CDD deformations of 2D IQFTs
A report on non-trivial behaviour in irrelevant deformations

Stefano Negro
YITP, Stony Brook University

Work in progress with T. Fleury, M. Lencsés, G. Camilo and A. Zamolodchikov.

Integrability in Gauge and String Theories – ICTP-SAIFR (ZOOM)
24. VIII. 2020
Table of contents

1. Introduction: Irrelevant deformations and the $\bar{T}T$
 (Irrelevant) deformations
 “$\bar{T}T$”

2. The $\bar{T}T$-flow and its main properties
 The finite-size spectrum
 The S-matrix

3. CDD deformations
 CDD factors and the TBA
 Asymptotics of the TBA equation
 Numerical results

4. Conclusions and outlook
Consider a theory near a RG fixed point A_{CFT}

$$A = \left[A_{\text{CFT}} + \mu \int d^2 x \Phi_\Delta (x) \right] + \sum_i \alpha_i \int d^2 x O_i (x) ,$$

Φ_Δ relevant ($d = 2\Delta < 2$); O_i irrelevant ($d_i > 2$);

Consider a theory near a RG fixed point \mathcal{A}_{CFT}

$$\mathcal{A} = \left[\mathcal{A}_{\text{CFT}} + \mu \int d^2 x \Phi_\Delta (x) \right] + \sum_i \alpha_i \int d^2 x O_i (x) ,$$

Φ_Δ relevant ($d = 2\Delta < 2$); O_i irrelevant ($d_i > 2$);

- in square brackets is a UV complete theory (i.e. consistent at all scales);

Consider a theory near a RG fixed point A_{CFT}

$$A = \left[A_{CFT} + \mu \int d^2x \Phi_\Delta (x) \right] + \sum_i \alpha_i \int d^2x O_i (x),$$

Φ_Δ relevant ($d = 2\Delta < 2$); O_i irrelevant ($d_i > 2$);

- in square brackets is a UV complete theory (i.e. consistent at all scales);
- irrelevant operators (might) shatter UV completeness: theory is effective;

Consider a theory near a RG fixed point A_{CFT}

$$A = \left[A_{\text{CFT}} + \mu \int d^2 x \Phi_\Delta(x) \right] + \sum_i \alpha_i \int d^2 x O_i(x),$$

Φ_Δ relevant ($d = 2\Delta < 2$); O_i irrelevant ($d_i > 2$);

- in square brackets is a UV complete theory (i.e. consistent at all scales);
- irrelevant operators (might) shatter UV completeness: theory is effective;
- perturbative expansion in the $\alpha_i \rightarrow$ accumulation of UV divergencies;

Consider a theory near a RG fixed point \mathcal{A}_{CFT}

$$\mathcal{A} = \left[\mathcal{A}_{\text{CFT}} + \mu \int d^2x \Phi_\Delta(x) \right] + \sum_i \alpha_i \int d^2x O_i(x),$$

Φ_Δ relevant ($d = 2\Delta < 2$); O_i irrelevant ($d_i > 2$);

- in square brackets is a UV complete theory (i.e. consistent at all scales);
- irrelevant operators (might) shatter UV completeness: theory is effective;
- perturbative expansion in the $\alpha_i \rightarrow$ accumulation of UV divergencies;
- theory is non-renormalisable \Rightarrow no predictive power.

Consider a theory near a RG fixed point \mathcal{A}_{CFT}

$$\mathcal{A} = \left[\mathcal{A}_{\text{CFT}} + \mu \int d^2 x \Phi_\Delta (x) \right] + \sum_i \alpha_i \int d^2 x O_i (x) ,$$

Φ_Δ relevant ($d = 2\Delta < 2$); \hspace{1cm} O_i irrelevant ($d_i > 2$);

- in square brackets is a UV complete theory (i.e. consistent at all scales);
- irrelevant operators (might) shatter UV completeness: theory is effective;
- perturbative expansion in the $\alpha_i \rightarrow$ accumulation of UV divergencies;
- theory is non-renormalisable \Rightarrow no predictive power.

Investigate this point more deeply by means of Wilson’s interpretation of RG1.

Consider Σ, the space of quasi-local field theories

$$\Sigma = \left\{ A[\Phi] \mid A[\Phi] = \int d^2x L[\Phi(x), \partial_\mu \Phi(x), \partial_\mu \partial_\nu \Phi(x), \ldots] \right\}.$$
Consider Σ, the space of *quasi-local field theories*

$$\Sigma = \left\{ A[\Phi] \mid A[\Phi] = \int d^2 x \mathcal{L}[\Phi(x), \partial_\mu \Phi(x), \partial_\mu \partial_\nu \Phi(x), \ldots] \right\}.$$

- Points are represented by actions equipped with UV cutoff Λ

 Quasi-local $=$ non-local range $< \epsilon = \Lambda^{-1}$.
Consider Σ, the space of *quasi-local field theories*

$$\Sigma = \left\{ A[\Phi] \mid A[\Phi] = \int d^2 x \mathcal{L}[\Phi(x), \partial_\mu \Phi(x), \partial_\mu \partial_\nu \Phi(x), \ldots] \right\}.$$

- Points are represented by actions equipped with UV cutoff Λ

 Quasi-local = non-local range $< \epsilon = \Lambda^{-1}$.

- In Σ, the RG flows are scale transformations

$$\frac{d}{d\ell} A_\ell = B\{A_\ell\}, \quad B\{A\} \in T\Sigma, \quad \ell = \log \text{(length scale)},$$

and RG trajectories are integral curves.
Consider Σ, the space of \textit{quasi-local field theories}

$$
\Sigma = \left\{ A[\Phi] \mid A[\Phi] = \int d^2 x \mathcal{L}[\Phi(x), \partial_\mu \Phi(x), \partial_\mu \partial_\nu \Phi(x), \ldots] \right\}.
$$

- Points are represented by actions equipped with UV cutoff Λ
 Quasi-local = non-local range $< \epsilon = \Lambda^{-1}$.
- In Σ, the RG flows are scale transformations
 $$
 \frac{d}{d\ell} A_\ell = B\{A_\ell\}, \quad B\{A\} \in T\Sigma, \quad \ell = \log \text{(length scale)},
 $$
 and RG trajectories are integral curves
 - $\ell > 0$: large scale properties (IR). No pathology expected;
Consider Σ, the space of *quasi-local field theories*

\[
\Sigma = \left\{ A[\Phi] \mid A[\Phi] = \int d^2x \mathcal{L}[\Phi(x), \partial_\mu \Phi(x), \partial_\mu \partial_\nu \Phi(x), \ldots] \right\}.
\]

- Points are represented by actions equipped with UV cutoff Λ

 Quasi-local = non-local range $< \epsilon = \Lambda^{-1}$.

- In Σ, the RG flows are scale transformations

 \[
 \frac{d}{d\ell} A_\ell = B \{A_\ell\} , \quad B \{A\} \in T\Sigma , \quad \ell = \log (\text{length scale}) ,
 \]

 and RG trajectories are integral curves

 - $\ell > 0$: large scale properties (IR). No pathology expected;
 - $\ell < 0$: short scale properties (UV). Pathology expected: $A_0(\Lambda) \not\equiv A_0(e^{-\ell} \Lambda)$;

 \[\implies \exists \ell_\ast \text{ such that } A_\ell \not\in \Sigma , -\ell > \ell_\ast;\]

 \[\implies \exists \text{ intrinsic UV scale } \Lambda_\ast = M e^{\ell_\ast} , \text{ e.g. for QED is "Landau scale";}\]
Consider Σ, the space of *quasi-local field theories*

$$
\Sigma = \left\{ A[\Phi] \mid A[\Phi] = \int d^2 x \mathcal{L}[\Phi(x), \partial_\mu \Phi(x), \partial_\mu \partial_\nu \Phi(x), \ldots] \right\}.
$$

- Points are represented by actions equipped with UV cutoff Λ

 Quasi-local = non-local range $< \epsilon = \Lambda^{-1}$.

- In Σ, the RG flows are scale transformations

 $$
 \frac{d}{d\ell} A_\ell = B\{A_\ell\} , \quad B\{A\} \in T\Sigma , \quad \ell = \log (\text{length scale}) ,
 $$

 and RG trajectories are integral curves

 - $\ell > 0$: large scale properties (IR). No pathology expected;
 - $\ell < 0$: short scale properties (UV). Pathology expected: $A_0(\Lambda) \not\equiv A_0(e^{-\ell} \Lambda)$;

 $\implies \exists \ell^*_\text{UV} \text{ such that } A_\ell \not\in \Sigma , -\ell > \ell^*_\text{UV}$;

 $\implies \exists$ intrinsic UV scale $\Lambda^*_\text{UV} = Me^{\ell^*_\text{UV}}$, e.g. for QED is “Landau scale”;

 - $\Sigma_{\ell^*_\text{UV} = \infty}$ space of UV complete theories: can remove cutoff consistently.
Figure: Pictorial representation of the space of quasi-local theories Σ, together with a flow. The arrow denotes the “forward RG time” direction and $-\ell_*$ the “critical RG time” before which the theory lies outside Σ.
The $T\bar{T}$ flow

Σ

Figure: Pictorial representation of the $T\bar{T}$-flow

$$\frac{d}{d\alpha} A_\alpha = - \int d^2 x T\bar{T}_\alpha (x) ,$$

in the space of quasi-local theories Σ. At each point, the flow is tangent to the vector $T\bar{T}_\alpha (x)$. It is expected that $\ell_* = \infty$ although $\not\exists$ UV fixed point.
Introduction

What is “$\bar{T}T$”

The $\bar{T}T$ operator is defined as\(^2\)

\[
\bar{T}T(x) \equiv -\lim_{x \to x'} T(x, x') , \quad T(x, x') = \frac{1}{2} e_{\mu\lambda} e_{\nu\rho} T^{\mu\nu}(x) T^{\lambda\rho}(x') .
\]

The $\bar{T}T$ operator is defined as\(^2\)

\[
\bar{T}T \left(x \right) \doteq - \lim_{x \to x'} T \left(x, x' \right) , \quad T \left(x, x' \right) = \frac{1}{2} \epsilon_{\mu\lambda} \epsilon_{\nu\rho} T^{\mu\nu} \left(x \right) T^{\lambda\rho} \left(x' \right) .
\]

- expectation value is a constant:

\[
\frac{\partial}{\partial x^{\mu}} \langle T \left(x, x' \right) \rangle = - \frac{\partial}{\partial x'^{\mu}} \langle T \left(x, x' \right) \rangle = 0 ,
\]

and factorises

\[
\langle \bar{T}T \left(x \right) \rangle = - \det \langle T^{\mu\nu} \left(x \right) \rangle ,
\]

\(\Leftarrow \) Ward identities + spectral decomposition;

Introduction

The $\bar{T}T$ operator is defined as\(^2\)

\[
\bar{T}T (x) \doteq - \lim_{x \to x'} T (x, x') , \quad T (x, x') = \frac{1}{2} e_{\mu \lambda} e_{\nu \rho} T^{\mu \nu} (x) T^{\lambda \rho} (x') .
\]

• expectation value is a constant:

\[
\frac{\partial}{\partial x^\mu} \langle T (x, x') \rangle = - \frac{\partial}{\partial x'^\mu} \langle T (x, x') \rangle = 0 ,
\]

and factorises

\[
\langle \bar{T}T (x) \rangle = - \det \langle T^{\mu \nu} (x) \rangle ,
\]

\(\iff\) Ward identities + spectral decomposition;

• singularities in collision limit are under control:

\[
T (x, x') \simeq - \bar{T}T (x') + \delta (x - x') T^\mu_\mu (x') + \sum_a C^{a, \lambda} (x - x') \frac{\partial}{\partial x'^\lambda} O_a (x') ,
\]

\(\implies\) \[
\langle T (x, x') \rangle = - \langle \bar{T}T (x) \rangle + \text{contact term} .
\]

Introduction

Why $\bar{T}T$ deformations

Main practical reasons

$F \sim T \to T_c F_0 + a (T - T_c)^\nu + a' (T - T_c)^\xi + \cdots$

$R^{-1}c = M \sim T \to T_c b (T - T_c)^\nu + b' (T - T_c)^\eta + \cdots$

$\xi = d \nu = 4, \eta = (d - 1) \nu = 3, b' = b a'$

3Dubovsky, Gorbenko and Mirbabayi, arXiv: 1706.06604
Main practical reasons

- this deformation is **universal**: (almost) any \(A_0 \) will do;

\(^3 \)Dubovsky, Gorbenko and Mirbabayi, arXiv: 1706.06604
Introduction

Why $\bar{T}T$ deformations

Main practical reasons

• this deformation is **universal**: (almost) any A_0 will do;
• it is under a high degree of control: *integrable*;

3Dubovsky, Gorbenko and Mirbabayi, arXiv: 1706.06604
Main practical reasons

- this deformation is **universal**: (almost) any A_0 will do;
- it is under a high degree of control: *integrable*;
- it preserves existing symmetries (e.g. integrable structures);

3 Dubovsky, Gorbenko and Mirbabayi, arXiv: 1706.06604
Introduction

Why $\overline{T\bar{T}}$ deformations

Main practical reasons

- this deformation is **universal**: (almost) any A_0 will do;
- it is under a high degree of control: *integrable*;
- it preserves existing symmetries (e.g. integrable structures);

Some important motivations

3Dubovsky, Gorbenko and Mirbabayi, arXiv: 1706.06604
Introduction

Why $\bar{T}T$ deformations

Main practical reasons

- this deformation is **universal**: (almost) any A_0 will do;
- it is under a high degree of control: *integrable*;
- it preserves existing symmetries (e.g. integrable structures);

Some important motivations

- seemingly well-defined (UV completeness) paired with non-trivial UV behaviour (e.g. Hagedorn singularity, non-locality, etc...);
Main practical reasons

- this deformation is **universal**: (almost) any \mathcal{A}_0 will do;
- it is under a high degree of control: *integrable*;
- it preserves existing symmetries (e.g. integrable structures);

Some important motivations

- seemingly well-defined (UV completeness) paired with non-trivial UV behaviour (e.g. Hagedorn singularity, non-locality, etc...);
- the term “UV fragility” introduced\(^3\) to denote this phenomenon;

\(^3\)Dubovsky, Gorbenko and Mirbabayi, arXiv: 1706.06604
Introduction

Why $\bar{T}T$ deformations

Main practical reasons

- this deformation is universal: (almost) any A_0 will do;
- it is under a high degree of control: integrable;
- it preserves existing symmetries (e.g. integrable structures);

Some important motivations

- seemingly well-defined (UV completeness) paired with non-trivial UV behaviour (e.g. Hagedorn singularity, non-locality, etc...);
- the term “UV fragility” introduced3 to denote this phenomenon;
- describe sub-leading critical behaviour;

$$F \underset{T \rightarrow T_c}{\sim} F_0 + a \left(T - T_c \right)^{2\nu} + a' \left(T - T_c \right)^{\xi} + \cdots$$

$$R_c^{-1} = M \underset{T \rightarrow T_c}{\sim} b \left(T - T_c \right)^{\nu} + b' \left(T - T_c \right)^{\eta} + \cdots$$

$\bar{T}T$ lowest $d(= 4)$ irrelevant $\Rightarrow \xi = d_{\bar{T}T} \nu = 4\nu \ , \ \eta = (d_{\bar{T}T} - 1) \nu = 3\nu \ , \ \frac{b'}{a'} = \frac{b}{a} \ .$

3Dubovsky, Gorbenko and Mirbabayi, arXiv: 1706.06604
• Finite size spectrum (cylinder) obeys Burgers equation\(^4\)

\[
\frac{\partial}{\partial \alpha} E_n (R, \alpha) + E_n (R, \alpha) \frac{\partial}{\partial R} E_n (R, \alpha) + \frac{1}{R} P_n (R)^2 = 0 ;
\]

Finite size spectrum (cylinder) obeys Burgers equation

\[\frac{\partial}{\partial \alpha} E_n(R, \alpha) + E_n(R, \alpha) \frac{\partial}{\partial R} E_n(R, \alpha) + \frac{1}{R} P_n(R)^2 = 0 ; \]

\[E(R, 0) \quad E(R, \alpha) \quad E(R, \alpha) \]

\[\alpha = 0 \quad \alpha > 0 \quad \alpha < 0 \]

Finite size spectrum (cylinder) obeys Burgers equation4

\[
\frac{\partial}{\partial \alpha} E_n(R, \alpha) + E_n(R, \alpha) \frac{\partial}{\partial R} E_n(R, \alpha) + \frac{1}{R} P_n(R)^2 = 0;
\]

To derive, use \(\langle T \bar{T} \rangle = -\text{det}_{\mu\nu} \langle T^{\mu\nu} \rangle \) and standard identifications

\[
\langle n | T^{xx} | n \rangle = -\frac{1}{R} E_n(R), \quad \langle n | T^{xy} | n \rangle = \frac{i}{R} P_n(R), \quad \langle n | T^{yy} | n \rangle = -\frac{d}{dR} E_n(R).
\]

The finite-size spectrum

- Functional form (zero momentum sector)

\[E(R, \alpha) = E(R - \alpha E(R, \alpha), 0) \ . \]

\[\text{see e.g. for CFT Barbón and Rabinovici, arXiv:2004.10138.} \]
- Functional form (zero momentum sector)

\[E(R, \alpha) = E(R - \alpha E(R, \alpha), 0) . \]

- From behaviour \(E(R, 0) \sim -\frac{\pi c}{6R} \) we extract

\[E(R, \alpha) \sim \frac{R}{2\alpha} \left(1 - \sqrt{1 + \frac{2\pi c}{3R^2 \alpha}} \right) . \]
• Functional form (zero momentum sector)

\[E(R, \alpha) = E(R - \alpha E(R, \alpha), 0). \]

• From behaviour \(E(R, 0) \sim -\frac{\pi c}{6R} \) we extract

\[E(R, \alpha) \sim \frac{R}{2\alpha} \left(1 - \sqrt{1 + \frac{2\pi c}{3R^2 \alpha}} \right). \]

• For \(\alpha > 0 \) finite \(R \to 0 \) limit \(E(R, \alpha) \sim -\sqrt{\frac{\pi c}{6\alpha}}. \)

\(^5\)see e.g. for CFT Barbón and Rabinovici, arXiv:2004.10138.
The finite-size spectrum

- Functional form (zero momentum sector)
 \[E(R, \alpha) = E(R - \alpha E(R, \alpha), 0) \ . \]

- From behaviour \(E(R, 0) \sim -\frac{\pi \epsilon}{6R} \) we extract
 \[E(R, \alpha) \sim \frac{R}{2\alpha} \left(1 - \sqrt{1 + \frac{2\pi \epsilon}{3R^2 \alpha}} \right) \ . \]

- For \(\alpha > 0 \) finite \(R \to 0 \) limit \(E(R, \alpha) \sim -\sqrt{\frac{\pi \epsilon}{6\alpha}} \).

- Entropy density is constant in vanishing volume \(s(R = 0, \alpha) \propto \sqrt{\frac{\epsilon}{\alpha}} \).

[^5]: see e.g. for CFT Barbón and Rabinovici, arXiv:2004.10138.
The finite-size spectrum

- Functional form (zero momentum sector)
 \[E(R, \alpha) = E(R - \alpha E(R, \alpha), 0) \, . \]

- From behaviour \(E(R, 0) \sim -\frac{\pi c}{6R} \) we extract
 \[E(R, \alpha) \sim \frac{R}{2\alpha} \left(1 - \sqrt{1 + \frac{2\pi c}{3R^2\alpha}} \right) \, . \]

- For \(\alpha > 0 \) finite \(R \to 0 \) limit \(E(R, \alpha) \sim -\sqrt{\frac{\pi c}{6\alpha}} \).

- Entropy density is constant in vanishing volume \(s(R = 0, \alpha) \propto \sqrt{\frac{c}{\alpha}} \).

- For \(\alpha < 0 \) Hagedorn temperature \(1/T_H = R_H \sim \sqrt{\frac{2\pi c}{3}} |\alpha| \).

\[\text{see e.g. for CFT Barbón and Rabinovici, arXiv:2004.10138.} \]
The finite-size spectrum

- Functional form (zero momentum sector)

 \[E(R, \alpha) = E(R - \alpha E(R, \alpha), 0) \ . \]

- From behaviour \(E(R, 0) \sim -\frac{\pi c}{6R} \) we extract

 \[E(R, \alpha) \sim \frac{R}{2\alpha} \left(1 - \sqrt{1 + \frac{2\pi c}{3R^2 \alpha}} \right) . \]

- For \(\alpha > 0 \) finite \(R \to 0 \) limit \(E(R, \alpha) \sim -\sqrt{\frac{\pi c}{6\alpha}} \).

- Entropy density is constant in vanishing volume \(s(R = 0, \alpha) \propto \sqrt{\frac{c}{\alpha}} \).

- For \(\alpha < 0 \) Hagedorn temperature \(\frac{1}{T_H} = R_H \sim \sqrt{\frac{2\pi c}{3}} |\alpha| \).

- Entropy density diverges at \(R_H \) as

 \[s(R, -|\alpha|) \sim \frac{c}{6} \left(R^2 - R_H^2 \right)^{-1/2} , \]

\[\text{see e.g. for CFT Barbón and Rabinovici, arXiv:2004.10138.} \]
The finite-size spectrum

- Functional form (zero momentum sector)
 \[E(R, \alpha) = E(R - \alpha E(R, \alpha), 0) \, . \]

- From behaviour \(E(R, 0) \sim -\frac{\pi c}{6R} \), we extract
 \[E(R, \alpha) \sim \frac{R}{2\alpha} \left(1 - \sqrt{1 + \frac{2\pi c}{3R^2 \alpha}} \right) \, . \]

- For \(\alpha > 0 \) finite \(R \to 0 \) limit \(E(R, \alpha) \sim -\sqrt{\frac{\pi c}{6\alpha}} \).

- Entropy density is constant in vanishing volume \(s(R = 0, \alpha) \propto \sqrt{\frac{c}{\alpha}} \).

- For \(\alpha < 0 \) Hagedorn temperature \(1/T_H = R_H \sim \sqrt{\frac{2\pi c}{3} |\alpha|} \).

- Entropy density diverges at \(R_H \) as \(s(R, -|\alpha|) \sim \frac{c}{6} \left(R^2 - R_H^2 \right)^{-1/2} \).

- Hagedorn-type high energy spectrum\(^5\)
 \[\mathcal{N}(E) \sim e^{ER_H} \]

\(^5\)see e.g. for CFT Barbón and Rabinovici, arXiv:2004.10138.
The $\bar{T}T$ deformation implies for S-matrix6

$$\frac{\delta S_{N \rightarrow M} (\{p_i\}, \{q_k\}, \alpha)}{S_{N \rightarrow M} (\{p_i\}, \{q_k\}, \alpha)} = \frac{i}{2} \delta \alpha \left[\sum_{p_i < p_j} \vec{p}_i \wedge \vec{p}_j + \sum_{q_k < q_l} \vec{q}_k \wedge \vec{q}_l \right].$$

The \bar{T}-flow

- The \bar{T} deformation implies for S-matrix

$$\frac{\delta S_{N \to M} (\{p_i\}, \{q_k\}, \alpha)}{S_{N \to M} (\{p_i\}, \{q_k\}, \alpha)} = \frac{i}{2} \delta \alpha \left[\sum_{i < j} \bar{p}_i \wedge \bar{p}_j + \sum_{k < l} \bar{q}_k \wedge \bar{q}_l \right] .$$

- In integrable case S matrix deformation can be taken as definition

$$S_{2 \to 2} (\theta, \alpha) = e^{i \alpha m^2 \sinh(\theta)} S_{2 \to 2} (\theta, 0) .$$

Action flow via TBA/NLIE. Gravitational phase shift $\Delta t = -\alpha E$

The $\bar{T}-flow$ deformation implies for S-matrix\(^6\)

$$\frac{\delta S_{N \rightarrow M} (\{p_i\}, \{q_k\}, \alpha)}{S_{N \rightarrow M} (\{p_i\}, \{q_k\}, \alpha)} = \frac{i}{2} \delta \alpha \left[\sum_{p_i < p_j} \vec{p}_i \wedge \vec{p}_j + \sum_{q_k < q_l} \vec{q}_k \wedge \vec{q}_l \right].$$

In integrable case S matrix deformation can be taken as definition

$$S_{2 \rightarrow 2} (\theta, \alpha) = e^{im^2 \sinh(\theta)} S_{2 \rightarrow 2} (\theta, 0).$$

Action flow via TBA/NLIE\(^7\). Gravitational phase shift\(^8\) $\Delta t = -\alpha E$

- $\alpha < 0$: healthy theory, no local observables (probably);
- $\alpha > 0$: superluminal propagation, S-matrix well defined.

The $\bar{T}T$ flow

The $\bar{T}T$ deformation implies for S-matrix\(^6\)

\[
\frac{\delta S_{N\rightarrow M} (\{p_i\}, \{q_k\}, \alpha)}{S_{N\rightarrow M} (\{p_i\}, \{q_k\}, \alpha)} = \frac{i}{2} \delta \alpha \left[\sum_{p_i < p_j} \bar{p}_i \wedge \bar{p}_j + \sum_{q_k < q_l} \bar{q}_k \wedge \bar{q}_l \right].
\]

In integrable case S matrix deformation can be taken as definition

\[
S_{2\rightarrow 2} (\theta, \alpha) = e^{i \alpha m^2 \sinh(\theta)} S_{2\rightarrow 2} (\theta, 0).
\]

Action flow via TBA/NLIE\(^7\). Gravitational phase shift\(^8\) $\Delta t = -\alpha E$

- $\alpha < 0$: healthy theory, no local observables (probably);
- $\alpha > 0$: superluminal propagation, S-matrix well defined.

Generalize (for integrable systems) S-matrix deformation as

\[
S_{\alpha} \rightarrow 2 \left(\theta, \theta' \right) = e^{i \sum_{s \in \mathbb{Z}^+} \alpha s \sinh (s \theta - s \theta')} S_0 \rightarrow 2 \left(\theta, \theta' \right),
\]

or general R-CDD factors

\[
S_{\alpha} \rightarrow 2 \left(\theta, \theta' \right) = \prod_{s \in \mathbb{Z}^+} \sinh (s \theta - s \theta') - i b s \sinh (s \theta - s \theta') + i b s.
\]

Use TBA/NLIE to analyse finite-size spectra ($L = \log (1 + e^{-\epsilon})$, $r = mR$)

\[
\epsilon \alpha \left(\theta \right) = \nu_0 \left(\theta \right) - \left(\Phi^* \alpha \right) \left(\theta \right),
\]

\[
E \left(r \right) = -\int_{-\infty}^{\infty} dt \cosh t L \left(t \right)
\]

where $\Phi \left(\theta, \theta' \right) \propto \partial / \partial \theta' \log S \left(\theta, \theta' \right)$, and, e.g. $\nu_0 \left(\theta \right) = mR \cosh \theta$.

Search for non-trivial behaviour, such as Hagedorn temperature in T
Generalize (for integrable systems) S-matrix deformation as

- instead of $\exp\left[\frac{i}{\alpha}m^2 \sinh \theta\right]$ choose a general (relativistic) E-CDD factor

$$S_{2\rightarrow 2}^{\alpha} (\theta, \theta') = e^{i \sum_{s \in 2\mathbb{Z}+1} \alpha_s \sinh(s\theta - s\theta')} S_{2\rightarrow 2}^{0} (\theta, \theta'),$$
Generalize (for integrable systems) S-matrix deformation as

- instead of $\exp \left[i \alpha m^2 \sinh \theta \right]$ choose a general (relativistic) E-CDD factor

$$S_{2\rightarrow 2}^{\alpha} (\theta, \theta') = e^{i \sum_{s \in 2\mathbb{Z}+1} \alpha_s \sinh(s\theta - s\theta') \left(S_{2\rightarrow 2}^0 (\theta, \theta') \right)},$$

- or general R-CDD factors

$$S_{2\rightarrow 2}^{\alpha} (\theta, \theta') = \left[\prod_{s \in 2\mathbb{Z}+1} \frac{\sinh(s\theta - s\theta') - i b_s}{\sinh(s\theta - s\theta') + i b_s} \right] S_{2\rightarrow 2}^0 (\theta, \theta').$$
CDD deformations

CDD & TBA

Generalize (for integrable systems) S-matrix deformation as

- instead of $\exp \left[i \alpha m^2 \sinh \theta \right]$ choose a general (relativistic) E-CDD factor

$$S_{2 \to 2}^\alpha (\theta, \theta') = e^{i \sum_{s \in \mathbb{Z}+1} \alpha_s \sinh (s\theta - s\theta') S_{2 \to 2}^0 (\theta, \theta')},$$

- or general R-CDD factors

$$S_{2 \to 2}^\alpha (\theta, \theta') = \left[\prod_{s \in \mathbb{Z}+1} \frac{\sinh (s\theta - s\theta') - i b_s}{\sinh (s\theta - s\theta') + i b_s} \right] S_{2 \to 2}^0 (\theta, \theta'),$$

- use TBA/NLIE to analyse finite-size spectra ($L = \log (1 + e^{-\epsilon})$, $r = mR$)

$$\epsilon_\alpha (\theta) = \nu_0 (\theta) - (\Phi_\alpha \ast L_\alpha) (\theta), \quad E (r) = - \int_{-\infty}^{\infty} dt \cosh tL (t),$$

where $\Phi (\theta, \theta') \propto \partial / \partial \theta' \log S (\theta, \theta')$, and, e.g. $\nu_0 (\theta) = mR \cosh \theta$;
Generalize (for integrable systems) S-matrix deformation as

- instead of $\exp \left[i \alpha m^2 \sinh \theta \right]$ choose a general (relativistic) E-CDD factor

 $S_{2 \rightarrow 2}^\alpha (\theta, \theta') = e^{i \sum_{s \in 2\mathbb{Z}+1} \alpha_s \sinh(s\theta - s\theta')} S_{2 \rightarrow 2}^0 (\theta, \theta')$,

- or general R-CDD factors

 $S_{2 \rightarrow 2}^\alpha (\theta, \theta') = \left[\prod_{s \in 2\mathbb{Z}+1} \frac{\sinh(s\theta - s\theta') - i b_s}{\sinh(s\theta - s\theta') + i b_s} \right] S_{2 \rightarrow 2}^0 (\theta, \theta')$,

- use TBA/NLIE to analyse finite-size spectra ($L = \log \left(1 + e^{-\varepsilon} \right)$, $r = mR$)

 $\varepsilon_{\alpha} (\theta) = \nu_0 (\theta) - (\Phi_{\alpha} \ast L_{\alpha}) (\theta)$,

 $E (r) = - \int_{-\infty}^{\infty} dt \cosh tL (t)$,

 where $\Phi (\theta, \theta') \propto \partial / \partial \theta' \log S (\theta, \theta')$, and, e.g. $\nu_0 (\theta) = mR \cosh \theta$;

- search for non-trivial behaviour, such as Hagedorn temperature in $\mathcal{T}\mathcal{T}$;
Generalize (for integrable systems) S-matrix deformation as

- instead of $\exp\left[\alpha m^2 \sinh \theta\right]$ choose a general (relativistic) E-CDD factor

$$S^{\alpha}_{2\rightarrow 2}(\theta,\theta') = e^{i \sum_{s \in \mathbb{Z}+1} \alpha_s \sinh(s\theta - s\theta')} S^0_{2\rightarrow 2}(\theta,\theta') ,$$

- or general R-CDD factors

$$S^{\alpha}_{2\rightarrow 2}(\theta,\theta') = \prod_{s \in \mathbb{Z}+1} \frac{\sinh(s\theta - s\theta') - ib_s}{\sinh(s\theta - s\theta') + ib_s} S^0_{2\rightarrow 2}(\theta,\theta') ,$$

- use TBA/NLIE to analyse finite-size spectra ($L = \log (1 + e^{-\varepsilon})$, $r = mR$)

$$\varepsilon_{\alpha}(\theta) = \nu_0(\theta) - (\Phi_{\alpha} \ast L_{\alpha})(\theta) , \quad E(r) = -\int_{-\infty}^{\infty} dt \cosh tL(t) ,$$

where $\Phi(\theta,\theta') \propto \partial / \partial \theta' \log S(\theta,\theta')$, and, e.g. $\nu_0(\theta) = mR \cosh \theta$;

- search for non-trivial behaviour, such as Hagedorn temperature in \bar{T};

I will present (partial) results for the special case of 2 R-CDDs

$$\Phi(\theta) = \frac{1}{2\pi} \sum_{\sigma,\sigma' = \pm 1} \frac{1}{\cosh(\theta + \sigma \theta_0 + i\sigma' \gamma)} , \quad \theta_0 \in \mathbb{R}_{\geq 0} , \quad \gamma \in [0, \frac{\pi}{2}) .$$
Analytic analysis is out of reach and numerical data show instabilities for small enough radius.
Analytic analysis is out of reach and numerical data show instabilities for small enough radius. Guided by \bar{T}_T, we study the possible $r \rightarrow \infty$ behaviours of

$$\varepsilon(\theta) = r \cosh \theta - (\Phi \ast L)(\theta):$$

1. $\varepsilon \sim r$ this implies $L \sim e^{-\varepsilon}$ and $\varepsilon > 0$ (if $\varepsilon < 0$ somewhere then $L \sim r$);

2. $\varepsilon \ll r$
 - subcases
 2.1 $\varepsilon \gg 1$ inconsistent, since $L \sim e^{-\varepsilon} \ll 1$ or $L \sim -\varepsilon \ll r$;
 2.2 $\varepsilon \sim 1$ inconsistent since $\Phi(\theta - \theta') L(\theta')$ needs to be integrable;
 2.3 $\varepsilon \sim 0$ two further possibilities
 2.3.1 Φ is integrable, then $(\Phi \ast L) \sim 1$ inconsistent;
 2.3.2 Φ in not integrable, then it might be consistent (\bar{T}_T);

3. $\varepsilon \sim (\Phi \ast L)$ only possible if $\exists \Theta \subset \mathbb{R}$ s.t. $\varepsilon(\theta) < 0, \theta \in \Theta$.

Two subcases
3.1 $\varepsilon(\theta| r) = -h(\theta| r) - rf(\theta) + \cdots$ two relations
 $$h(\theta| r) = \int_{\Theta} dt \Phi(\theta - t) h(t| r),$$
 $$f(\theta) = -\cosh \theta + \int_{\Theta} dt \Phi(\theta - t) f(t),$$
 Fredholm alternative \Rightarrow inconsistent;
3.2 $\varepsilon(\theta| r) = -rf(\theta) + g(\theta| r)$ one relation
 $$f(\theta) = -\cosh \theta + \int_{\Theta} dt \Phi(\theta - t) f(t),$$
 $$\{ f(\theta) \geq 0, \theta \in \Theta \} f(\theta) < 0, \theta / \in \Theta$$ consistent.
Analytic analysis is out of reach and numerical data show instabilities for small enough radius. Guided by $\bar{T}T$, we study the possible $r \to \infty$ behaviours of

$$\varepsilon (\theta) = r \cosh \theta - (\Phi * L) (\theta):$$

1. $\varepsilon \sim r$ this implies $L \sim e^{-\varepsilon}$ and $\varepsilon > 0$ (if $\varepsilon < 0$ somewhere then $L \sim r$);
Analytic analysis is out of reach and numerical data show instabilities for small enough radius. Guided by $\bar{T}T$, we study the possible $r \to \infty$ behaviours of $\varepsilon(\theta) = r \cosh \theta - (\Phi * L)(\theta)$:

1. $\varepsilon \sim r$ this implies $L \sim e^{-\varepsilon}$ and $\varepsilon > 0$ (if $\varepsilon < 0$ somewhere then $L \sim r$);
2. $\varepsilon \ll r$ subcases

2.1 $\varepsilon \gg 1$ inconsistent, since $L \sim e^{-\varepsilon} \ll 1$ or $L \sim -\varepsilon \ll r$;
2.2 $\varepsilon \sim 1$ consistent since $\Phi(\theta - \theta')L(\theta')$ needs to be integrable;
2.3 $\varepsilon \sim 0$ two further possibilities

2.3.1 Φ is integrable, then $(\Phi * L) \sim 1$ inconsistent;
2.3.2 Φ is not integrable, then it might be consistent ($\bar{T}T$);

3. $\varepsilon \sim (\Phi * L)$ only possible if $\exists \Theta \subset \mathbb{R}$ s.t. $\varepsilon(\theta) < 0$, $\theta \in \Theta$.

3.1 $\varepsilon(\theta|_r) = -h(\theta|_r) - rf(\theta) + \cdots$ two relations

\begin{align*}
h(\theta|_r) &= \int_{\Theta} dt \Phi(\theta - t) h(t|_r), \\
f(\theta) &= -\cosh \theta + \int_{\Theta} dt \Phi(\theta - t) f(t), \\
\end{align*}
Fredholm alternative \Rightarrow inconsistent;

3.2 $\varepsilon(\theta|_r) = -rf(\theta) + g(\theta|_r)$ one relation

\begin{align*}
f(\theta) &= -\cosh \theta + \int_{\Theta} dt \Phi(\theta - t) f(t), \\
\end{align*}
\begin{align*}
\begin{cases}
f(\theta) \geq 0, \theta \in \Theta \\
f(\theta) < 0, \theta \notin \Theta \end{cases}
\end{align*}
consistent.
Analytic analysis is out of reach and numerical data show instabilities for small enough radius. Guided by $\tilde{T}\bar{T}$, we study the possible $r \to \infty$ behaviours of $\varepsilon(\theta) = r \cosh \theta - (\Phi * L)(\theta)$:

1. $\varepsilon \sim r$ this implies $L \sim e^{-\varepsilon}$ and $\varepsilon > 0$ (if $\varepsilon < 0$ somewhere then $L \sim r$);
2. $\varepsilon \ll r$ subcases
 2.1 $\varepsilon \gg 1$ inconsistent, since $L \sim e^{-\varepsilon} \ll 1$ or $L \sim -\varepsilon \ll r$;}
Analytic analysis is out of reach and numerical data show instabilities for small enough radius. Guided by $\bar{T}T$, we study the possible $r \to \infty$ behaviours of $\varepsilon(\theta) = r \cosh \theta - (\Phi \ast L)(\theta)$:

1. $\varepsilon \sim r$ this implies $L \sim e^{-\varepsilon}$ and $\varepsilon > 0$ (if $\varepsilon < 0$ somewhere then $L \sim r$);
2. $\varepsilon \ll r$ subcases
 2.1 $\varepsilon \gg 1$ inconsistent, since $L \sim e^{-\varepsilon} \ll 1$ or $L \sim -\varepsilon \ll r$;
 2.2 $\varepsilon \sim 1$ inconsistent since $\Phi(\theta - \theta') L(\theta')$ needs to be integrable;
Analytic analysis is out of reach and numerical data show instabilities for small enough radius. Guided by \bar{TT}, we study the possible $r \to \infty$ behaviours of $\varepsilon(\theta) = r \cosh \theta - (\Phi * L)(\theta)$:

1. $\varepsilon \sim r$ this implies $L \sim e^{-\varepsilon}$ and $\varepsilon > 0$ (if $\varepsilon < 0$ somewhere then $L \sim r$);
2. $\varepsilon \ll r$ subcases
 2.1 $\varepsilon \gg 1$ inconsistent, since $L \sim e^{-\varepsilon} \ll 1$ or $L \sim -\varepsilon \ll r$;
 2.2 $\varepsilon \sim 1$ inconsistent since $\Phi(\theta - \theta') L(\theta')$ needs to be integrable;
 2.3 $\varepsilon \sim 0$ two further possibilities
Analytic analysis is out of reach and numerical data show instabilities for small enough radius. Guided by $\bar{T}T$, we study the possible $r \to \infty$ behaviours of

$$\varepsilon(\theta) = r \cosh \theta - (\Phi \ast L)(\theta):$$

1. $\varepsilon \sim r$ this implies $L \sim e^{-\varepsilon}$ and $\varepsilon > 0$ (if $\varepsilon < 0$ somewhere then $L \sim r$);
2. $\varepsilon \ll r$ subcases
 2.1 $\varepsilon \gg 1$ inconsistent, since $L \sim e^{-\varepsilon} \ll 1$ or $L \sim -\varepsilon \ll r$;
 2.2 $\varepsilon \sim 1$ inconsistent since $\Phi(\theta - \theta') L(\theta')$ needs to be integrable;
 2.3 $\varepsilon \sim 0$ two further possibilities
 2.3.1 Φ is integrable, then $(\Phi \ast L) \sim 1$ inconsistent;
Analytic analysis is out of reach and numerical data show instabilities for small enough radius. Guided by $\bar{T}T$, we study the possible $r \to \infty$ behaviours of $\varepsilon(\theta) = r \cosh \theta - (\Phi \ast L)(\theta)$:

1. $\varepsilon \sim r$ this implies $L \sim e^{-\varepsilon}$ and $\varepsilon > 0$ (if $\varepsilon < 0$ somewhere then $L \sim r$);
2. $\varepsilon \ll r$ subcases
 2.1 $\varepsilon \gg 1$ inconsistent, since $L \sim e^{-\varepsilon} \ll 1$ or $L \sim -\varepsilon \ll r$;
 2.2 $\varepsilon \sim 1$ inconsistent since $\Phi(\theta - \theta')L(\theta')$ needs to be integrable;
 2.3 $\varepsilon \sim 0$ two further possibilities
 2.3.1 Φ is integrable, then $(\Phi \ast L) \sim 1$ inconsistent;
 2.3.2 Φ in not integrable, then it might be consistent ($\bar{T}T$);
Analytic analysis is out of reach and numerical data show instabilities for small enough radius. Guided by $\overline{T\overline{T}}$, we study the possible $r \to \infty$ behaviours of $\varepsilon(\theta) = r \cosh \theta - (\Phi * L)(\theta)$:

1. $\varepsilon \sim r$ this implies $L \sim e^{-\varepsilon}$ and $\varepsilon > 0$ (if $\varepsilon < 0$ somewhere then $L \sim r$);
2. $\varepsilon \ll r$ subcases
 2.1 $\varepsilon \gg 1$ inconsistent, since $L \sim e^{-\varepsilon} \ll 1$ or $L \sim -\varepsilon \ll r$;
 2.2 $\varepsilon \sim 1$ inconsistent since $\Phi(\theta - \theta')L(\theta')$ needs to be integrable;
 2.3 $\varepsilon \sim 0$ two further possibilities
 2.3.1 Φ is integrable, then $(\Phi * L) \sim 1$ inconsistent;
 2.3.2 Φ in not integrable, then it might be consistent ($\overline{T\overline{T}}$);
3. $\varepsilon \sim (\Phi * L)$ only possible if $\exists \Theta \subset \mathbb{R}$ s.t. $\varepsilon(\theta) < 0, \theta \in \Theta$.
 Two subcases
Analytic analysis is out of reach and numerical data show instabilities for small enough radius. Guided by $\bar{T}T$, we study the possible $r \to \infty$ behaviours of $\varepsilon (\theta) = r \cosh \theta - (\Phi * L) (\theta)$:

1. $\varepsilon \sim r$ this implies $L \sim e^{-\varepsilon}$ and $\varepsilon > 0$ (if $\varepsilon < 0$ somewhere then $L \sim r$);
2. $\varepsilon \ll r$ subcases
 2.1 $\varepsilon \gg 1$ inconsistent, since $L \sim e^{-\varepsilon} \ll 1$ or $L \sim -\varepsilon \ll r$;
 2.2 $\varepsilon \sim 1$ inconsistent since $\Phi (\theta - \theta') L (\theta')$ needs to be integrable;
 2.3 $\varepsilon \sim 0$ two further possibilities
 2.3.1 Φ is integrable, then $(\Phi * L) \sim 1$ inconsistent;
 2.3.2 Φ in not integrable, then it might be consistent $(\bar{T}T)$;
3. $\varepsilon \sim (\Phi * L)$ only possible if $\exists \Theta \subset \mathbb{R}$ s.t. $\varepsilon (\theta) < 0$, $\theta \in \Theta$.
 Two subcases
 3.1 $\varepsilon (\theta|r) = -h (\theta|r) - rf (\theta) + \cdots$ two relations

 $h (\theta|r) = \int_{\Theta} dt \Phi (\theta - t) h (t|r)$, $f (\theta) = -\cosh \theta + \int_{\Theta} dt \Phi (\theta - t) f (t)$,

 Fredholm alternative \implies inconsistent;
Analytic analysis is out of reach and numerical data show instabilities for small enough radius. Guided by $\tilde{T}\tilde{T}$, we study the possible $r \to \infty$ behaviours of $\varepsilon(\theta) = r \cosh \theta - (\Phi \ast L)(\theta)$:

1. $\varepsilon \sim r$ this implies $L \sim e^{-\varepsilon}$ and $\varepsilon > 0$ (if $\varepsilon < 0$ somewhere then $L \sim r$);

2. $\varepsilon \ll r$ subcases
 - 2.1 $\varepsilon \gg 1$ inconsistent, since $L \sim e^{-\varepsilon} \ll 1$ or $L \sim -\varepsilon \ll r$;
 - 2.2 $\varepsilon \sim 1$ inconsistent since $\Phi(\theta - \theta') L(\theta')$ needs to be integrable;
 - 2.3 $\varepsilon \sim 0$ two further possibilities
 - 2.3.1 Φ is integrable, then $(\Phi \ast L) \sim 1$ inconsistent;
 - 2.3.2 Φ in not integrable, then it might be consistent ($\tilde{T}\tilde{T}$);

3. $\varepsilon \sim (\Phi \ast L)$ only possible if $\exists \Theta \subset \mathbb{R}$ s.t. $\varepsilon(\theta) < 0, \theta \in \Theta$.
 Two subcases
 - 3.1 $\varepsilon(\theta|r) = -h(\theta|r) - rf(\theta) + \cdots$ two relations

 $$h(\theta|r) = \int_{\Theta} dt \Phi(\theta - t) h(t|r)$$,
 $$f(\theta) = -\cosh \theta + \int_{\Theta} dt \Phi(\theta - t) f(t)$$,

 Fredholm alternative \implies inconsistent;
 - 3.2 $\varepsilon(\theta|r) = -rf(\theta) + g(\theta|r)$ one relation

 $$f(\theta) = -\cosh \theta + \int_{\Theta} dt \Phi(\theta - t) f(t)$$,
 $$\left\{ \begin{array}{ll} f(\theta) \geq 0 & ; \theta \in \Theta \\ f(\theta) < 0 & ; \theta \notin \Theta \end{array} \right.$$

 consistent.
Case 1. $\varepsilon \sim r \cosh \theta$ is the standard asymptotic.
Case 1. $\varepsilon \sim r \cosh \theta$ is the standard asymptotic.

Case 2.3.2 $\varepsilon \to 0$ and Φ not L_1 integrable. It is only viable in \bar{T}.
Case 1. $\varepsilon \sim r \cosh \theta$ is the standard asymptotic.

Case 2.3.2 $\varepsilon \to 0$ and Φ not L_1 integrable. It is only viable in $\mathcal{T}\bar{T}$.

By structure of TBA

$$\varepsilon \sim Ar^{-\gamma} \cosh \theta \implies (\Phi \ast L) \sim 2r^\gamma \int_0^\infty dT \log \left[1 + e^{-T} \right]$$

hence $\gamma = 1$ and the equation is balanced.
Case 1. \(\varepsilon \sim r \cosh \theta \) is the standard asymptotic.

Case 2.3.2 \(\varepsilon \to 0 \) and \(\Phi \) not \(L_1 \) integrable. It is only viable in \(\bar{T}T \).

By structure of TBA

\[
\varepsilon \sim Ar^{-\gamma} \cosh \theta \implies (\Phi * L) \sim 2r^{\gamma} \int_{0}^{\infty} dT \log \left[1 + e^{-T} \right]
\]

hence \(\gamma = 1 \) and the equation is balanced.

For higher exponential CDDs is impossible to balance the equation.
Case 1. $\varepsilon \sim r \cosh \theta$ is the standard asymptotic.

Case 2.3.2 $\varepsilon \to 0$ and Φ not L_1 integrable. It is only viable in \bar{T}. By structure of TBA

$$\varepsilon \sim Ar^{-\gamma} \cosh \theta \implies (\Phi \ast L) \sim 2r^\gamma \int_0^\infty dT \log \left[1 + e^{-T} \right]$$

hence $\gamma = 1$ and the equation is balanced.
For higher exponential CDDs is impossible to balance the equation.

Case 3.2 $\varepsilon \sim -rf(\theta)$ with $f(\theta) > 0$ for $\theta \in \Theta$.
Case 1. $\varepsilon \sim r \cosh \theta$ is the standard asymptotic.

Case 2.3.2 $\varepsilon \to 0$ and Φ not L_1 integrable. It is only viable in $\bar{T}T$.

By structure of TBA

$$\varepsilon \sim Ar^{-\gamma} \cosh \theta \implies (\Phi \ast L) \sim 2r^\gamma A \int_0^\infty dT \log \left[1 + e^{-T} \right]$$

hence $\gamma = 1$ and the equation is balanced.

For higher exponential CDDs is impossible to balance the equation.

Case 3.2 $\varepsilon \sim -rf(\theta)$ with $f(\theta) > 0$ for $\theta \in \Theta$.

It is only possible if Φ is has not a definite sign or
CDD deformations

TBA asymptotics

Case 1. \(\varepsilon \sim r \cosh \theta \) is the standard asymptotic.

Case 2.3.2 \(\varepsilon \to 0 \) and \(\Phi \) not \(L_1 \) integrable. It is only viable in \(\bar{T}T \).

By structure of TBA

\[
\varepsilon \sim r^{-\gamma} \cosh \theta \implies (\Phi * L) \sim 2r^{\gamma} \int_0^{\infty} dT \log \left[1 + e^{-T} \right]
\]

hence \(\gamma = 1 \) and the equation is balanced.

For higher exponential CDDs is impossible to balance the equation.

Case 3.2 \(\varepsilon \sim -rf(\theta) \) with \(f(\theta) > 0 \) for \(\theta \in \Theta \).

It is only possible if \(\Phi \) is has not a definite sign or it is everywhere positive and \(|\Phi|_1 = \int_{-\infty}^{\infty} dt \Phi(t) > 1 \).
Case 1. $\varepsilon \sim r \cosh \theta$ is the standard asymptotic.

Case 2.3.2 $\varepsilon \to 0$ and Φ not L_1 integrable. It is only viable in \bar{T}. By structure of TBA

$$\varepsilon \sim A r^{-\gamma} \cosh \theta \implies (\Phi * L) \sim 2r^{\gamma} \int_0^\infty dT \log \left[1 + e^{-T} \right]$$

hence $\gamma = 1$ and the equation is balanced.

For higher exponential CDDs is impossible to balance the equation.

Case 3.2 $\varepsilon \sim -rf(\theta)$ with $f(\theta) > 0$ for $\theta \in \Theta$.

It is only possible if Φ is has not a definite sign or it is everywhere positive and $|\Phi|_1 = \int_{-\infty}^{\infty} dt \Phi(t) > 1$.

If Φ is everywhere positive, let θ_M s.t. $f(\theta_M) = \max_{\theta \in \Theta} f(\theta)$, then

$$f(\theta_M) \leq -\cosh \theta_M + f(\theta_M) \int_\Theta dt \Phi(t) < -1 + f(\theta_M) |\Phi|_1,$$

which is implies $|\Phi|_1 > 1 + 1/f(\theta_M)$.
We need a way to handle singular points such as branch points.
We need a way to handle singular points such as branch points.

Use methods of numerical analysis in bifurcation theory for dynamical systems\(^9\).

\(^9\)E. Allowger and K. Georg, Numerical Continuation Methods, C.S.U.
We need a way to handle singular points such as branch points.

Use methods of numerical analysis in bifurcation theory for dynamical systems\(^9\).

In particular use a (pseudo)-arc-length continuation method: easy to implement and extremely effective. Capable of handling both turning and bifurcation points.

\(^{9}\)E. Allweger and K. Georg, Numerical Continuation Methods, C.S.U.
We need a way to handle singular points such as branch points.

Use methods of numerical analysis in bifurcation theory for dynamical systems\(^9\). In particular use a (pseudo)-arc-length continuation method: easy to implement and extremely effective. Capable of handling both turning and bifurcation points.

Use external parameter \(\varsigma\) to parametrize solutions of TBA as pairs

\[
\{ \varepsilon (\theta | r (\varsigma)), r (\varsigma) \}.
\]

\(^9\) E. Allowger and K. Georg, Numerical Continuation Methods, C.S.U.
We need a way to handle singular points such as branch points.

Use methods of numerical analysis in bifurcation theory for dynamical systems\footnote{E. Allowger and K. Georg, Numerical Continuation Methods, C.S.U.}.

In particular use a (pseudo)-arc-length continuation method: easy to implement and extremely effective. Capable of handling both turning and bifurcation points.

Use external parameter ς to parametrize solutions of TBA as pairs

$$\{\varepsilon (\theta | r (\varsigma)) , r (\varsigma) \} .$$

(Some of) the questions are:

1. Is the singular point a square root branch cut (as in $T \bar{T}$)?
2. Are there more than two branches?
3. Can we exclude more complicated behaviours (e.g. bifurcation points)?
4. Does the solution respect the asymptotics we derived?
We need a way to handle singular points such as branch points.

Use methods of numerical analysis in bifurcation theory for dynamical systems\(^9\).

In particular use a (pseudo)-arc-length continuation method: easy to implement and extremely effective. Capable of handling both turning and bifurcation points.

Use external parameter \(\varsigma\) to parametrize solutions of TBA as pairs

\[
\{ \varepsilon (\theta | r (\varsigma)) , r (\varsigma) \} .
\]

(Some of) the questions are:

1. is the singular point a square root branch cut (as in \(T\bar{T}\))?
We need a way to handle singular points such as branch points.

Use methods of numerical analysis in bifurcation theory for dynamical systems\(^9\).

In particular use a (pseudo)-arc-length continuation method: easy to implement and extremely effective. Capable of handling both turning and bifurcation points.

Use external parameter \(\varsigma\) to parametrize solutions of TBA as pairs

\[
\{ \varepsilon (\theta | r (\varsigma)) , r (\varsigma) \} .
\]

(Some of) the questions are:

1. is the singular point a square root branch cut (as in \(T\bar{T}\))?
2. are there more than two branches?

\(^9\)E. Allowger and K. Georg, Numerical Continuation Methods, C.S.U.
We need a way to handle singular points such as branch points.

Use methods of numerical analysis in bifurcation theory for dynamical systems\(^9\).

In particular use a (pseudo)-arc-length continuation method: easy to implement and extremely effective. Capable of handling both turning and bifurcation points.

Use external parameter \(\varsigma\) to parametrize solutions of TBA as pairs

\[\{ \varepsilon (\theta | r (\varsigma)), r (\varsigma) \} . \]

(Some of) the questions are:

1. is the singular point a square root branch cut (as in \(T\bar{T}\))?
2. are there more than two branches?
3. can we exclude more complicated behaviours (e.g. bifurcation points)?

\(^9\)E. Allouger and K. Georg, Numerical Continuation Methods, C.S.U.
We need a way to handle singular points such as branch points.

Use methods of numerical analysis in bifurcation theory for dynamical systems\(^9\).

In particular use a (pseudo)-arc-length continuation method: easy to implement and extremely effective. Capable of handling both turning and bifurcation points.

Use external parameter \(\varsigma\) to parametrize solutions of TBA as pairs

\[\{ \varepsilon(\theta| r(\varsigma)), r(\varsigma) \} . \]

(Some of) the questions are:

1. is the singular point a square root branch cut (as in \(\mathcal{T}\bar{T}\))?
2. are there more than two branches?
3. can we exclude more complicated behaviours (e.g. bifurcation points)?
4. does the solution respect the asymptotics we derived?

\(^9\)E. Allouger and K. Georg, Numerical Continuation Methods, C.S.U.
We need a way to handle singular points such as branch points.

Use methods of numerical analysis in bifurcation theory for dynamical systems\(^9\).

In particular use a (pseudo)-arc-length continuation method: easy to implement and extremely effective. Capable of handling both turning and bifurcation points.

Use external parameter \(\varsigma\) to parametrize solutions of TBA as pairs

\[
\{ \varepsilon(\theta | r(\varsigma)) , r(\varsigma) \} .
\]

(Some of) the questions are:

1. is the singular point a square root branch cut (as in \(T\bar{T}\))?
2. are there more than two branches?
3. can we exclude more complicated behaviours (e.g. bifurcation points)?
4. does the solution respect the asymptotics we derived?

Here follow some plots for the 2 R-CDD case.

\(^9\)E. Allowger and K. Georg, Numerical Continuation Methods, C.S.U.
Figure: $E(r)$ for $\Phi(\theta) = \frac{1}{2\pi} \sum_{\sigma, \sigma'} \pm \text{sech} (\theta + \sigma \theta_0 + i \sigma' \gamma)$, $\theta_0 = 0$.
Figure: $E(r)$ for $\Phi(\theta) = \frac{1}{2\pi} \sum_{\sigma, \sigma'} \pm \text{sech}(\theta + \sigma\theta_0 + i\sigma'\gamma)$, $\theta_0 = 4$.
Figure: $E(r)$ for $\Phi(\theta) = \frac{1}{2\pi} \sum_{\sigma, \sigma'} = \pm \text{sech}(\theta + \sigma \theta_0 + i \sigma' \gamma)$, $\theta_0 = 0$, $\gamma = 0$.

Parameters are $E_\infty = 17.475179499(1)$, $\alpha = 6.8407(8)$, $\beta = 12.4505(9)$, $r_c = 0.6215(7)$.
Figure: $E(r)$ for $\Phi(\theta) = \frac{1}{2\pi} \sum_{\sigma, \sigma'} \pm \text{sech} (\theta + \sigma \theta_0 + i\sigma' \gamma)$, $\theta_0 = 4$, $\gamma = 3\pi/20$. $E_\infty = 5700.693492914 \ldots$, $\alpha = 171.7260(6)$, $\beta = 1121.4579(4)$, $r_c = 0.0482(8)$.
Figure: $f(\theta)$ for $\Phi(\theta) = \frac{1}{2\pi} \sum_{\sigma, \sigma'} \text{sech}(\theta + \sigma \theta_0 + i \sigma' \gamma)$, $\theta_0 = 0$.
Grey vertical lines are the edges of $\Theta = [-B, B]$.

$\theta_0 = 0$

$\gamma = 0$

$\gamma = \frac{2\pi}{20}$

$\gamma = \frac{4\pi}{20}$

$\gamma = \frac{6\pi}{20}$

$\gamma = \frac{8\pi}{20}$
Figure: $f(\theta)$ for $\Phi(\theta) = \frac{1}{2\pi} \sum_{\sigma, \sigma'} \pm \text{sech}(\theta + \sigma \theta_0 + i\sigma' \gamma)$, $\theta_0 = 5$.
Grey vertical lines are the edges of $\Theta = [-B, B]$.
Figure: Edge B of $\Theta = [-B, B]$ as function of θ_0. Solid line is $\theta_0 + 1$.
Figure: $g(\theta|r)$ for $\Phi(\theta) = \frac{1}{2\pi} \sum_{\sigma,\sigma'} \pm \sech(\theta + \sigma \theta_0 + i\sigma' \gamma)$, $\theta_0 = 4$ and $\gamma = 3\pi/20$.
Conclusions & outlook

what is left to do?

1. is the singular point a square root branch cut (as in $\bar{T}T$)? YES!

There are still many questions left to answer, amongst which:

• understand the behaviour of $g(\theta|r) \Rightarrow$ sub-leading behaviour of $E(r)$ on the second branch. Analytics suggest $\sim 1/r$ while numerics show $\sim r^\gamma e^{-\chi r}$;

• obtain a better control on the dependence of B on the parameters. E. g. the limit $\gamma \to \pi/2$ is described by a finite difference equation $Y(\theta) = e^{-r \cosh \theta (1 + Y(\theta + \theta_0)) (1 + Y(\theta - \theta_0))}$, $Y(\theta) = e^{-\varepsilon(\theta)}$;

• similar analysis for other models (e. g. 3-R-CDD, E-CDDs, Elliptic sG).

Is the square root behaviour a universal feature?

• Turn attention to more rich models, with bound states;

• relate the existence of turning points to the properties of S-matrix.

(Very) long-term goal.

Conclusions & outlook

1. is the singular point a square root branch cut (as in $\bar{T}T$)? YES!
2. are there more than two branches? NO!

There are still many questions left to answer, amongst which:

• understand the behaviour of $g(\theta | r) \Rightarrow$ sub-leading behaviour of $E(r)$ on the second branch. Analytics suggest $\sim 1/r$ while numerics show $\sim r^\gamma e^{-\chi r}$;
• obtain a better control on the dependence of B on the parameters. E.g. the limit $\gamma \to \pi/2$ is described by a finite difference equation $Y(\theta) = e^{-r \cosh \theta (1 + Y(\theta + \theta_0)) (1 + Y(\theta - \theta_0))}$, $Y(\theta) = e^{-\epsilon(\theta)}$;
• similar analysis for other models (e.g. $3\text{R-CDD, E-CDDs, Elliptic sG}_{10}$).

Is the square root behaviour a universal feature?

• Turn attention to more rich models, with bound states;
• relate the existence of turning points to the properties of S-matrix.

(Very) long-term goal.

Conclusions & outlook

what is left to do?

1. is the singular point a square root branch cut (as in $\tilde{T\tilde{T}}$)? YES!
2. are there more than two branches? NO!
3. can we exclude more complicated behaviours (e.g. bifurcation points)? YES!

There are still many questions left to answer, amongst which:

- understand the behaviour of $g(\theta|\rho)$ ⇒ sub-leading behaviour of $E(\rho)$ on the second branch.
 Analytics suggest $\sim 1/\rho$ while numerics show $\sim \rho^\gamma e^{-\chi\rho}$;
- obtain a better control on the dependence of B on the parameters. E.g. the limit $\gamma \to \pi/2$ is described by a finite difference equation $Y(\theta) = e^{-\rho \cosh \theta} \left(1 + Y(\theta + \theta_0) \right) \left(1 + Y(\theta - \theta_0) \right)$, $Y(\theta) = e^{-\epsilon(\theta)}$;
- similar analysis for other models (e.g. 3R-CDD, E-CDDs, Elliptic sG).

• Is the square root behaviour a universal feature?
• Turn attention to more rich models, with bound states;
• relate the existence of turning points to the properties of S-matrix.

(Very) long-term goal.

Conclusions & outlook

what is left to do?

1. is the singular point a square root branch cut (as in $T\bar{T}$)? YES!
2. are there more than two branches? NO!
3. can we exclude more complicated behaviours (e.g. bifurcation points)? YES!
4. does the solution respect the asymptotics we derived? YES!

There are still many questions left to answer, amongst which:

• understand the behaviour of $g(\theta|\mathbf{r})$ ⇒ sub-leading behaviour of $E(\mathbf{r})$ on the second branch.

Analytics suggest $\sim 1/\mathbf{r}$ while numerics show $\sim \mathbf{r}^{\gamma} e^{-\chi r}$;

• obtain a better control on the dependence of B on the parameters. E.g. the limit $\gamma \to \pi/2$ is described by a finite difference equation

\[Y(\theta) = e^{-r \cosh \theta} (1 + Y(\theta + \theta_0)) (1 + Y(\theta - \theta_0)) \]

\[Y(\theta) = e^{-\epsilon(\theta)} \]

• similar analysis for other models (e.g. 3R-CDD, E-CDDs, Elliptic sG).

Is the square root behaviour a universal feature?

• Turn attention to more rich models, with bound states;

• relate the existence of turning points to the properties of S-matrix. (Very) long-term goal.

\[^{10} \text{G. Mussardo and S. Penati, arXiv: hep-th/9907039.} \]
Conclusions & outlook

what is left to do?

1. is the singular point a square root branch cut (as in $\tilde{T}\tilde{T}$)? YES!
2. are there more than two branches? NO!
3. can we exclude more complicated behaviours (e.g. bifurcation points)? YES!
4. does the solution respect the asymptotics we derived? YES!

There are still many questions left to answer, amongst which:

Conclusions & outlook

what is left to do?

1. is the singular point a square root branch cut (as in $\bar{T}T$)? YES!
2. are there more than two branches? NO!
3. can we exclude more complicated behaviours (e.g. bifurcation points)? YES!
4. does the solution respect the asymptotics we derived? YES!

There are still many questions left to answer, amongst which:

- understand the behaviour of $g(\theta|r) \Rightarrow$ sub-leading behaviour of $E(r)$ on the second branch.

\[G. \text{ Mussardo and S. Penati, arXiv: hep-th/9907039.} \]
Conclusions & outlook

what is left to do?

1. is the singular point a square root branch cut (as in $T\bar{T}$)? YES!
2. are there more than two branches? NO!
3. can we exclude more complicated behaviours (e.g. bifurcation points)? YES!
4. does the solution respect the asymptotics we derived? YES!

There are still many questions left to answer, amongst which:

- understand the behaviour of $g(\theta|r) \Rightarrow$ sub-leading behaviour of $E(r)$ on the second branch.
 Analytics suggest $\sim 1/r$ while numerics show $\sim r^\gamma e^{-\chi r}$;

Conclusions & outlook

what is left to do?

1. is the singular point a square root branch cut (as in $\bar{T}T$)? YES!
2. are there more than two branches? NO!
3. can we exclude more complicated behaviours (e.g. bifurcation points)? YES!
4. does the solution respect the asymptotics we derived? YES!

There are still many questions left to answer, amongst which:

- understand the behaviour of $g(\theta|r) \Rightarrow$ sub-leading behaviour of $E(r)$ on the second branch.
 Analytics suggest $\sim 1/r$ while numerics show $\sim r^\gamma e^{-\chi r}$;
- obtain a better control on the dependence of B on the parameters.

Conclusions & outlook

what is left to do?

1. is the singular point a square root branch cut (as in $\bar{T}T$)? YES!
2. are there more than two branches? NO!
3. can we exclude more complicated behaviours (e.g. bifurcation points)? YES!
4. does the solution respect the asymptotics we derived? YES!

There are still many questions left to answer, amongst which:

- understand the behaviour of $g(\theta|\tau) \Rightarrow$ sub-leading behaviour of $E(\tau)$ on the second branch.
 Analytics suggest $\sim 1/\tau$ while numerics show $\sim \tau^\gamma e^{-\chi \tau}$;
- obtain a better control on the dependence of B on the parameters.
 E.g. the limit $\gamma \to \pi/2$ is described by a finite difference equation

$$Y(\theta) = e^{-r \cosh \theta} (1 + Y(\theta + \theta_0)) (1 + Y(\theta - \theta_0)),$$

$Y(\theta) = e^{-\epsilon(\theta)}$;

Conclusions & outlook

what is left to do?

1. is the singular point a square root branch cut (as in $\bar{T}\bar{T}$)? **YES!**
2. are there more than two branches? **NO!**
3. can we exclude more complicated behaviours (e.g. bifurcation points)? **YES!**
4. does the solution respect the asymptotics we derived? **YES!**

There are still many questions left to answer, amongst which:

- understand the behaviour of $g(\theta|r) \Rightarrow$ sub-leading behaviour of $E(r)$ on the second branch.
 Analytics suggest $\sim 1/r$ while numerics show $\sim r^\gamma e^{-x r}$;
- obtain a better control on the dependence of B on the parameters.
 E. g. the limit $\gamma \rightarrow \pi/2$ is described by a finite difference equation
 \[
 Y(\theta) = e^{-r \cosh \theta} (1 + Y(\theta + \theta_0)) (1 + Y(\theta - \theta_0)) , \quad Y(\theta) = e^{-\varepsilon(\theta)} ;
 \]
- similar analysis for other models (e.g. 3 R-CDD, E-CDDs, Elliptic sG10).

Conclusions & outlook

what is left to do?

1. is the singular point a square root branch cut (as in $\bar{T}T$)? YES!
2. are there more than two branches? NO!
3. can we exclude more complicated behaviours (e.g. bifurcation points)? YES!
4. does the solution respect the asymptotics we derived? YES!

There are still many questions left to answer, amongst which:

- understand the behaviour of $g(\theta|r)$ ⇒ sub-leading behaviour of $E(r)$ on the second branch.
 Analytics suggest $\sim 1/r$ while numerics show $\sim r^\gamma e^{-\chi r}$;
- obtain a better control on the dependence of B on the parameters. E. g. the limit $\gamma \to \pi/2$ is described by a finite difference equation
 $$Y(\theta) = e^{-r \cosh \theta} (1 + Y(\theta + \theta_0)) (1 + Y(\theta - \theta_0)) , \quad Y(\theta) = e^{-\varepsilon(\theta)} ;$$
- similar analysis for other models (e.g. 3 R-CDD, E-CDDs, Elliptic sG10).
Is the square root behaviour a universal feature?

Conclusions & outlook

what is left to do?

1. is the singular point a square root branch cut (as in $\bar{T}T$)? YES!
2. are there more than two branches? NO!
3. can we exclude more complicated behaviours (e.g. bifurcation points)? YES!
4. does the solution respect the asymptotics we derived? YES!

There are still many questions left to answer, amongst which:

- understand the behaviour of $g(\theta|r) \Rightarrow$ sub-leading behaviour of $E(r)$ on the second branch.
 Analytics suggest $\sim 1/r$ while numerics show $\sim r^\gamma e^{-\chi r}$;
- obtain a better control on the dependence of B on the parameters.
 E.g. the limit $\gamma \to \pi/2$ is described by a finite difference equation
 $$Y(\theta) = e^{-r \cosh \theta} (1 + Y(\theta + \theta_0))(1 + Y(\theta - \theta_0)), \quad Y(\theta) = e^{-\varepsilon(\theta)};$$
- similar analysis for other models (e.g. 3 R-CDD, E-CDDs, Elliptic sG10).
 Is the square root behaviour a universal feature?
- Turn attention to more rich models, with bound states;

Conclusions & outlook

what is left to do?

1. is the singular point a square root branch cut (as in $\bar{T}T$)? YES!
2. are there more than two branches? NO!
3. can we exclude more complicated behaviours (e.g. bifurcation points)? YES!
4. does the solution respect the asymptotics we derived? YES!

There are still many questions left to answer, amongst which:

- understand the behaviour of $g(\theta|r) \Rightarrow$ sub-leading behaviour of $E(r)$ on the second branch.
 Analytics suggest $\sim 1/r$ while numerics show $\sim r^\gamma e^{-\chi r}$;
- obtain a better control on the dependence of B on the parameters.
 E.g. the limit $\gamma \rightarrow \pi/2$ is described by a finite difference equation
 \[Y(\theta) = e^{-r \cosh \theta} (1 + Y(\theta + \theta_0)) (1 + Y(\theta - \theta_0)), \quad Y(\theta) = e^{-\varepsilon(\theta)}; \]
- similar analysis for other models (e.g. 3 R-CDD, E-CDDs, Elliptic sG^{10}).
 Is the square root behaviour a universal feature?
- Turn attention to more rich models, with bound states;
- relate the existence of turning points to the properties of S-matrix.

Conclusions & outlook

what is left to do?

1. is the singular point a square root branch cut (as in $\bar{T}T$)? YES!
2. are there more than two branches? NO!
3. can we exclude more complicated behaviours (e.g. bifurcation points)? YES!
4. does the solution respect the asymptotics we derived? YES!

There are still many questions left to answer, amongst which:

- understand the behaviour of $g(\theta|r) \Rightarrow$ sub-leading behaviour of $E(r)$ on the second branch.
 Analytics suggest $\sim 1/r$ while numerics show $\sim r^\gamma e^{-\chi r}$;
- obtain a better control on the dependence of B on the parameters.
 E.g. the limit $\gamma \rightarrow \pi/2$ is described by a finite difference equation
 \[
 Y(\theta) = e^{-r \cosh \theta} (1 + Y(\theta + \theta_0)) (1 + Y(\theta - \theta_0)) , \quad Y(\theta) = e^{-\varepsilon(\theta)} ;
 \]
- similar analysis for other models (e.g. 3 R-CDD, E-CDDs, Elliptic sG10).
 Is the square root behaviour a universal feature?
- Turn attention to more rich models, with bound states;
- relate the existence of turning points to the properties of S-matrix.
 (Very) long-term goal.

Thank you!