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S-matrix of gauge theory beyond Feynman diagrams?
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Scattering amplitudes A = ⟨IN∣S∣OUT⟩: dσ ∝ ∣A∣2

▸ Computing efficiently necessary in practice

▸ Understanding beyond perturbation theory mathematically important
[Millenium Prize]
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Strategy: Focus on the simplest interacting 4D gauge theory

SU(N) maximally supersymmetric Yang-Mills (MSYM) theory
in planar limit, N →∞ with λ = g2

YMN fixed.

▸ Integrable structure ⇒ Exact physical quantities in g2 = λ/(4π)2!

Celebrated example: The cusp anomalous dimension [Beisert,Eden,Staudacher]

Γcusp = 4g2 [ 1

1 +K
]

11
= 4g2 [1 −K +K2 + . . .]

11 ←matrix component

Kij = 2j(−1)ij+j
∞

∫
0

dt

t

Ji(2gt)Jj(2gt)
et − 1

, i, j = 1,2, . . . Ji(x) ∶ Bessel fn

governing operators with very large spin. [Korchemsky]

Can we hope for similar progress with amplitudes?
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Present and future of solving the simplest gauge theory

Amplitudes with n = 4,5 particles already known to all loops! For n ≥ 6:

In this talk: New, “origin” limit for n = 6 at finite coupling
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Outline

Intro: The Six-Gluon Amplitude in MSYM

The Origin of Intriguing Observations

Connection to Integrability

Finite-coupling Expression for Amplitude & Checks

Conclusions & Outlook
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The Six-Gluon Maximally Helicity Violating (MHV) Amplitude

Simplest nontrivial case, A6(−,−,+, . . . ,+). Remarkable properties,

i.e.

▸ is dual to null hexagonal Wilson loop W9
[Alday,Maldacena][Drummond(,Henn),Korchemsky,Sokatchev][Brandhuber,Heslop,Travaglini]

A6

k1

k2

k3k4

k5

k6

x1

x2

x3

x6

x4

x5

ki ≡ xi+1 − xi ≡ xi+1,i ,

A6 = ABDS-like
6 E6(ui)

u1 =
x2

46 x
2
31

x2
36 x

2
41

+ cyclic

▸ exhibits dual conformal symmetry under xµi → xµi /x
2
i : After factoring

out universal IR-divergent Bern-Dixon-Smirnov(-like) part, function of
3 conformal cross ratios ui.
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The Origin of the Six-Gluon Amplitude

E6 (and E7) computed most efficiently in general kinematics & at fixed
order in the coupling via Amplitude Bootstrap.
[Recent Review: Caron-Huot,Dixon,Drummond,Dulat,Foster,Gürdoğan,Hippel,McLeod, GP]

Natural to scan space of kinematics for all-loop patterns and
simplifications.

Here: Focus on limit when ui → 0: “origin”

x1

x2

x3

x6

x5

x4

u1 =
x2

13 x
2
46

x2
14 x

2
36

, x2
13 = s12 → 0 plus i→ i + 2
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An Original Discovery

In the origin limit ui → 0, from perturbative results up to 7 loops, observed
that six-particle amplitude takes the form, [Caron-Huot,Dixon,Dulat,McLeod,Hippel,GP]

lnE6= −
Γoct

24
ln2 (u1u2u3) −

Γhex

24

3

∑
i=1

ln2 ( ui
ui+1

) +C0 .

▸ Exponentiation: lnE6 contains only O(ln2 ui), O(ln0 ui) terms!

▸ Γoct = 4g2 − 8π2g4

3
+ 128π4g6

45
− 1088π6g8

315
+O(g10) ,

▸ Γoct →
2

π2
ln cosh (2πg) ! [Basso, Dixon, GP]

▸ Same quantity appears in lightlike limit of “simplest 4-point
correlator” of MSYM. [Coronado][Kostov,Petkova,Serban][Belitsky,Korchemsky]

[See talks by Korchemsky,Fleury,Kostov]

Connection? How about Γhex,C0? Finite coupling?
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Integrability in Scattering Amplitudes/Wilson Loops?

Not yet understood in general kinematics. Good starting point, however,
particular collinear limit. In new kinem. variables τ, σ, φ, given by τ →∞.

In convenient normalization,

conformal
symmetry implies

W6

▸ Propagation of flux tube excitation

▸ Emission/Absorption

Wilson Loop ‘Operator Product Expansion (OPE)’
[Alday,Gaiotto,Maldacena,Sever,Vieira]

MSYM: ψi mapped to excitations of integrable SL(2,R) spin chain,
equivalently of Gubser-Polyakov-Klebanov string ⇒ exact E,P
[Basso+Sever,Vieira]

[Belitsky,Bonini,Bork,Caetano,Cordova,Drummond,Fioravanti,Hippel,Lam,Onishchenko, GP,Piscaglia,Rossi. . . ]
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particular collinear limit. In new kinem. variables τ, σ, φ, given by τ →∞.

In convenient normalization, conformal
symmetry implies
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e−Eiτ+ipiσ+aiφP(0∣ψi)P(ψi∣0)

▸ Propagation of flux tube excitation
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Wilson Loop ‘Operator Product Expansion (OPE)’
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A Path to Originality

u1

u

u

3

2

origin

OPE
double scaling

▸ Origin does not intersect collinear limit

▸ However part of double scaling limit:
Only simpler, gluon flux tube excitations
contribute, [Basso,Sever,Vieira][Drummond,GP]

WDS
6 =

∞
∑
N=1

W6[N] , e.g.

W6[1] =
∞
∑
a=1

eaφ∫
du

2π
µa(u)e−Ea(u)τ+pa(u)σ .

▸ Origin: φ − τ →∞, outside of radius of convergence of sum

▸ Pert. resummation: W6[N] ∼ O(g2N2) ⇒W6[1] good up to 3 loops

▸ Pert. resummation for N ≥ 2 possible, but much harder

▸ As we’ll see however, not really necessary!
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Sommerfeld-Watson Transform

Similar to Regge theory, where it amounts to analytic continuation in spin,

∑
a⩾1

(−1)af(a) →
+∞+iε

∫
+∞−iε

if(a)da
2 sin (πa)

,

provided f(z) decays faster than 1/z as z →∞.

Indeed the case, and in
fact can deform contour to run parallel to imaginary axis, C.

C

a

Finally, closing contour around a = 0 on the left-hand side yields all
nonvanishing terms at origin at finite coupling!
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The Origin of the Six-particle Amplitude at Finite Coupling

Further manipulating previously found integrand leads to finite-coupling
conjecture,

in terms of tilted Beisert-Eden-Staudacher kernel K(α)

,

lnE6= −
Γ0

24
ln2 (u1u2u3) −

Γπ/3
24

3

∑
i=1

ln2 ( ui
ui+1

) +C0 ,

Γα = 4g2 [ 1

1 +K(α)
]

11

= 4g2 [1 −K(α) +K2(α) + . . .]
11
,

K(α) = 2 cosα [ cosαK○○ sinαK○●
sinαK●○ cosαK●●

] , K○○ = K2n+1,2m+1 ,
K○● = K2n+1,2m etc,

[Basso, Dixon,GP]

Kij = 2j(−1)ij+j
∞

∫
0

dt

t

Ji(2gt)Jj(2gt)
et − 1

,

C0 = −
ζ2

2
Γπ/4 +D(π/4) −D(π/3) − 1

2
D(0) , D(α) ≡ ln det [1 +K(α)] .
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Comparison: Finite-coupling numerics & weak/strong coupling analytics

Γoct = Γ0 , Γcusp = Γπ/4 , Γhex = Γπ/3
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Comparison: Finite-coupling numerics & weak/strong coupling analytics

Doct =D(0) , Dcusp =D(π/4) , Dhex =D(π/3)
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Strong coupling: Expansion & Comparison with String Theory

Expanded Γα to four orders in 1/g, and C0 to two. For example,

Γα =
8αg

π sin (2α)
+O(g0) , D(α) = 4πg [1

4
− α

2

π2
] + O(g0) .

Via gauge/string duality, at leading strong-coupling order W ∼ e−2g(Area)

of string ending on W at boundary of AdS space. [Alday,Maldacena]

At u1 = u2 = u3 → 0:
[Alday,Gaiotto,Maldacena][Basso,Sever,Vieira]

lnE6

Γcusp
= − 3

4π
ln2 u− π

2

12
− π

6
+ π

72
+O (u−1)

Perfect agreement!

Can also confirm Γhex. [Ito,Satoh,Suzuki]

Image Credit: A. Sever
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Expanded Γα to four orders in 1/g, and C0 to two. For example,

Γα =
8αg

π sin (2α)
+O(g0) , D(α) = 4πg [1

4
− α

2

π2
] + O(g0) .

Via gauge/string duality, at leading strong-coupling order W ∼ e−2g(Area)

of string ending on W at boundary of AdS space. [Alday,Maldacena]

At u1 = u2 = u3 → 0:
[Alday,Gaiotto,Maldacena][Basso,Sever,Vieira]

lnE6

Γcusp
= − 3

4π
ln2 u− π

2
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− π

6
+ π

72
+O (u−1)

Perfect agreement!

Can also confirm Γhex. [Ito,Satoh,Suzuki]
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The high-energy/multi-Regge Limit (MRL)

May similarly relate integrable collinear limit with conceptually and
practically important 1 + 2→ 3 + . . . +N − 2 high-energy limit.

Obtain well-defined dispersion integral represented graphically as

and determine previously unknown building block, C̃ii+1 to all loops.

All-order amplitudes in MRL at any multiplicity!

[Del Duca,Druc,Drummond,Duhr,Dulat,Marzucca,GP,Verbeek;PRL 124, 161602 (2020)]
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Higher Multiplicity in General Kinematics

In improved perturbation theory (amplitude bootstrap), essential input is
knowledge of amplitude singularities.

▸ n = 6,7: Strong indications that they are dictated by cluster algebras
[Golden,Goncharov, Spradlin,Vergu,Volovich]

▸ n ≥ 8, however, cluster algebra becomes infinite!

Very recently, proposal for finite subset in agreement with all known data
[Henke, Papathanasiou][Arkani-Hamed,Lam,Spradlin][Drummond,Foster,Gurdogan,Kalousios]

based on relation of cluster algebras with tropical geometry.
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Conclusions

In this presentation, I talked about the beauty and simplicity of amplitudes
in maximally supersymmetric Yang-Mills theory.

Starting from tremendous improvements in perturbation theory, arrived at

Six-particle amplitude in new, origin limit at finite coupling

also in agreement with string theory predictions!

▸ Tilt angle interpretation/connection to correlators? [Vieira,Gonçalves,Bercini]

▸ Higher Points? [Basso,Dixon,Liu,GP; in progress][Dixon,Liu]

▸ Resummation to more general kinematics? → multi-Regge

Ultimately, can the integrability of planar SYM theory, together with
a thorough knowledge of the analytic structure of its amplitudes, lead
us to the theory’s exact S-matrix?
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Higher Loops and Legs: The Amplitude Bootstrap
Evade Feynman diagrams by exploiting analytic structure

AMHV = A(− − + . . .+)
ANMHV = A(− − − + . . .+)

QFT Property Computation

Physical Branch Cuts A
(L)
6 , L = 3,4

[Gaiotto,Maldacena,

Sever,Vieira]

[Dixon,Drummond, (Henn,)

Duhr/Hippel,Pennington]

Cluster Algebras A
(3)
7,MHV

[Golden,Goncharov,

Spradlin,Vergu,Volovich]

[Drummond, GP,

Spradlin]

Steinmann Relation A
(5)
6 ,A

(3)
7,NMHV,A

(4)
7,MHV

[Steinmann] [Caron-Huot,Dixon,. . . ]

[Dixon,. . . , GP,Spradlin]

Cluster Adjacency A
(4)
7,NMHV

[Drummond,Foster,

Gurdogan]

[Drummond,Foster,

Gurdogan, GP]

Extended Steinmann ⇔ A
(6)
6 ,A

(7)
6,MHV

Coaction Principle
[Caron-Huot,Dixon,Dulat,

McLeod,Hippel,GP]

See also recent S(A7) → A7 work by [Dixon,Liu]
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Weak coupling expansion of Γα

L = 1 L = 2 L = 3 L = 4

Γoct 4 −16ζ2 256ζ4 −3264ζ6

Γcusp 4 −8ζ2 88ζ4 −876ζ6 − 32ζ2
3

Γhex 4 −4ζ2 34ζ4 −603
2 ζ6 − 24ζ2

3

C0 −3ζ2
77
4 ζ4 −4463

24 ζ6 + 2ζ2
3

67645
32 ζ8 + 6ζ2ζ

2
3 − 40ζ3ζ5

Γα
4g2

= 1 − 4c2ζ2g
2 + 8c2(3 + 5c2)ζ4g

4

− 8c2 [(25 + 42c2 + 35c4)ζ6 + 4s2 ζ2
3] g6 + . . . ,

D(α) = 4c2ζ2g
2 − 4c2(3 + 5c2)ζ4g

4

+ 8

3
c2 [(30 + 63c2 + 35c4)ζ6 + 12s2 ζ2

3] g6 + . . . ,

Γoct = Γ0 , Γcusp = Γπ/4 , Γhex = Γπ/3
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Strong coupling expansion of Γα

Letting a = α/π, find

Γα =
8ag

sin (2πa)
[1 − s1

2
√
λ
− as2

4λ
− a(s1s2 + as3)

8(
√
λ)3

+ . . .] ,

where

sk+1 = {ψk(1) − ψk(1
2 + a)} + (−1)k{ψk(1) − ψk(1

2 − a)} ,

and ψk(z) = ∂k+1
z ln Γ(z) the polygamma function.
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Secretly Gaussian integral

Origin=OPE integrand in modified integration contour. Can recast as
infinite-dimensional integral,

E = N ∫
∞
∏
i=1

dξiF (ξ⃗ ) e−ξ⃗⋅M ⋅ξ⃗ ,

where M = (1 +K) ⋅Q and F (ξ, φ, τ, σ) complicated Fredholm
determinant. Remarkably, observe that perturbatively

E = N ∫
∞
∏
i=1

dξi e
−ξ⃗⋅(M+δM)⋅ξ⃗ ,

becomes Gaussian but with modified kernel⇒ evaluate explicitly!
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The High-Energy or (Multi-)Regge Limit
Implications for (Quantum) Gravity

Rich history within analytic S-matrix program of the 60’s.

1 + 2→ 3 + 4 ∶ s >> −t , where s = (p1 + p2)2, t = (p2 + p3)2 ,

Due to analyticity in spin, behavior

A4 ∼ sα(t)

instrumental for the birth and development of string theory.

▸ Recently, essential in resolving disputes in binary black hole dynamics
[Bern,Ita,Parra-Martinez,Ruf]
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The High-Energy or (Multi-)Regge Limit
Phenomenological Applications and Beyond

With establishment of QCD, Regge behavior obtained by perturbatively
resumming large logarithms in kinematic variables:

A4 ∼ sα(t)

planar: g2 = λ/(4π)2 ,

∼ ∑
n≥0

c(0)n g2n logn s ∶ Leading Logarithmic Approximation (LLA)

+ ∑
n≥1

c(1)n g2n logn−1 s ∶ Next-to-LLA (NLLA) etc.

▸ Gives rise to effective particle with t-dependent spin: reggeized gluon,
and bound states [Balitsky,Fadin,Kuraev,Lipatov]

▸ Utility: “Regge theory provides a very simple and economical
description of all total cross sections” [Donnachie,Landshoff’92]

▸ Beauty: First instance of integrability in gauge theory!
[Lipatov][Faddeev,Korchemsky]
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description of all total cross sections” [Donnachie,Landshoff’92]

▸ Beauty: First instance of integrability in gauge theory!
[Lipatov][Faddeev,Korchemsky]
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Multi-Regge Kinematics (MRK)

For 1 + 2→ 3 + . . . + n scattering, defined (in COM frame) as

p+3 ≫ p+4 ≫⋯≫ p+n ,

p+i ≡ p0
i + p4

i ,

with 2D transverse plane components held fixed,

pi+1 ≡ p1
i+1 + ip2

i+1 ≡ xi − xi−1 , i = 1, . . . n − 2.

MSYM: Dual conformal symmetry → SL(2,C) (plus small)!

zi ≡ (x1−xi+3) (xi+2−xi+1)
(x1−xi+1) (xi+2−xi+3) , τi ≡

√
u1i+3uni+2 → 0 , i = 1 . . . n − 5 .

Euclidean region: Rn → 1. Here: analytically continue (2-Reggeon region)

u2,n−1 → e−2πiu2,n−1 .
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The six-particle amplitude in the multi-Regge limit

BFKL approach: Dispersion integral
[Bartels,Lipatov,Sabio Vera][Caron-Huot]

W6

2πi
= ∑
n1

( z1z∗1 )
n1

2 ∫ dν1

2π Φ̃1∣z1∣2iν1e−L1ω1 =

▸ W6 ≡ R6e
iδ̃6 , with phase a contribution from BDS ansatz

▸ ν1, n1: Fourier-Mellin variables = SL(2,C) quantum numbers of
bound state of two Reggerized gluons

▸ ω1 ≡ ω(ν1, n1): (adjoint) BFKL eigenvalue = energy of this state

▸ Φ̃1 ≡ Φ̃(ν1, n1) ≡ χ1χ̄1: Product of impact factors

▸ Kinematic dependence in zi and L1 = log τ1 + iπ

Direct computation very challenging beyond first few orders. However,
progress via collinear limit.
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From Collinear to Multi-Regge Limit for n = 6 particles

Coll. Kinematics: T → 0 in convenient choice of kin.variables F,T,S.

Dynamics: Governed by integrable “flux tube” or SL(2,R) spin chain,

[Alday,Gaiotto,Maldacena,Sever,Vieira]

Wcoll
6 =

∞
∑
a=1

(FT )a∫
du

2π
µa(u)Sipa(u)T γa(u) =

where γa, pa, µa excitation energy, momentum and integration measure
known at finite coupling [Basso,Sever,Vieira]

Compare with MRK:
W6

2πi
= ∑
n1

( z1z∗1 )
n1

2 ∫ dν1

2π Φ̃1∣z1∣2iν1e−L1ω1

Intriguing resemblance. . .
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From Collinear to Multi-Regge Limit for n = 6 particles
Beyond resemblance

The two limits have overlapping domain of validity.

▸ Compute Wcoll
6 perturbatively, and promote overlap to full W6 from

knowledge of space of functions [Drummond,GP]

▸ Alternatively, analytic continuation C directly at the integrand level
[Basso, Caron-Huot,Sever]

Exact (Ea, pa)
C→ (ω, ν) , µa du

C→ Φ̃dν .

For example,

ω(u,n) = −4g(M ⋅ κ)1 , M ≡ (1 +K)−1 ,

Kij = 2j(−1)ij+j
∞

∫
0

dt

t

Ji(2gt)Jj(2gt)
et − 1

, i, j = 1,2, . . . Ji(x) ∶ Bessel fn

κj(u,n) = −
∞

∫
0

dt
t
Jj(2gt)
et−1 (1

2
[e

t(1+(−)j)
2 −(−)je

t(1−(−)j)
2 ]cos(ut)e−

nt
2 −J0(2gt)) .
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Is similar progress at higher multiplicity possible?

For n = 7 at LLA, can generalize n = 6 BFKL approach.
[Bartels,Kormilitzin, Lipatov, Prygarin]

WMRL
7 =

2

∏
i=1
∑
ni

( ziz∗i )
ni

2 ∫ dνi
2π ×

×∣zi∣2iνie−LiωiΦ̃1C̃12Φ̄2 =

New ingredient: Central emission vertex. At leading O(1/g2) order,

C̃
(0)
12 =

Γ(1−iν1−n1

2
)Γ(1+iν2+n2

2
)Γ(iν1−iν2−n1

2 +n2

2
)

Γ(iν1−n1

2
)Γ(−iν2+n2

2
)Γ(1−iν1+iν2−n1

2 +n2

2
)
.

Beyond LLA however, contains unphysical divergences! For ni = νi = 0,
double pole Φi → ν−2

i pinching integration contour.
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The seven-particle amplitude in MRK beyond the leading logarithm

Found finite-coupling regularization of dispersion integral: Exploit soft
limits, [Del Duca,Druc,Drummond,Duhr,Dulat,Marzucca,GP,Verbeek’18]

lim
z1→0
WMRL

7 = ∣z1∣2πiΓWMRL
6 (z2) etc. , Γ =

Γcusp

4
= g2 +O(g4) .

These dictate location of poles on real axis, prescription around them, and
imply exact bootstrap conditions for integrand building blocks, e.g

ω0(±πΓ) = 0, Resν=±πΓ (Φ̃(ν,0)) = ± 1

2π
,

C̃(πΓ,0, ν2, n2) = C̃(ν1, n1,−πΓ,0) = 2πi ,

For earlier work on n = 6, see also [Caron-Huot]
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Determining the integrand for n = 7 particles

Only unknown quantity: central emission block C12,

WMRL
7 =

2

∏
i=1

∞
∑

ni=−∞
( ziz∗i )

ni

2 ∫ dνi
2π ∣zi∣2iνie−LiωiΦ̃1C12Φ̄2 .

Compare with single-particle gluon OPE contribution,

W7[1] ≡
2

∏
i=1

∞
∑
ni=1

(FiTi)ni ∫
dui
2π

Sipii T γii µ1P12µ2 .

where P12 is the gluon ‘Pentagon transition’.

Assuming analytic continuation P12
CÐ→ C̃12 exists, and imposing

consistency with soft limits and 3-loop perturbative data:

7-gluon amplitude (C̃12) in MRL to all loops!
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Central Emission Block to All Loops

[Del Duca,Druc,Drummond,Duhr,Dulat,Marzucca,GP,Verbeek;PRL 124, 161602 (2020)]

C̃12 =
C̃

(0)
12

g2
Z12h1ȟ2 exp(f12−f1̃2̃− if1̃2+ if12̃−A)

where C̃
(0)
12 the LO contribution, A known constant,

Z12 =
√

(x−1x−2−g2)(x+1x+2−g2)
(x+1x−2−g2)(x−1x+2−g2) , x

±
r = x(ur± inr

2 ) , x(ur) = 1
2(ur+

√
u2
r − 4g2) ,

h1 =
√

x+x−

u2
1+
n2

1

4

e
iπω1

2 +π(u1−ν1)+i ∫ ∞0
dt
t

(J0(2gt)−1)(et+1)
(et−1) sin(u1t)e−

n1
2 t

, ȟ(u) = h(−u)

frs = 4κ(ur, nr) ⋅Q ⋅M ⋅ κ(us, ns) , with Qij = δij(−1)i+1i ,

whereas the infinite-dimensional matrix M and vector κ were defined
earlier (with similar definitions for κ→ κ̃, frs → fr̃s)
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, ȟ(u) = h(−u)

frs = 4κ(ur, nr) ⋅Q ⋅M ⋅ κ(us, ns) , with Qij = δij(−1)i+1i ,

whereas the infinite-dimensional matrix M and vector κ were defined
earlier (with similar definitions for κ→ κ̃, frs → fr̃s)

GP — Origin of Six-Gluon Amplitude at Finite Coupling Conclusions & Outlook 34/19



Central Emission Block to All Loops

[Del Duca,Druc,Drummond,Duhr,Dulat,Marzucca,GP,Verbeek;PRL 124, 161602 (2020)]

C̃12 =
C̃

(0)
12

g2
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Amplitudes at Any Multiplicity in the Multi-Regge Limit

Our regularization works for any number of gluons n, yielding

WMRL
n =

n−5

∏
i=1

∞
∑
ni=∞

( ziz∗i )
ni

2 ∫ dνi
2π ∣zi∣2iνiAn ≡ F[An]

as a well-defined (n − 5)-fold Fourier-Mellin (FM) transform F .

Integrand factorization:

An =
n−5

∏
i=1

e−LiωiΦ̃i×I1

n−6

∏
r=1

C̃rr+1Īn−5 =

All-order amplitudes in MRL at any multiplicity!

[Del Duca,Druc,Drummond,Duhr,Dulat,Marzucca,GP,Verbeek; PRL 124 (2020)]
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Application: Integral Evaluation & Maximal Transcendentality

Crucially relies in understanding relevant class of functions in MRK:
[Del Duca,Druc,Drummond,Duhr,Dulat,Marzucca,GP,Verbeek’16][Dixon,Duhr,Pennington]

Single-valued combinations of multiple polylogarithms (SVMPLs),

G(a1, . . . , ak; z) ≡ ∫
z

0

dt1
t1 − a1

G(a2, . . . , ak; t1) , G(; z) = 1 ,

k ∶ weight or transcendentality,

with their complex conjugates, such that all branch cuts cancel. [F.Brown]

Systematically expanding integrand at weak coupling, and applying Stokes’
theorem: prove principle of uniform & maximal transcendentality in MRK
[Kotikov,Lipatov(Onishchenko,Velizhanin)]

An L-loop gluon amplitude in multi-Regge kinematics in
planar MSYM has uniform weight 2L, for any helicity con-
figuration and any number of legs.
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Dual Conformal Invariance

▸ In reality DCI broken by divergences, (IR in massless N = 4/UV in
cusped WL). Breaking controlled by conformal Ward identity.
[Drummond,Henn,Korchemsky,Sokatchev]

▸ For n = 4,5, latter uniquely determines dimensionally regularized
An/Wn. Given by Bern-Dixon-Smirnov-like ansatz ABDS-like

n ,
essentially exponentiated 1-loop amplitude.

▸ For n ≥ 6,

An = ABDS-like
n En(u1, . . . , um)

where En is a conformally invariant function of cross ratios ui.

e.g. n = 6: u1 =
x2

46 x
2
31

x2
36 x

2
41

=

x1
x2

x3

x6

x5
x4

+ cyclic

▸ In general, # of independent ui: m = 4n − n − 15 = 3n − 15
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Six-particle BDS(-like) Ansatz

[Bern,Dixon,Smirnov; Alday,Maldacena]

ABDS−like
6 = exp

⎡⎢⎢⎢⎢⎣

∞
∑
L=1

(g2)L(f (L)(ε)M̂6(Lε) +C(L))
⎤⎥⎥⎥⎥⎦
,

where

f(ε) =
∞
∑
L=1

(g2)Lf (L)(ε) = 1

4
Γcusp +O(ε).

and

M̂6(ε) =(4πe−γE)ε
6

∑
i=1

[− 1

ε2
(1 + ε ln( µ2

−si,i+1
) + ε

2

2
ln2 ( µ2

−si,i+1
))

+ 1

2
ln2 (

si,i+1

si+1,i+2
) − 1

4
ln2 (

si,i+1

si+3,i+4
) + 3

2
ζ2] +O(ε) ,

Relation to original, BDS ansatz:

ABDS
6 = ABDS−like

6 e
Γcusp

4
E(1)6 , E(1)6 =

3

∑
i=1

Li2 (1 − 1

ui
)
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Special Conformal Ward Identity

[Drummond,Henn,Korchemsky,Sokatchev]

Kν lnWn =
n

∑
i=1

(2xνi xi ⋅ ∂i − x2
i ∂

ν
i ) lnWn

= −∑
l≥1

g2l ⎛
⎝

Γ
(l)
cusp

lε
+ Γ(l)⎞

⎠

n

∑
i=1

(−x2
i−1,i+1µ

2)lε xνi +O(ε),

Γ: collinear anomalous dimension
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The Collinear Limit

▸ Form null square (OPSF), by connecting two non-intersecting edges.

▸ Put at origin, spacelike and null infinity in (x0, x1) by conformal
transf. Invariant under dilatations D, boosts M01, M23 rotations .

▸ Collinear limit: Act with e−τ(D−M01) on A and B, take τ →∞.
Parametrize kinematics by group coordinates τ, σ, φ.

u2 =
1

e2τ + 1
, u1 = e2τ+2σu2u3 ,

u3 =
1

1 + e2σ + 2eσ−τ coshϕ + e−2τ
.
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Dynamics in the Collinear Limit

▸ Think of (PO),(SF ) as color-electric flux tube sourced by qq̄.

▸ Flux tube vacuum=strict limit, and excitations ψi =insertions of
gluon, scalar, fermion fields of theory on (OF ).

Schematically, decompose Wilson loop as

W =∑
ψi

e−Eiτ+ipiσ+aiφP(0∣ψi)P(ψi∣0)

▸ Propagation of square eigenstates

▸ Transition between squares

⇒WL ‘Operator Product Expansion’ (OPE) ,

∼ 4-pt correlator [Alday,Gaiotto,Maldacena,Sever,Vieira]

MSYM: ψi mapped to excitations of integrable spin chain ⇒ exact E,P
[Basso,Sever,Vieira]
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Single-particle Gluon Contribution to Six-Particle Wilson Loop/Amplitude

W6[1] =
∞
∑
l=1

g2lW(l)
6[1] =

∞
∑
a=1
∫

du

2π
µa(u)e−Ea(u)τ+pa(u)σ+aφ ,

1. Evaluated for a = 1,2, proved space of functions they span to all loops
[GP’13][GP’14]

2. Perturbatively resummed ∀a. [Drummond,GP]
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κj(a, u) ≡
∞

∫
0

dt

t

Jj(2gt)(J0(2gt) − cos(ut) [et/2](−1)j−∣a∣+1)
et − 1

κ̃j(a, u) ≡
∞

∫
0

dt

t
(−1)j+1Jj(2gt) sin(ut) [et/2](−1)(j+1)−∣a∣+1

et − 1
.
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