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Introduction What are “(irrelevant) deformations” l\\\

Consider a theory near a RG fixed point Acpr
A= |:Ac1:T + /J,/dzxq)A (x)] + Zai/dzxoi (x) s

D relevant (d = 2A < 2); O; irrelevant (d; > 2);
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D relevant (d = 2A < 2); O; irrelevant (d; > 2);

e in square brackets is a UV complete theory (i.e. consistent at all scales);
e irrelevant operators (might) shatter UV completeness: theory is effective;

e perturbative expansion in the oy — accumulation of UV divergencies;
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Introduction What are “(irrelevant) deformations” l\\\

Consider a theory near a RG fixed point Acpr

A= {ACFTJFH / P (x)] +Ya / P30, (x) |

D relevant (d = 2A < 2); O; irrelevant (d; > 2);

in square brackets is a UV complete theory (i.e. consistent at all scales);
irrelevant operators (might) shatter UV completeness: theory is effective;

perturbative expansion in the a; — accumulation of UV divergencies;

theory is non-renormalisable = no predictive power.

Investigate this point more deeply by means of Wilson's interpretation of RG?.

1K. Wilson and J. Kogut, Phys. Rept. 12 (1974).

Stefano Negro

CDD deformations of IQFTs ICTP-SAIFR (ZOOM), 24 . VIII . 2020 3



Introduction Wilson’s interpretation of RG

Consider 3, the space of quasi-local field theories

= {A[cb] ‘A[@]:/d2x£[<1)(x)78”<I>(x),(9u8,,<1>(x),...]} .
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Quasi-local = non-local range < e = A1
e In X, the RG flows are scale transformations

d
dﬂ

and RG trajectories are integral curves

=B{A} , B{A} e TY, ¢ = log (length scale) ,
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and RG trajectories are integral curves
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Consider 3, the space of quasi-local field theories

z:{A[cp] ‘A[@]:/a’zxﬁ[@(x)78M<I>(x),8N8V<I>(x),...]} .

e Points are represented by actions equipped with UV cutoff A
Quasi-local = non-local range < e = A1

e In X, the RG flows are scale transformations

d
dﬂ

and RG trajectories are integral curves

e (> 0: large scale properties (IR). No pathology expected;
e £ < 0: short scale properties (UV). Pathology expected: Ay (A) £ Ay (e7“A);

=—> Tl such that A, ¢ 3, —0 > ly;
— Jintrinsic UV scale A, = Me®*, e.g. for QED is “Landau scale”;

=B{A} , B{A} e TY, ¢ = log (length scale) ,

® Yy, —o space of UV complete theories: can remove cutoff consistently.
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Introduction Wilson’s i i l\\\

Hic sunt dracones

Hic sunt dracones

Hic sunt dracones

Figure: Pictorial representation of the space of quasi-local theories 3, together with a
flow. The arrow denotes the “forward RG time" direction and —/, the “critical RG time”
before which the theory lies outside 3.
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Introduction The TT flow \

Hic sunt dracones

Hic sunt dracones

Hic sunt dracones

Figure: Pictorial representation of the TT-flow

iAa = ,/de-ﬁ—a (x) ,
do

in the space of quasi-local theories X. At each point, the flow is tangent to the vector
TT4 (x). It is expected that £, = oo although 3 UV fixed point.
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The TT operator is defined as?

TT (x) = — lim T (\ W T (\ .\*') = lc’#,\c’,/,,T“p (x) T>? (.\”') .

2

x—x!

2A. Zamolodchikov, arXiv:hep-th/0401146.
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e expectation value is a constant:

D (T (5x)) =~ (T (%)) =0,

and factorises
<'I'T'(x)> = —det (T"" (x)) ,
2

<= Ward identities + spectral decomposition;

2A. Zamolodchikov, arXiv:hep-th/0401146.
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Introduction What is “TT” |\\\

The TT operator is defined as?

TT (x) = — lim T (\ W x,x") = 1C#,\(’,/,,T“” (x) T>? (.\”') .

x—rx!

e expectation value is a constant:

D (T (5x)) =~ (T (%)) =0,

and factorises

(TT () = — dec (" (),

<= Ward identities + spectral decomposition;
e singularities in collision limit are under control:

T (x,x) =TT (') +6(x—x") T —I—ZC‘“\ x—x) af O, (x')

= (T (x,x")) = — (TT (x)) + contact term .

2A. Zamolodchikov, arXiv:hep-th/0401146.
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Introduction Why TT deformations

Main practical reasons

*Dubovsky, Gorbenko and Mirbabayi, arXiv: 1706.06604
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Introduction Why TT deformations l\\\

Main practical reasons

e this deformation is universal: (almost) any Ay will do;
e it is under a high degree of control: integrable;
e it preserves existing symmetries (e.g. integrable structures);

Some important motivations

o seemingly well-defined (UV completeness) paired with non-trivial UV
behaviour (e.g. Hagedorn singularity, non-locality, etc...);

e the term “UV fragility” introduced® to denote this phenomenon;

e describe sub-leading critical behaviour; Amicro

F ~ Fota(T = T)*+d (T — Te)*+--- [
T—T.

RI'=M b(T — Te)"+b' (T — Te)"+- -

~
T—T.

TT lowest d(= 4) irrelevant = ¢ = dgv =4v , n = (drt — 1) v =3v, % =t

*Dubovsky, Gorbenko and Mirbabayi, arXiv: 1706.06604
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The finite-size spectrum

o Finite size spectrum (cylinder) obeys Burgers equation®

iy (R,a) + E, (R, a) iE (R,a) + ép,, (R)?

Ja OR

“F. Smirnov and A. Zamolodchikov, Nucl.Phys. B915 (2017), arXiv:1608.05499;
A. Cavaglia, S.N., |. Szécsényi and R. Tateo, JHEP 1610 (2016), arXiv:1608.05534.
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o Finite size spectrum (cylinder) obeys Burgers equation®

9g (R,a) + E, (R, ) iE (R, ) + ép,, (R)?>=0;

da " OR

a>0

4F. Smirnov and A. Zamolodchikov, Nucl.Phys. B915 (2017), arXiv:1608.05499;
A. Cavaglia, S.N., |. Szécsényi and R. Tateo, JHEP 1610 (2016), arXiv:1608.05534.
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o Finite size spectrum (cylinder) obeys Burgers equation®

L)En (R,a) + E, (R, @) ﬁiE” (R, ) + é[’,,

Ja OR

IR

a=0 : a>0 a<0
To derive, use (TT) = — det,, (T*") and standard identifications
1 1 d
XX| o\ L X[ ) — g W) = — L
T ) =~ En(R) TV 10) =i Pa(R) , (n|T") = — B (R) .

4F. Smirnov and A. Zamolodchikov, Nucl.Phys. B915 (2017), arXiv:1608.05499;
A. Cavaglia, S.N., |. Szécsényi and R. Tateo, JHEP 1610 (2016), arXiv:1608.05534.
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The finite-size spectrum

e Functional form (zero momentum sector)

E(R,a) =E(R—aE(R,),0) .

Ssee e.g. for CFT Barbén and Rabinovici, arXiv:2004.10138.
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e From behaviour E (R,0) ~ — 7z we extract

R 27
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E(R,a) =E(R—aE(R,),0) .

e From behaviour E (R,0) ~ — 7z we extract

R 27
(Roz)w(l— 1+3R2 )

e For a > 0 finite R — 0 limit E (R, o) ~ — /2.

6

Ssee e.g. for CFT Barbén and Rabinovici, arXiv:2004.10138.
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e From behaviour E (R,0) ~ — 7z we extract

R 27
(Roz)w(l— 1+3R2 )

e For a > 0 finite R — 0 limit E (R, o) ~ — /2.

6

o Entropy density is constant in vanishing volume s (R = 0,a) o< /<.

Ssee e.g. for CFT Barbén and Rabinovici, arXiv:2004.10138.
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e Functional form (zero momentum sector)

E(R,a) =E(R—aE(R,),0) .

From behaviour E (R, 0) ~ — 2% we extract

R 27
(Roz)w(l— 1+3R2 ) .

For a > 0 finite R — 0 limit E(R, &) ~ — /2.

6

Entropy density is constant in vanishing volume s (R = 0, a) x \/g
e For a < 0 Hagedorn temperature 1/Ty = Ry ~ 1/ % |al.

Ssee e.g. for CFT Barbén and Rabinovici, arXiv:2004.10138.
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TT-flow The finite-size spectrum l\\\

e Functional form (zero momentum sector)

E(R,a) =E(R—aE(R,),0) .

From behaviour E (R, 0) ~ — 2% we extract

R 27
(Roz)w(l— 1+3R2 ) .

For a > 0 finite R — 0 limit E(R, &) ~ — /2.

6

Entropy density is constant in vanishing volume s (R = 0, a) x \/g

e For a < 0 Hagedorn temperature 1/Ty = Ry ~ 1/ % |al.
R%—I)—l/Z

Entropy density diverges at Ry as s (R, — |a]) ~ ¢ (R2 —

Ssee e.g. for CFT Barbén and Rabinovici, arXiv:2004.10138.
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Functional form (zero momentum sector)
E(R,a) =E(R—aE(R,),0) .

From behaviour E (R, 0) ~ — 2% we extract

R 27
(Roz)w(l— 1+3R2 ) .

For a > 0 finite R — 0 limit E(R, &) ~ — /2.

6

Entropy density is constant in vanishing volume s (R = 0, a) x \/g

27r[

For a < 0 Hagedorn temperature 1/Ty = Ry ~ |cx].

Entropy density diverges at Ry as s (R, —|af) ~ £ (R* — RH)_l/Z

Hagedorn-type high energy spectrum®
N (E) ~ &1

Ssee e.g. for CFT Barbén and Rabinovici, arXiv:2004.10138.
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The S-matrix

e The TT deformation implies for S-matrix®

=M ({Pi} ) {‘]l.'} '0) _ I Z 1—;[, /\F/ + Z @’ A ;1‘/

SN*“U ({P’} ’ {‘]L} ’ (’\) Pi<pj <q1

S. Dubovsky, V. Gorbenko and M. Mirbabayi, JHEP 09 (2013) 045, arXiv: 1305.6939.
7A. Cavaglia, S.N., |. Szécsényi and R. Tateo, JHEP 1610 (2016), arXiv:1608.05534.
8P. Cooper, S. Dubovsky and A. Mohsen, Phys.Rev. D89 (2014), arXiv:1312.2021.
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The S-matrix

e The TT deformation implies for S-matrix®

w — ;O(\ Zp‘l,/\ﬁ/+ Z@'/\f]‘/

SN*““ ({P’} ’ {‘]L} ’ (’\) . 2 11,\’11, L<q]

e In integrable case S matrix deformation can be taken as definition

)ﬁ(\zuz sinh(0) S, .,
D22

Sg_.z (0 (1) =

Action flow via TBA/NLIE”. Gravitational phase shift® At = —aE

°S. Dubovsky, V. Gorbenko and M. Mirbabayi, JHEP 09 (2013) 045, arXiv: 1305.6939.
7A. Cavaglia, S.N., |. Szécsényi and R. Tateo, JHEP 1610 (2016), arXiv:1608.05534.
8P. Cooper, S. Dubovsky and A. Mohsen, Phys.Rev. D89 (2014), arXiv:1312.2021.
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The S-matrix

e The TT deformation implies for S-matrix®

S‘S“"—)‘ if [y 1.
LRI SRS SV VI Do N SN

SN*““ ({P’} ’ {‘]L’} ’ (’\) 2 pi<pj @w<q

e In integrable case S matrix deformation can be taken as definition

)ic\mz sinh(0) S, .,
D22

Sg_.z (0 (1) =

Action flow via TBA/NLIE”. Gravitational phase shift® At = —aE
e « < 0: healthy theory, no local observables (probably);

S. Dubovsky, V. Gorbenko and M. Mirbabayi, JHEP 09 (2013) 045, arXiv: 1305.6939.
7A. Cavaglia, S.N., |. Szécsényi and R. Tateo, JHEP 1610 (2016), arXiv:1608.05534.
8P. Cooper, S. Dubovsky and A. Mohsen, Phys.Rev. D89 (2014), arXiv:1312.2021.
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TT-flow The S-matrix I\\\\

e The TT deformation implies for S-matrix®

55\"431 p,’ o z];_, , 1. = — = —
M = EO(‘ Z pi \ pj + Z qr N\ qi

»M ({P’} ’ {‘]L’} ’ (’\) Pi<pj 9L<q]

e In integrable case S matrix deformation can be taken as definition

o ; Tom2 S (0) o
b:_.z (0 (1) _ ()nom sinh ( )51 =

Action flow via TBA/NLIE”. Gravitational phase shift® At = —aE

e « < 0: healthy theory, no local observables (probably);
e « > 0: superluminal propagation, S-matrix well defined.

S. Dubovsky, V. Gorbenko and M. Mirbabayi, JHEP 09 (2013) 045, arXiv: 1305.6939.
7A. Cavaglia, S.N., |. Szécsényi and R. Tateo, JHEP 1610 (2016), arXiv:1608.05534.
8P. Cooper, S. Dubovsky and A. Mohsen, Phys.Rev. D89 (2014), arXiv:1312.2021.
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CDD deformations CDD & TBA l\\\\

Generalize (for integrable systems) S-matrix deformation as

e instead of exp [iam’ sinh 6] choose a general (relativistic) E-CDD factor

s, (9, 9/) — Y s smh(ye—so’)sgﬁz (9’ 9/) :

Stefano Negro CDD deformations of IQFTs ICTP-SAIFR (ZOOM), 24 . VIII . 2020 12



CDD deformations CDD & TBA l\\\\

Generalize (for integrable systems) S-matrix deformation as
e instead of exp [iam’ sinh 6] choose a general (relativistic) E-CDD factor
s&, (9, 9/) — ATy Si“‘“(f"‘s"')sgﬁz (9’ 9/) ,
e or general R-CDD factors

55,2 (0.0') = [ [ S0 —s0)—ib

$_.,(0,8) ,
o sinh (s0 — s0) + b, | > 77 (6.9)
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CDD deformations CDD & TBA l\\\\

Generalize (for integrable systems) S-matrix deformation as
e instead of exp [iam’ sinh 6] choose a general (relativistic) E-CDD factor
S8, (0,0) = ¢ Tz s (0=0) g0 (g g) |
e or general R-CDD factors

o , sinh (s — s0") — ib;
5, (0,0') = : -
22 (60,9) [ce!;[-s-l sinh (s6 — s0") + 1b;

S(2)—>2 (97 9,) )

e use TBA/NLIE to analyse finite-size spectra (L = log (1 + ¢~ ), r = mR)
o (0) = 10(0) — (a5 La) (0) , E()=— / dt cosh L (1)

where @ (0,0") o< 9/00"log S (6,0"), and, e.g. 14 (0) = mR cosh 6;
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Generalize (for integrable systems) S-matrix deformation as
e instead of exp [iam’ sinh 6] choose a general (relativistic) E-CDD factor
S8, (0,0) = ¢ Tz s (0=0) g0 (g g) |
e or general R-CDD factors

o , sinh (s — s0") — ib;
smwye):[n | )=
ot sinh (s6 — s0") + 1b;

S(2)—>2 (97 9,) )

e use TBA/NLIE to analyse finite-size spectra (L = log (1 + ¢~ ), r = mR)
ca(0) =10 (0) — (Pa*La) (), E(r)=— / dr cosh L (1)

where @ (0,0") o< 9/00"log S (6,0"), and, e.g. 14 (0) = mR cosh 6;

e search for non-trivial behaviour, such as Hagedorn temperature in TT;
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S(2)—>2 (97 9,) )

e use TBA/NLIE to analyse finite-size spectra (L = log (1 + ¢~ ), r = mR)
ca(0) =10 (0) — (Pa*La) (), E(r)=— / dr cosh L (1)

where @ (0,0") o< 9/00"log S (6,0"), and, e.g. 14 (0) = mR cosh 6;

e search for non-trivial behaviour, such as Hagedorn temperature in TT;

I will present (partial) results for the special case of 2 R-CDDs

1 1 0y € R>p
®(0) = —— 20
©) 27ran::i1 cosh (0 + oo +i0’y) * v €[0,%)
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CDD deformations TBA asymptotics |

Analytic analysis is out of reach and numerical data show instabilities for small
enough radius.
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e(0) =rcosh® — (®* L) (0):
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1. e ~r this implies L ~ ¢ ¢ and & > 0 (if ¢ < 0 somewhere then L ~ r);
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e(0) =rcosh® — (®* L) (0):
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Analytic analysis is out of reach and numerical data show instabilities for small
enough radius.Guided by TT, we study the possible r — oo behaviours of
e(0) =rcosh® — (®* L) (0):

1. e ~r this implies L ~ ¢~ ¢ and & > 0 (if ¢ < 0 somewhere then L ~ r);

2. e < r subcases
2.1 e>1 inconsistent, since L~ ¢ ¢ < lor L~ —c<r;
2.2 e~ 1 inconsistent since ® (0 — 0’) L (0") needs to be integrable;
2.3 €~ 0 two further possibilities
2.3.1 @ is integrable, then (® + L) ~ 1 inconsistent;
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Analytic analysis is out of reach and numerical data show instabilities for small
enough radius.Guided by TT, we study the possible r — oo behaviours of
e(0) =rcosh® — (®* L) (0):

€

1. e ~r this implies L ~ ¢~ ¢ and & > 0 (if ¢ < 0 somewhere then L ~ r);
2. e <r subcases
2.1 e>1 inconsistent, since L~ ¢ ¢ < lor L~ —c<r;
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2.3.1 @ is integrable, then (® + L) ~ 1 inconsistent;
2.3.2 @ in not integrable, then it might be consistent (TT);
3. e~ (®xL) onlypossible if 3@ C Rs.t. €(0) <0, 6 € ©.
Two subcases
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hOr)= [ di® (0 —1t)h(t|r) , f(0)=—coshO+ [ di®(0—1)f (1),
! /

Fredholm alternative —> inconsistent;
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Analytic analysis is out of reach and numerical data show instabilities for small
enough radius.Guided by TT, we study the possible r — oo behaviours of
e(0) =rcosh® — (®* L) (0):

—E€

1. e ~r this implies L ~ ¢~ ¢ and & > 0 (if ¢ < 0 somewhere then L ~ r);
2. e < r subcases
2.1 e>1 inconsistent, since L~ ¢ ¢ < lor L~ —c<r;
2.2 e~ 1 inconsistent since ® (0 — 6’) L (0") needs to be integrable;
2.3 €~ 0 two further possibilities
2.3.1 @ is integrable, then (® + L) ~ 1 inconsistent;
2.3.2 @ in not integrable, then it might be consistent (TT);
3. e~ (®xL) onlypossible if 3@ C Rs.t. €(0) <0, 6 € ©.
Two subcases
3.1 e(0]r)=—h(O|r) —rf () +--- two relations

r)= [ dt® @O —1)h(ir) , f(0)=—cosh0+ [ di®(O—1)f (1),
! /

Fredholm alternatlve = inconsistent;
3.2 €(0]r) = —rf () + g (0]r)  one relation

f(9):—cosh9+/dt<1>(9—t)f(t), {%zgzg : z;g
(]

consistent.
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CDD deformations TBA asymptotics |

Case 1. ¢ ~rcoshf is the standard asymptotic.
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Case 1. ¢ ~rcoshf is the standard asymptotic.

Case 2.3.2 ¢ — 0 and ® not L, integrable. It is only viable in TT.
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CDD deformations TBA asymptotics |

Case 1. ¢ ~rcoshf is the standard asymptotic.

Case 2.3.2 ¢ — 0 and ® not L, integrable. It is only viable in TT.
By structure of TBA

r—o00

e ~ Ar7coshf) = (® L) ~ 2ﬂ dT lo [1+e_T]
r—oo A )
0

hence v = 1 and the equation is balanced.
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By structure of TBA

r— 00 r—oo A

- o r
e ~ Ar7coshf = (®xL) ~ 2 dTlog |1 +e
0

hence v = 1 and the equation is balanced.
For higher exponential CDDs is impossible to balance the equation.
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Case 1. ¢ ~rcoshf is the standard asymptotic.

Case 2.3.2 ¢ — 0 and ® not L, integrable. It is only viable in TT.
By structure of TBA

r— 00 r—oo A

- o r
e ~ Ar7coshf = (®xL) ~ 2 dTlog |1 +e
0

hence v = 1 and the equation is balanced.
For higher exponential CDDs is impossible to balance the equation.

Case 3.2 e ~ —rf (0) with f (6) > 0 for 6 € ©.
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Case 1. ¢ ~rcoshf is the standard asymptotic.

Case 2.3.2 ¢ — 0 and ® not L, integrable. It is only viable in TT.
By structure of TBA

~ o0
e ~ Ar7coshf = (®xL) ~ Zr—/dTlog [l—l—e_T]
r— 00 r—oo A
0
hence v = 1 and the equation is balanced.
For higher exponential CDDs is impossible to balance the equation.

Case 3.2 e ~ —rf (0) with f (6) > 0 for 6 € ©.
It is only possible if ® is has not a definite sign or
it is everywhere positive and |®], = [*_dr® (1) > 1.
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Case 1. ¢ ~rcoshf is the standard asymptotic.

Case 2.3.2 ¢ — 0 and ® not L, integrable. It is only viable in TT.
By structure of TBA

r—o00 r—o00o

- o r
e ~ Ar7coshf = (®xL) ~ 2A dTlog |1 +e
0

hence v = 1 and the equation is balanced.
For higher exponential CDDs is impossible to balance the equation.

Case 3.2 e ~ —rf (0) with f (6) > 0 for 6 € ©.

It is only possible if ® is has not a definite sign or

it is everywhere positive and |®], = [*_dr® (1) > 1.

If ® is everywhere positive, let Oy s.t. [ (Ou) = I;/gg(f (0), then

f (6a) < — cosh Oy -I—f(@M)/dt@(t) < =14f(6m)|®], ,
S

which is implies |®], > 1+ 1/f (6um).
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CDD deformations Numerics

We need a way to handle singular points such as branch points.

°E. Allowger and K. Georg, Numerical Continuation Methods, C.S.U.
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We need a way to handle singular points such as branch points.
Use methods of numerical analysis in bifurcation theory for dynamical systems®.

In particular use a (pseudo)-arc-length continuation method: easy to implement
and extremely effective. Capable of handling both turning and bifurcation points.

°E. Allowger and K. Georg, Numerical Continuation Methods, C.S.U.
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We need a way to handle singular points such as branch points.
Use methods of numerical analysis in bifurcation theory for dynamical systems®.

In particular use a (pseudo)-arc-length continuation method: easy to implement
and extremely effective. Capable of handling both turning and bifurcation points.

Use external parameter ¢ to parametrize solutions of TBA as pairs

{e(@lr (<), r (o)} -

°E. Allowger and K. Georg, Numerical Continuation Methods, C.S.U.
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We need a way to handle singular points such as branch points.
Use methods of numerical analysis in bifurcation theory for dynamical systems®.

In particular use a (pseudo)-arc-length continuation method: easy to implement
and extremely effective. Capable of handling both turning and bifurcation points.

Use external parameter ¢ to parametrize solutions of TBA as pairs
{e(0lr (<)) r ()} -

(Some of) the questions are:

1. is the singular point a square root branch cut (as in TT)?

2. are there more than two branches?

3. can we exclude more complicated behaviours (e.g. bifurcation points)?
4

. does the solution respect the asymptotics we derived?

°E. Allowger and K. Georg, Numerical Continuation Methods, C.S.U.
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We need a way to handle singular points such as branch points.
Use methods of numerical analysis in bifurcation theory for dynamical systems®.

In particular use a (pseudo)-arc-length continuation method: easy to implement
and extremely effective. Capable of handling both turning and bifurcation points.

Use external parameter ¢ to parametrize solutions of TBA as pairs
{e(0lr (<)) r ()} -
(Some of) the questions are:

1. is the singular point a square root branch cut (as in TT)?

2. are there more than two branches?

3. can we exclude more complicated behaviours (e.g. bifurcation points)?
4

. does the solution respect the asymptotics we derived?

Here follow some plots for the 2 R-CDD case.

°E. Allowger and K. Georg, Numerical Continuation Methods, C.S.U.
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CDD deformations Numerics

ourrzi=

Figure: E (r) for ® (9) = % o.0'= ech (0 4+ a0y + 10'y), 6y = 0.
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CDD deformations Numerics

E

1000

outrz3j=

2000

«y=0

< y=mio
. y=mis

+ y=3m10

Figure: E(r) for ® (0) = i > o.or=s sech (0 + 00y + i0'y), o = 4.

Stefano Negro
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CDD deformations Numerics

G =0andy=0
E0)

05 v ES B

— |2z
outistele
— -E.x

— -(atpVr-re)

Figure: E (r) for ® (0) = % v sech (0 + o6y +io’y), 0y = 0, v = 0.
Parameters are Eo = 17.475179499(1), o = 6.8407(8), B = 12.4505(9), r. = 0.6215(7).
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CDD deformations Numerics l\\\\

60 =4and y = 37720

-500

— [

— -E.x

— -(apVr-rc)

outisas=

1000,

-1500

Figure: E (r) for ® (f) = 5= _ sech (6 4 06y +i0'y), 6y = 4, v = 37/20.

27 a0’

Eoo = 5700.693492914 - - -, o = 171.7260(6), B = 1121.4579(4), r. = 0.0482(8).
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CDD deformations Numerics l\\\\

B =0
q ; T,
— y=2m20
outssle — y=4m20
— y=6m20
— y=8m20
Figure: [ (0) for @ () = ﬁ o.or—x sech (0 + oy +10'v), 6y = 0.

Grey vertical lines are the edges of © = [—B, BJ.
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as
m
e
- y=2m20
— pamo
—— y=6m20
LC) o LC
. o )
2 1 l 1 2 N 150
Figure: [ (0) for ® (6) = ﬁ o.or—t sech (8 4+ oby + i0'v), 6y = 5.
ol =

Grey vertical lines are the edges of © = [—B, BJ.
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CDD deformations

out7201=

Numerics

Purple line is 69+1

Figure: Edge B of © = [—B, B] as function of 6,. Solid line is 6y + 1.

y=0

y= 1720
v =220
v = 3m20
v =420
v = 5120

Stefano Negro

CDD deformations of IQFTs

ICTP-SAIFR (ZOOM), 24 . VIII . 2020
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CDD deformations Numerics l\\\\

8o =4and y=371120
(e

— r=0.0484679
10 —— r=0.0498552
outlss7)= ~—— r=0.0580727
— r=0.100547
— r=0.319804

05

Figure: g (0|r) for ® (0) = i o.0r=+ sech (0 4+ a0 +i0’y), 6 = 4 and v = 3m/20.
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o A\
Conclusions & outlook what is left to do? l\\\

1. is the singular point a square root branch cut (as in TT)? YES!

1°G. Mussardo and S. Penati, arXiv: hep-th/9907039.
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Conclusions & outlook what is left to do?

is the singular point a square root branch cut (as in TT)? YES!

are there more than two branches? NO!

can we exclude more complicated behaviours (e.g. bifurcation points)? YES!
does the solution respect the asymptotics we derived? YES!

o=

1°G. Mussardo and S. Penati, arXiv: hep-th/9907039.
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Conclusions & outlook what is left to do?

is the singular point a square root branch cut (as in TT)? YES!

are there more than two branches? NO!

can we exclude more complicated behaviours (e.g. bifurcation points)? YES!
4. does the solution respect the asymptotics we derived? YES!

wN =

There are still many questions left to answer, amongst which:

1°G. Mussardo and S. Penati, arXiv: hep-th/9907039.
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Conclusions & outlook what is left to do?

1. is the singular point a square root branch cut (as in TT)? YES!

2.

3. can we exclude more complicated behaviours (e.g. bifurcation points)? YES!
4.

are there more than two branches? NO!

does the solution respect the asymptotics we derived? YES!

There are still many questions left to answer, amongst which:

o understand the behaviour of ¢ (|r) = sub-leading behaviour of E(r) on the

second branch.

1°G. Mussardo and S. Penati, arXiv: hep-th/9907039.
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Conclusions & outlook what is left to do?

1. is the singular point a square root branch cut (as in TT)? YES!

2.

3. can we exclude more complicated behaviours (e.g. bifurcation points)? YES!
4.

are there more than two branches? NO!

does the solution respect the asymptotics we derived? YES!

There are still many questions left to answer, amongst which:

o understand the behaviour of ¢ (|r) = sub-leading behaviour of E(r) on the

second branch.
Analytics suggest ~ 1/r while numerics show ~ 17e™X";

1°G. Mussardo and S. Penati, arXiv: hep-th/9907039.
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e obtain a better control on the dependence of B on the parameters.
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2. are there more than two branches? NO!

3. can we exclude more complicated behaviours (e.g. bifurcation points)? YES!
4. does the solution respect the asymptotics we derived? YES!

There are still many questions left to answer, amongst which:

o understand the behaviour of ¢ (|r) = sub-leading behaviour of E(r) on the
second branch.
Analytics suggest ~ 1/r while numerics show ~ 17e™X";

e obtain a better control on the dependence of B on the parameters.
E. g. the limit ¥ — 7/2 is described by a finite difference equation

Y (0) = p—reosh 0 A+Y@+6)1+Y(O—-6)), Y= @
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Conclusions & outlook what is left to do?

1. is the singular point a square root branch cut (as in TT)? YES!
2. are there more than two branches? NO!

3. can we exclude more complicated behaviours (e.g. bifurcation points)? YES!
4. does the solution respect the asymptotics we derived? YES!

There are still many questions left to answer, amongst which:

o understand the behaviour of ¢ (|r) = sub-leading behaviour of E(r) on the
second branch.
Analytics suggest ~ 1/r while numerics show ~ 17e™X";

e obtain a better control on the dependence of B on the parameters.
E. g. the limit ¥ — 7/2 is described by a finite difference equation

Y(@) _ efrcosh‘9 (1 + Y(@ + 90)) (1 + Y(@ — 00)) .Y (9) _ 676(9) ;
e similar analysis for other models (e.g. 3 R-CDD, E-CDDs, Elliptic sG1°)_

1°G. Mussardo and S. Penati, arXiv: hep-th/9907039.
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2. are there more than two branches? NO!

3. can we exclude more complicated behaviours (e.g. bifurcation points)? YES!
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There are still many questions left to answer, amongst which:

o understand the behaviour of ¢ (|r) = sub-leading behaviour of E(r) on the
second branch.
Analytics suggest ~ 1/r while numerics show ~ 17e™X";

e obtain a better control on the dependence of B on the parameters.
E. g. the limit ¥ — 7/2 is described by a finite difference equation

Y (0) = p—reosh 0 A+Y@+6)1+Y(O—-6)), Y= @

e similar analysis for other models (e.g. 3 R-CDD, E-CDDs, Elliptic sG*°).
Is the square root behaviour a universal feature?
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2. are there more than two branches? NO!

3. can we exclude more complicated behaviours (e.g. bifurcation points)? YES!
4. does the solution respect the asymptotics we derived? YES!

There are still many questions left to answer, amongst which:

o understand the behaviour of ¢ (|r) = sub-leading behaviour of E(r) on the
second branch.
Analytics suggest ~ 1/r while numerics show ~ 17e™X";

e obtain a better control on the dependence of B on the parameters.
E. g. the limit ¥ — 7/2 is described by a finite difference equation

Y (0) = p—reosh 0 A+Y@+6)1+Y(O—-6)), Y= @

e similar analysis for other models (e.g. 3 R-CDD, E-CDDs, Elliptic sG*°).
Is the square root behaviour a universal feature?
e Turn attention to more rich models, with bound states;
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wN =

is the singular point a square root branch cut (as in TT)? YES!

are there more than two branches? NO!

can we exclude more complicated behaviours (e.g. bifurcation points)? YES!
does the solution respect the asymptotics we derived? YES!

There are still many questions left to answer, amongst which:

understand the behaviour of ¢ (0|r) = sub-leading behaviour of E(r) on the
second branch.

Analytics suggest ~ 1/r while numerics show ~ 17e™X";

obtain a better control on the dependence of B on the parameters.

E. g. the limit ¥ — 7/2 is described by a finite difference equation

Y (0) = p—reosh 0 A+Y@+6)1+Y(O—-6)), Y= @

similar analysis for other models (e.g. 3 R-CDD, E-CDDs, Elliptic sG*°).
Is the square root behaviour a universal feature?

Turn attention to more rich models, with bound states;

relate the existence of turning points to the properties of S-matrix.
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wN =

is the singular point a square root branch cut (as in TT)? YES!

are there more than two branches? NO!

can we exclude more complicated behaviours (e.g. bifurcation points)? YES!
does the solution respect the asymptotics we derived? YES!

There are still many questions left to answer, amongst which:

understand the behaviour of ¢ (0|r) = sub-leading behaviour of E(r) on the
second branch.

Analytics suggest ~ 1/r while numerics show ~ 17e™X";

obtain a better control on the dependence of B on the parameters.

E. g. the limit ¥ — 7/2 is described by a finite difference equation

Y(O0)=e M 1+YO0+6)1+Y(@O—6)), Y(O) =D,
similar analysis for other models (e.g. 3 R-CDD, E-CDDs, Elliptic sG*°).
Is the square root behaviour a universal feature?

Turn attention to more rich models, with bound states;

relate the existence of turning points to the properties of S-matrix.
(Very) long-term goal.

1°G. Mussardo and S. Penati, arXiv: hep-th/9907039.
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Thank you
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