D Planck length.
- $D^2 \mathcal{R}^4$ and $D^4 \mathcal{R}^4$ can be shown to be absent. From $D^8 \mathcal{R}^4$ nothing is known!

Scattering amplitudes in M-theory

11D 4pt graviton amplitude in a momentum expansion (in flat space!)

$$\mathcal{A}(p_i, \zeta_i) = \ell^9 \hat{K}(p_i, \zeta_i) \begin{pmatrix} \frac{1}{s \, t \, u} + \ell^6 \alpha + \ell^{12} \beta s \, t \, u + \dots + \text{loops} \end{pmatrix}$$

momenta polarisation
vectors
$$SUGRA \quad \mathcal{R}^4 \qquad D^6 \mathcal{R}^4$$

- All polarisation dependence inside a universal factor \hat{K} .
- The coefficients of higher polynomials in *s*, *t*, *u* are not known.
- Loops are complicated non-analytic functions of *s*, *t*, *u*.

$$\mathcal{A}^{loop-sugra} = \ell^9 \times \Phi_{11D}(s,t) = \ell^9 s^{5/2} t^{5/2} u^{-7/2} \log(\sqrt{u} - \sqrt{-s}) + \cdots$$

Let's extend this to curved space-time!

AdS/CFT duality for M-theory

M-theory on $AdS_7 \times S^4 \iff$ 6d SCFT living in the boundary of AdS_7

- Maximally SUSY theory in 6d.
- 6d (2,0) theory with central charge *c*.

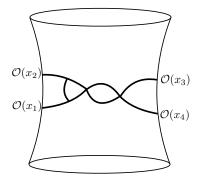
 $L_{S^4} = 1/2L_{AdS}.$

$$\left(\frac{L_{AdS}}{\ell}\right)^9 \sim c$$

 \Downarrow Momentum expansion (powers of $\ell) \leftrightarrow 1/c$ expansion.

Dictionary

M-theory amplitude on $AdS_7 \times S^4 \leftrightarrow$ Correlator of local operators



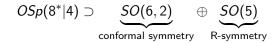
in the 6d (2,0) theory

• The graviton on AdS corresponds to \mathcal{O}_2 • KK modes on S^4 corresponds to \mathcal{O}_k 1/2 BPS operators of dim. 2k

We want $\langle \mathcal{O}_{k_1}(x_1)\mathcal{O}_{k_2}(x_2)\mathcal{O}_{k_3}(x_3)\mathcal{O}_{k_4}(x_4)\rangle$ in a 1/c expansion.

6d(2,0) Correlators - Kinematics

• Maximally susy theory in 6d, with super-conformal algebra



• 1/2-BPS operators transform in the symmetric-traceless of SO(5)

$$\mathcal{O}_{I_1\cdots I_k}(x) \quad \rightarrow \quad \mathcal{O}_k(x,y) = \mathcal{O}_{I_1\cdots I_k}(x)y^{I_1}\cdots y^{I_k}, \quad y^2 = 0$$

• We consider 4pt-functions of these guys

$$\langle \mathcal{O}_k(x_1, t_1) \cdots \mathcal{O}_k(x_4, t_4) \rangle = \left(\frac{y_{12}y_{34}}{x_{12}^4 x_{34}^4} \right)^k \underbrace{\mathcal{G}(U, V, \sigma, \tau)}_{\text{Polynomial in } \sigma, \tau}$$

where
$$U = \frac{x_{12}^2 x_{34}^2}{x_{13}^2 x_{24}^2}$$
, $V = \frac{x_{14}^2 x_{23}^2}{x_{13}^2 x_{24}^2}$, $\sigma = \frac{y_{13}y_{24}}{y_{12}y_{32}}$, $\tau = \frac{y_{14}y_{23}}{y_{12}y_{34}}$.

6d (2,0) Correlators 1/c expansion

Leading non-trivial order (the supergravity approximation)

$$\mathcal{G}(U, V; \sigma, \tau) = \underbrace{\mathcal{G}^{(0)}(U, V; \sigma, \tau)}_{disconnected} + \underbrace{\frac{1}{c} \mathcal{G}^{(sugra)}(U, V; \sigma, \tau)}_{+ \cdots$$

Standard recipe

- Perform a KK reduction of the 11D Sugra effective action on S^4 .
- Read off cubic and quartic vertices from the AdS_7 effective action.
- Write down & compute all exchange and contact Witten diagrams.

$$\mathcal{G}^{(sugra)} = \sum_{\Delta,\ell} \left(\begin{array}{c} k_2 \\ k_1 \\ k_1 \end{array} \right)^{k_3} + \text{crossed} + \left(\begin{array}{c} k_2 \\ k_2 \\ k_1 \\ k_4 \end{array} \right)^{k_3} + \left(\begin{array}{c} k_2 \\ k_1 \\ k_4 \end{array} \right)^{k_3} + \left(\begin{array}{c} k_2 \\ k_1 \\ k_4 \end{array} \right)^{k_3} + \left(\begin{array}{c} k_2 \\ k_1 \\ k_4 \end{array} \right)^{k_3} + \left(\begin{array}{c} k_2 \\ k_1 \\ k_4 \end{array} \right)^{k_3} + \left(\begin{array}{c} k_2 \\ k_1 \\ k_4 \end{array} \right)^{k_3} + \left(\begin{array}{c} k_2 \\ k_1 \\ k_4 \end{array} \right)^{k_3} + \left(\begin{array}{c} k_2 \\ k_1 \\ k_4 \end{array} \right)^{k_3} + \left(\begin{array}{c} k_2 \\ k_1 \\ k_4 \end{array} \right)^{k_3} + \left(\begin{array}{c} k_2 \\ k_1 \\ k_4 \end{array} \right)^{k_3} + \left(\begin{array}{c} k_2 \\ k_1 \\ k_4 \end{array} \right)^{k_3} + \left(\begin{array}{c} k_2 \\ k_1 \\ k_4 \end{array} \right)^{k_4} + \left(\begin{array}{c} k_2 \\ k_1 \\ k_4 \end{array} \right)^{k_4} + \left(\begin{array}{c} k_2 \\ k_1 \\ k_4 \end{array} \right)^{k_4} + \left(\begin{array}{c} k_2 \\ k_1 \\ k_4 \end{array} \right)^{k_4} + \left(\begin{array}{c} k_2 \\ k_1 \\ k_4 \end{array} \right)^{k_4} + \left(\begin{array}{c} k_2 \\ k_1 \\ k_4 \end{array} \right)^{k_4} + \left(\begin{array}{c} k_2 \\ k_1 \\ k_4 \end{array} \right)^{k_4} + \left(\begin{array}{c} k_2 \\ k_1 \\ k_4 \end{array} \right)^{k_4} + \left(\begin{array}{c} k_2 \\ k_1 \\ k_4 \end{array} \right)^{k_4} + \left(\begin{array}{c} k_2 \\ k_1 \\ k_4 \end{array} \right)^{k_4} + \left(\begin{array}{c} k_2 \\ k_1 \\ k_4 \end{array} \right)^{k_4} + \left(\begin{array}{c} k_2 \\ k_1 \\ k_4 \end{array} \right)^{k_4} + \left(\begin{array}{c} k_2 \\ k_1 \\ k_4 \end{array} \right)^{k_4} + \left(\begin{array}{c} k_2 \\ k_1 \\ k_4 \end{array} \right)^{k_4} + \left(\begin{array}{c} k_2 \\ k_1 \\ k_4 \end{array} \right)^{k_4} + \left(\begin{array}{c} k_2 \\ k_1 \\ k_4 \end{array} \right)^{k_4} + \left(\begin{array}{c} k_2 \\ k_1 \\ k_4 \end{array} \right)^{k_4} + \left(\begin{array}{c} k_2 \\ k_1 \\ k_4 \end{array} \right)^{k_4} + \left(\begin{array}{c} k_2 \\ k_1 \\ k_4 \end{array} \right)^{k_4} + \left(\begin{array}{c} k_2 \\ k_1 \\ k_4 \end{array} \right)^{k_4} + \left(\begin{array}{c} k_2 \\ k_1 \\ k_4 \end{array} \right)^{k_4} + \left(\begin{array}{c} k_2 \\ k_1 \\ k_4 \end{array} \right)^{k_4} + \left(\begin{array}{c} k_2 \\ k_1 \\ k_4 \end{array} \right)^{k_4} + \left(\begin{array}{c} k_2 \\ k_1 \\ k_4 \end{array} \right)^{k_4} + \left(\begin{array}{c} k_2 \\ k_1 \\ k_4 \end{array} \right)^{k_4} + \left(\begin{array}{c} k_2 \\ k_1 \\ k_4 \end{array} \right)^{k_4} + \left(\begin{array}{c} k_2 \\ k_1 \\ k_4 \end{array} \right)^{k_4} + \left(\begin{array}{c} k_2 \\ k_1 \\ k_4 \end{array} \right)^{k_4} + \left(\begin{array}{c} k_2 \\ k_1 \\ k_4 \end{array} \right)^{k_4} + \left(\begin{array}{c} k_2 \\ k_1 \\ k_1 \\ k_2 \end{array} \right)^{k_4} + \left(\begin{array}{c} k_2 \\ k_1 \\ k_2 \end{array} \right)^{k_4} + \left(\begin{array}{c} k_2 \\ k_1 \\ k_1 \\ k_2 \end{array} \right)^{k_4} + \left(\begin{array}{c} k_2 \\ k_1 \\ k_2 \end{array} \right)^{k_4} + \left(\begin{array}{c} k_2 \\ k_1 \\ k_2 \end{array} \right)^{k_4} + \left(\begin{array}{c} k_2 \\ k_2 \\ k_1 \\ k_2 \end{array} \right)^{k_4} + \left(\begin{array}{c} k_2 \\ k_2 \\ k_2 \end{array} \right)^{k_4} + \left(\begin{array}{c} k_2 \\ k_2 \\ k_2 \end{array} \right)^{k_4} + \left(\begin{array}{c} k_2 \\$$

Not possible in practise! Rather, use consistency conditions.

The right language: Mellin space

 $\mathcal{G}(U, V; \sigma, \tau) \rightarrow \mathcal{M}(s, t, u; \sigma, \tau) \equiv \mathcal{M}(s, t; \sigma, \tau), \text{ with } s + t + u = 8k.$

$$\mathcal{G}(U, V; \sigma, \tau) = \int_{-i\infty}^{i\infty} ds dt U^{s} V^{t} \underbrace{\Gamma_{\{k_i\}}(s, t, u)}_{\text{A prefactor}} \underbrace{\mathcal{M}(s, t; \sigma, \tau)}_{M-\text{theory amplitude in } AdS_7 \times S^4}$$

 $\mathcal{M}(s,t;\sigma, au)$ is a meromorphic function with very nice properties!

- Crossing symmetry.
- ② Exchanged operators lead to simple poles:

$$\mathcal{M}_{exch}(s,t) = \sum_{m=0}^{\infty} \lambda_{\Delta,\ell}^2 \frac{Q_{\ell,m}(u,t)}{s - (\Delta - \ell) - 2m} + ext{regular} \quad \checkmark$$

Superconformal Ward identities:

(Shift operator)
$$\circ \mathcal{M}(s, t; \sigma, \tau) = 0$$
 \checkmark

Rather than the effective action use 1+2+3! [Rastelli-Zhou]

With this method we can produce results case by case, but this is still very inefficient and its hard to see any structure...we need a new idea!

Maximally R-symmetry violating amplitudes

• Each operator depends on a 6d point x and a null 5d vector y:

$$\langle \mathcal{O}_k(x_1, y_1) \mathcal{O}_k(x_2, y_2) \mathcal{O}_k(x_3, y_3) \mathcal{O}_k(x_4, y_4) \rangle$$

Point in $\mathbb{R}^{1,5}$ Null 5d vector

• Choose a configuration where y_1, y_3 are aligned $\rightarrow \sigma = 0, \tau = 1$.

$$MRV(s,t) = \mathcal{M}(s,t;0,1)$$

This suppresses all sugra exchanges in the u-channel (as $y_1 \cdot y_3 = 0$) and the amplitude simplifies drastically!

Stress tensor multiplet four-point function in $AdS_7 \times S^4$

-5160960 + 2512896 - 445440 - 324176 - 360 - 960 - 3440 - 1967872 - 196787 $21392 s^{3} t + 520 s^{4} t - 1507072 t^{2} + 609152 s t^{2} - 84576 s^{2} t^{2} + 4764 s^{3} t^{2} - 90 s^{4} t^{2} + 609152 s t^{2} - 84576 s^{2} t^{2} + 4764 s^{3} t^{2} - 90 s^{4} t^{2} + 609152 s t^{2} - 84576 s^{2} t^{2} + 4764 s^{3} t^{2} - 90 s^{4} t^{2} + 609152 s t^{2} - 84576 s^{2} t^{2} + 4764 s^{3} t^{2} - 90 s^{4} t^{2} + 609152 s t^{2} - 84576 s^{2} t^{2} + 4764 s^{3} t^{2} - 90 s^{4} t^{2} + 609152 s t^{2} - 84576 s^{2} t^{2} + 4764 s^{3} t^{2} - 90 s^{4} t^{2} + 609152 s t^{2} - 84576 s^{2} t^{2} + 4764 s^{3} t^{2} - 90 s^{4} t^{2} + 609152 s t^{2} + 609152 s t^{2} - 80576 s^{2} t^{2} + 609152 s t^{2} + 60915$ 268 888 +³ - 95 264 e +³ + 10 702 e² +³ - 448 e³ +³ - 5 e⁴ +³ - 26 328 +⁴ + 7892 e +⁴ - 654 e² +⁴ + 15 c³ t⁴ + 1344 t⁵ - 374 c t⁵ + 15 c² t⁵ - 78 t⁶ + 5 c t⁶ + 3877 848 m - 2679 637 c m + 655 877 c² m - $61448 s^{3} a + 1928 s^{4} a - 2055 168 t a + 1797 632 s t a - 429 768 s^{2} t a + 37 128 s^{3} t a - 1848 s^{4} t a + 1797 632 s t a - 429 768 s^{2} t a + 37 128 s^{3} t a - 1848 s^{4} t a + 1797 632 s t a - 429 768 s^{2} t a + 37 128 s^{3} t a - 1848 s^{4} t a + 1797 632 s t a - 429 768 s^{2} t a + 37 128 s^{3} t a - 1848 s^{4} t a + 1797 632 s t a - 429 768 s^{2} t a + 37 128 s^{3} t a - 1848 s^{4} t a + 1797 632 s t a - 429 768 s^{2} t a + 37 128 s^{3} t a - 1848 s^{4} t a + 1797 632 s t a - 429 768 s^{2} t a + 37 128 s^{3} t a - 1848 s^{4} t a + 1797 632 s t a - 429 768 s^{2} t a + 37 128 s^{3} t a - 1848 s^{4} t a + 1797 632 s t a - 429 768 s^{2} t a + 37 128 s^{3} t a - 1848 s^{4} t a + 1797 632 s t a - 429 768 s^{2} t a + 37 128 s^{3} t a - 1848 s^{4} t a + 1797 632 s t a - 429 768 s^{2} t a + 37 128 s^{3} t a - 1848 s^{4} t a + 1797 632 s t a - 429 768 s^{2} t a + 37 128 s^{3} t a - 1848 s^{4} t a + 1797 632 s t a - 429 768 s^{2} t a + 37 128 s^{3} t a - 1848 s^{4} t a + 1888 s^{4} t$ 521 984 t² a - 461 768 s t² a + 183 768 s² t² a - 7848 s³ t² a + 188 s⁴ t² a - 61 568 t³ a + 28 s³ t⁴ a = 64 t⁵ a = 68 s t⁵ a = 10 s² t⁵ a = 1916 928 $a^2 = 1222$ 656 s $a^2 = 279$ 552 s² $a^2 = 1222$ 27 264 s³ σ^2 - 960 s⁴ σ^2 + 1222 656 t σ^2 - 762 112 s t σ^2 + 168 704 s² t σ^2 - 15 728 s³ t σ^2 + 520 e⁴ + a² - 270 552 +² a² - 169 704 e +² a² - 25 569 e² +² a² - 2076 e³ +² a² - 90 e⁴ +² a² -27 264 + 3 a² - 15 728 e + 3 a² + 3076 e² + 3 a² - 232 e³ + 3 a² + 5 e⁴ + 3 a² - 968 + 4 a² + 528 e + 4 a² -98 s² t⁴ a² + 5 s³ t⁴ a² + 7 588 488 r - 918 578 s r + 57 888 s² r + 17 416 s³ r - 1797 s⁴ r + 64 s⁵ r -918 528 ± + _ 108 544 ± ± + 171 208 ±² ± + _ 34 256 ±³ ± + + 2592 ±⁴ ± + _ 68 ±⁵ ± + + 57 888 ±² + + $171200 \text{ s} \text{ t}^2 \text{ t} = 74528 \text{ s}^2 \text{ t}^2 \text{ t} = 10416 \text{ s}^3 \text{ t}^2 \text{ t} = 572 \text{ s}^4 \text{ t}^2 \text{ t} = 10 \text{ s}^5 \text{ t}^2 \text{ t} = 12416 \text{ t}^3 \text{ t} = 34256 \text{ s} \text{ t}^3 \text{ t} = 12416 \text{ t}^3 \text{ t} = 34256 \text{ s} \text{ t}^3 \text{ t} = 12416 \text{ t}^3 \text{ t} = 34256 \text{ s} \text{ t}^3 \text{ t} = 12416 \text{ t}^3 \text{ t} = 34256 \text{ s} \text{ t}^3 \text{ t} = 12416 \text{ t$ $10.416 s^2 t^3 \tau - 1008 s^3 t^3 \tau + 30 s^4 t^3 \tau - 1792 t^4 \tau + 2592 s t^4 \tau - 572 s^2 t^4 \tau + 30 s^3 t^4 \tau +$ 64 t⁵ r - 68 s t⁵ r + 18 s² t⁵ r + 3 922 848 g r - 2 955 168 s g r + 521 984 s² g r - 61 568 s³ g r + 3328 s⁴ gr - 64 s⁵ gr - 2629 632 t gr + 1797 632 s t gr - 461 760 s² t gr + 55 760 s³ t gr - $3168 \text{ s}^4 \text{ t} \sigma \text{ t} + 68 \text{ s}^5 \text{ t} \sigma \text{ t} + 655 872 \text{ t}^2 \sigma \text{ t} - 429 760 \text{ s} \text{ t}^2 \sigma \text{ t} + 103 760 \text{ s}^2 \text{ t}^2 \sigma \text{ t} - 11 440 \text{ s}^3 \text{ t}^2 \sigma \text{ t} + 103 760 \text{ s}^2 \text{ t} + 103$ 28 s⁴ t³ a r + 1920 t⁴ a r - 1949 s t⁴ a r + 188 s² t⁴ a r - 18 s³ t⁴ a r - 5 168 968 r² + 4 386 816 s r² - $609152s^2 + r^2 - 95264s^3 + r^2 + 7892s^4 + r^2 - 324s^5 + r^2 + 5s^6 + r^2 - 445440t^2 r^2 + 315008st^2 r^2 - 324s^5 + r^2 + 315008st^2 +$ $84576 s^2 t^2 r^2 + 18792 s^3 t^2 r^2 - 654 s^4 t^2 r^2 + 15 s^5 t^2 r^2 + 34176 t^3 r^2 - 21392 s t^3 r^2 + 15 s^5 t^2 r^2 + 15 s^5 t^2 r^2 + 10792 s^3 t^2 + 1$ $4764 s^2 t^3 z^2 - 448 s^3 t^3 z^2 + 15 s^4 t^3 z^2 - 960 t^4 z^2 + 520 s t^4 z^2 - 90 s^2 t^4 z^2 + 5 s^3 t^4 z^2$

(日)

Stress tensor multiplet four-point function in $AdS_7 \times S^4$

$$\mathcal{M}_{2222}(s,t;\sigma,\tau) = \frac{P(s,t;\sigma,\tau)}{(s-4)(s-6)(t-4)(t-6)(u-4)(u-6)}$$

-5160960 + 2512896 - 445440 - 324176 - 360 - 960 - 3440 - 1967872 - 196787 $21392 s^{3} t + 520 s^{4} t - 1507072 t^{2} + 609152 s t^{2} - 84576 s^{2} t^{2} + 4764 s^{3} t^{2} - 90 s^{4} t^{2} + 609152 s t^{2} - 84576 s^{2} t^{2} + 4764 s^{3} t^{2} - 90 s^{4} t^{2} + 609152 s t^{2} - 84576 s^{2} t^{2} + 4764 s^{3} t^{2} - 90 s^{4} t^{2} + 609152 s t^{2} - 84576 s^{2} t^{2} + 4764 s^{3} t^{2} - 90 s^{4} t^{2} + 609152 s t^{2} - 84576 s^{2} t^{2} + 4764 s^{3} t^{2} - 90 s^{4} t^{2} + 609152 s t^{2} - 84576 s^{2} t^{2} + 4764 s^{3} t^{2} - 90 s^{4} t^{2} + 609152 s t^{2} - 84576 s^{2} t^{2} + 4764 s^{3} t^{2} - 90 s^{4} t^{2} + 609152 s t^{2} + 609152 s t^{2} - 80576 s^{2} t^{2} + 609152 s t^{2} + 60915$ 268 800 +³ - 05 264 + ³ - 10 702 + ² + ³ - 448 + ³ + ³ - 5 + ⁴ + ³ - 26 220 + ⁴ - 7802 + ⁴ - 654 + ² + ⁴ -15 e³ t⁴ + 1344 t⁵ - 374 e t⁵ + 15 e² t⁵ - 78 t⁶ + 5 e t⁶ + 3877 848 m - 7679 637 e m + 655 877 e² m - $61448 s^{3} a + 1928 s^{4} a - 2855 168 t a + 1797 632 s t a - 429 768 s^{2} t a + 37 128 s^{3} t a - 1848 s^{4} t a + 1797 632 s t a - 429 768 s^{2} t a + 37 128 s^{3} t a - 1848 s^{4} t a + 1848 s^{4} t a +$ 521 984 t² a - 461 768 s t² a + 183 768 s² t² a - 7848 s³ t² a + 188 s⁴ t² a - 61 568 t³ a + 28 s³ t⁴ a = 64 t⁵ a = 68 s t⁵ a = 10 s² t⁵ a = 1916 928 $a^2 = 1222$ 656 s $a^2 = 279$ 552 s² $a^2 = 1222$ 27 264 s³ σ^2 - 960 s⁴ σ^2 + 1222 656 t σ^2 - 762 112 s t σ^2 + 168 704 s² t σ^2 - 15 728 s³ t σ^2 + 520 e⁴ + a² - 270 552 +² a² - 169 704 e +² a² - 25 569 e² +² a² - 2076 e³ +² a² - 90 e⁴ +² a² -27 264 + 3 a² - 15 728 e + 3 a² + 3076 e² + 3 a² - 232 e³ + 3 a² + 5 e⁴ + 3 a² - 968 + 4 a² + 528 e + 4 a² -98 s² t⁴ a² + 5 s³ t⁴ a² + 7 588 488 r - 918 578 s r + 57 888 s² r + 17 416 s³ r - 1797 s⁴ r + 64 s⁵ r -918 528 t = _ 188 544 s t = _ 171 288 s² t = _ 34 256 s³ t = _ 2592 s⁴ t = _ 68 s⁵ t = _ 57 888 t² = _ $171200 \text{ s} \text{ t}^2 \text{ t} = 74528 \text{ s}^2 \text{ t}^2 \text{ t} = 10416 \text{ s}^3 \text{ t}^2 \text{ t} = 572 \text{ s}^4 \text{ t}^2 \text{ t} = 10 \text{ s}^5 \text{ t}^2 \text{ t} = 12416 \text{ t}^3 \text{ t} = 34256 \text{ s} \text{ t}^3 \text{ t} = 12416 \text{ t}^3 \text{ t} = 34256 \text{ s} \text{ t}^3 \text{ t} = 12416 \text{ t}^3 \text{ t} = 34256 \text{ s} \text{ t}^3 \text{ t} = 12416 \text{ t}^3 \text{ t} = 34256 \text{ s} \text{ t}^3 \text{ t} = 12416 \text{ t$ $10.416 s^2 t^3 r - 1008 s^3 t^3 r + 30 s^4 t^3 r - 1792 t^4 r + 2592 s t^4 r - 572 s^2 t^4 r + 30 s^3 t^4 r +$ 64 t⁵ r - 68 s t⁵ r + 18 s² t⁵ r + 3 922 848 g r - 2 955 168 s g r + 521 984 s² g r - 61 568 s³ g r + 3328 s⁴ gr - 64 s⁵ gr - 2629 632 t gr + 1797 632 s t gr - 461 760 s² t gr + 55 760 s³ t gr - $3168 \text{ s}^4 \text{ t} \sigma \text{ t} + 68 \text{ s}^5 \text{ t} \sigma \text{ t} + 655 872 \text{ t}^2 \sigma \text{ t} - 429 760 \text{ s} \text{ t}^2 \sigma \text{ t} + 103 760 \text{ s}^2 \text{ t}^2 \sigma \text{ t} - 11 440 \text{ s}^3 \text{ t}^2 \sigma \text{ t} + 103 760 \text{ s}^2 \text{ t} + 103$ 28 s⁴ t³ a r + 1920 t⁴ a r - 1949 s t⁴ a r + 188 s² t⁴ a r - 18 s³ t⁴ a r - 5 168 968 r² + 4 386 816 s r² - $609152s^2 + r^2 - 95264s^3 + r^2 + 7892s^4 + r^2 - 324s^5 + r^2 + 5s^6 + r^2 - 445440t^2 r^2 + 315008st^2 r^2 - 324s^5 + r^2 + 315008st^2 +$ $84576 s^2 t^2 r^2 + 18792 s^3 t^2 r^2 - 654 s^4 t^2 r^2 + 15 s^5 t^2 r^2 + 34176 t^3 r^2 - 21392 s t^3 r^2 + 15 s^5 t^2 r^2 + 15 s^5 t^2 r^2 + 10792 s^3 t^2 + 1$ $4764 s^2 t^3 z^2 - 448 s^3 t^3 z^2 + 15 s^4 t^3 z^2 - 960 t^4 z^2 + 520 s t^4 z^2 - 90 s^2 t^4 z^2 + 5 s^3 t^4 z^2$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Much simpler in the MRV limit!

$$MRV(s,t) = (u-8)(u-10)\left(\frac{1}{s-4} + \frac{1}{4(s-6)} + \frac{1}{t-4} + \frac{1}{4(t-6)}\right)$$

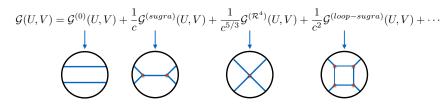
$$MRV(s,t) = \underbrace{(u-8)(u-10)}_{\text{double zero}} \left(\underbrace{\frac{1}{s-4} + \frac{1}{4(s-6)} + \frac{1}{t-4} + \frac{1}{4(t-6)}}_{\text{no poles in the } u\text{-channel}} \right)$$

- Highly non-trivial at the level of exchange Witten diagrams.
- All cubic couplings are fixed in terms of the scalar couplings.
- We can write down the general MRV amplitude for all k_1, k_2, k_3, k_4 !
- *R*-symmetry can be used to restore the full σ, τ dependence!

$$\mathcal{M}^{(\textit{sugra})}(s,t;\sigma,\tau) = \sum_{i,j} \sigma^{i} \tau^{j} \left(\sum_{h_{min}}^{h_{max}} \frac{R_{h}^{i,j}(t,u)}{s-2h} + \text{crossed} \right)$$

• Compact and explicit expression for all sugra amplitudes!

• Let's now consider higher 1/c terms...

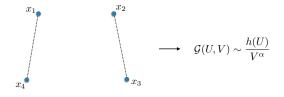


- The next order corresponds to the quartic vertex \mathcal{R}^4 .
- In Mellin space the solution is simply a polynomial.
- Fixed again by consistency conditions.

What about loops? They actually follow from Trees!

Unitarity method in AdS [Aharony, L.F.A, Bissi, Perlmutter]

<u>Fact</u>: As operators become null separated (only possible in Minkowski space-time) the correlator develops singularities



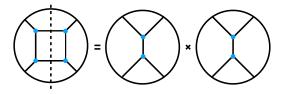
Unitarity method in AdS

- At a given order in 1/c these singularities follow from CFT-data at previous orders.
- The whole correlator can be reconstructed from this singularities! [L.F.A; Caron-Huot]

Tree-level correlators \rightarrow loop correlators!

Loops from trees

• Each solution is the 'square' of the solutions at previous order!



• In Mellin space, meromorphic function with simultaneous-poles:

$$\mathcal{M}^{(loop-sugra)}(s,t) = \sum_{m,n} \frac{c_{mn}}{(s-2m)(t-2n)} + \text{crossed}$$

- Quantum *M*-theory amplitude on *AdS*!
- The first quantum correction for a non-Lagrangian theory!

• All flat space results extended to AdS!

$$\mathcal{M}(s,t;\sigma,\tau) = \frac{1}{c}\mathcal{M}^{(sugra)}(s,t;\sigma,\tau) + \frac{1}{c^{5/3}}\mathcal{M}^{(\mathcal{R}^4)}(s,t;\sigma,\tau) + \frac{1}{c^2}\mathcal{M}^{(loop-sugra)}(s,t;\sigma,\tau) + \cdots$$

• From the amplitude in AdS we can recover the amplitude in flat-space (take L_{AdS} large, rescaling s, t, u accordingly)

$$\lim_{s,t\to\infty} \mathcal{M}(s,t;\sigma,\tau) = \ell^9 (t \, u + t \, s \, \sigma + s \, u \, \tau)^2 \left(\frac{1}{s \, t \, u} + \ell^6 \alpha + \ell^9 \Phi_{11D}(s,t) + \cdots \right)$$
prefactor \hat{K} for $p_i \cdot \zeta_i = 0$
tree-level results
in flat space
precisely the expected
one-loop result!

Note: We recover precisely the 11D result from a 6d CFT computation!

Conclusions

- We have developed powerful tools to compute systematically String and M-theory amplitudes in curved space-time.
- We computed all holographic correlators, dual to AdS tree amplitudes, for any maximally susy background! (A milestone in the field of holographic correlators)
- We computed $1/c^2$ correlators in the 6d (2,0) theory (first loop computation in a non-lagrangian theory!)
- We can obtain a wealth of CFT-data about this theory.

$$\Delta_4 = 12 - \frac{288}{91} \frac{1}{c} - 18.91 \frac{1}{c^2} + \cdots$$

For the near future

- The 6d (2,0) theory gives a non-perturbative definition of *M*-theory. Use the bootstrap to answer questions about it!
- Target question: is $D^8 \mathcal{R}^4$ present or not? just 'measure' Δ_4 !