Integrable Limits of Scattering Amplitudes

Georgios Papathanasiou

Integrability in Gauge and String Theory 2020 August 25, 2020

PRL 124, 161602 (2020) w/ Del Duca,Druc,Drummond,Duhr,Dulat,Marzucca,Verbeek PRL 124, 161603 (2020) w/ Basso, Dixon

The Origin of the Six-Gluon Amplitude

Georgios Papathanasiou

Integrability in Gauge and String Theory 2020 August 25, 2020

PRL 124, 161603 (2020) w/ Basso, Dixon JHEP 08 (2019) 016 & 09 (2019) 061 w/ Caron-Huot,Dixon,Dulat,McLeod,Hippel JHEP 02 (2016) 185 w/ Drummond

Scattering amplitudes $A = \langle IN|S|OUT \rangle$: $d\sigma \propto |A|^2$

Scattering amplitudes $A = \langle \mathsf{IN}|S|\mathsf{OUT}\rangle$: $d\sigma \propto |A|^2$

Computing efficiently necessary in practice

Scattering amplitudes $A = \langle IN|S|OUT \rangle$: $d\sigma \propto |A|^2$

- Computing efficiently necessary in practice
- Understanding beyond perturbation theory mathematically important [Millenium Prize]

SU(N) maximally supersymmetric Yang-Mills (MSYM) theory

SU(N) maximally supersymmetric Yang-Mills (MSYM) theory in planar limit, $N \rightarrow \infty$ with $\lambda = g_{YM}^2 N$ fixed.

SU(N) maximally supersymmetric Yang-Mills (MSYM) theory in planar limit, $N \rightarrow \infty$ with $\lambda = g_{YM}^2 N$ fixed.

• Integrable structure \Rightarrow Exact physical quantities in $g^2 = \lambda/(4\pi)^2!$

SU(N) maximally supersymmetric Yang-Mills (MSYM) theory in planar limit, $N \rightarrow \infty$ with $\lambda = g_{YM}^2 N$ fixed.

• Integrable structure \Rightarrow Exact physical quantities in $g^2 = \lambda/(4\pi)^2!$

Celebrated example: The cusp anomalous dimension [Beisert, Eden, Staudacher]

$$\Gamma_{\text{cusp}} = 4g^2 \left[\frac{1}{1+\mathbb{K}} \right]_{11} = 4g^2 \left[1 - \mathbb{K} + \mathbb{K}^2 + \dots \right]_{11} \quad \leftarrow \text{matrix component}$$
$$\mathbb{K}_{ij} = 2j(-1)^{ij+j} \int_0^\infty \frac{dt}{t} \frac{J_i(2gt)J_j(2gt)}{e^t - 1}, \quad i, j = 1, 2, \dots \quad J_i(x) : \text{Bessel f}^n$$

governing operators with very large spin. [Korchemsky]

SU(N) maximally supersymmetric Yang-Mills (MSYM) theory in planar limit, $N \rightarrow \infty$ with $\lambda = g_{YM}^2 N$ fixed.

• Integrable structure \Rightarrow Exact physical quantities in $g^2 = \lambda/(4\pi)^2!$

Celebrated example: The cusp anomalous dimension [Beisert, Eden, Staudacher]

$$\Gamma_{\text{cusp}} = 4g^2 \left[\frac{1}{1+\mathbb{K}} \right]_{11} = 4g^2 \left[1 - \mathbb{K} + \mathbb{K}^2 + \dots \right]_{11} \quad \leftarrow \text{matrix component}$$
$$\mathbb{K}_{ij} = 2j(-1)^{ij+j} \int_0^\infty \frac{dt}{t} \frac{J_i(2gt)J_j(2gt)}{e^t - 1}, \quad i, j = 1, 2, \dots \quad J_i(x) : \text{Bessel f}^n$$

governing operators with very large spin. [Korchemsky]

Can we hope for similar progress with amplitudes?

Π

Amplitudes with n = 4, 5 particles already known to all loops!

Amplitudes with n = 4, 5 particles already known to all loops! For $n \ge 6$:

Amplitudes with n = 4, 5 particles already known to all loops! For $n \ge 6$:

Amplitudes with n = 4, 5 particles already known to all loops! For $n \ge 6$:

In this talk: New, "origin" limit for n = 6 at finite coupling

Amplitudes with n = 4, 5 particles already known to all loops! For $n \ge 6$:

In this talk: New, "origin" limit for n = 6 at finite coupling

Amplitudes with n = 4, 5 particles already known to all loops! For $n \ge 6$:

In this talk: New, "origin" limit for n = 6 at finite coupling

Outline

Intro: The Six-Gluon Amplitude in MSYM

The Origin of Intriguing Observations

Connection to Integrability

Finite-coupling Expression for Amplitude & Checks

Conclusions & Outlook

Simplest nontrivial case, $A_6(-, -, +, \dots, +)$. Remarkable properties,

Simplest nontrivial case, $A_6(-, -, +, ..., +)$. Remarkable properties, i.e.

• is dual to null hexagonal Wilson loop W_{\bigcirc}

[Alday, Maldacena] [Drummond(, Henn), Korchemsky, Sokatchev] [Brandhuber, Heslop, Travaglini]

$$k_i \equiv x_{i+1} - x_i \equiv x_{i+1,i} ,$$

Simplest nontrivial case, $A_6(-, -, +, ..., +)$. Remarkable properties, i.e.

- is dual to null hexagonal Wilson loop W_{igcap}

[Alday, Maldacena] [Drummond(, Henn), Korchemsky, Sokatchev] [Brandhuber, Heslop, Travaglini]

$$k_i \equiv x_{i+1} - x_i \equiv x_{i+1,i} ,$$

$$\left(A_6 = A_6^{\text{BDS-like}} \mathcal{E}_6(u_i)\right)$$

exhibits dual conformal symmetry under x_i^µ → x_i^µ/x_i²: After factoring out universal IR-divergent Bern-Dixon-Smirnov(-like) part,

Simplest nontrivial case, $A_6(-, -, +, \dots, +)$. Remarkable properties, i.e.

• is dual to null hexagonal Wilson loop W_{igodot}

[Alday, Maldacena] [Drummond(, Henn), Korchemsky, Sokatchev] [Brandhuber, Heslop, Travaglini]

exhibits dual conformal symmetry under x_i^µ → x_i^µ/x_i²: After factoring out universal IR-divergent Bern-Dixon-Smirnov(-like) part, function of 3 conformal cross ratios u_i.

The Origin of the Six-Gluon Amplitude

 \mathcal{E}_6 (and \mathcal{E}_7) computed most efficiently in general kinematics & at fixed order in the coupling via *Amplitude Bootstrap*.

 $[Recent \ Review: \ Caron-Huot, Dixon, Drummond, Dulat, Foster, G\"{u}rdo\v{g}an, Hippel, McLeod, \ GP]$

Natural to scan space of kinematics for all-loop patterns and simplifications.

The Origin of the Six-Gluon Amplitude

 \mathcal{E}_6 (and \mathcal{E}_7) computed most efficiently in general kinematics & at fixed order in the coupling via *Amplitude Bootstrap*.

 $[Recent \ Review: \ Caron-Huot, Dixon, Drummond, Dulat, Foster, G\"{u}rdo\v{g}an, Hippel, McLeod, \ GP]$

Natural to scan space of kinematics for all-loop patterns and simplifications. Here: Focus on limit when $u_i \rightarrow 0$: "origin"

In the origin limit $u_i \rightarrow 0$, from perturbative results up to 7 loops, observed that six-particle amplitude takes the form, ^[Caron-Huot,Dixon,Dulat,McLeod,Hippel,GP]

$$\ln \mathcal{E}_{6} = -\frac{\Gamma_{\text{oct}}}{24} \ln^{2} \left(u_{1} u_{2} u_{3} \right) - \frac{\Gamma_{\text{hex}}}{24} \sum_{i=1}^{3} \ln^{2} \left(\frac{u_{i}}{u_{i+1}} \right) + C_{0}.$$

In the origin limit $u_i \rightarrow 0$, from perturbative results up to 7 loops, observed that six-particle amplitude takes the form, ^[Caron-Huot,Dixon,Dulat,McLeod,Hippel,GP]

$$\ln \mathcal{E}_{6} = -\frac{\Gamma_{\text{oct}}}{24} \ln^{2} \left(u_{1} u_{2} u_{3} \right) - \frac{\Gamma_{\text{hex}}}{24} \sum_{i=1}^{3} \ln^{2} \left(\frac{u_{i}}{u_{i+1}} \right) + C_{0}.$$

• Exponentiation: $\ln \mathcal{E}_6$ contains only $\mathcal{O}(\ln^2 u_i)$, $\mathcal{O}(\ln^0 u_i)$ terms!

In the origin limit $u_i \rightarrow 0$, from perturbative results up to 7 loops, observed that six-particle amplitude takes the form, ^[Caron-Huot,Dixon,Dulat,McLeod,Hippel,GP]

$$\ln \mathcal{E}_{6} = -\frac{\Gamma_{\text{oct}}}{24} \ln^{2} \left(u_{1} u_{2} u_{3} \right) - \frac{\Gamma_{\text{hex}}}{24} \sum_{i=1}^{3} \ln^{2} \left(\frac{u_{i}}{u_{i+1}} \right) + C_{0}.$$

• Exponentiation: $\ln \mathcal{E}_6$ contains only $\mathcal{O}(\ln^2 u_i)$, $\mathcal{O}(\ln^0 u_i)$ terms!

•
$$\Gamma_{\text{oct}} = 4g^2 - \frac{8\pi^2 g^4}{3} + \frac{128\pi^4 g^6}{45} - \frac{1088\pi^6 g^8}{315} + \mathcal{O}(g^{10}),$$

In the origin limit $u_i \rightarrow 0$, from perturbative results up to 7 loops, observed that six-particle amplitude takes the form, ^[Caron-Huot,Dixon,Dulat,McLeod,Hippel,GP]

$$\ln \mathcal{E}_{6} = -\frac{\Gamma_{\text{oct}}}{24} \ln^{2} \left(u_{1} u_{2} u_{3} \right) - \frac{\Gamma_{\text{hex}}}{24} \sum_{i=1}^{3} \ln^{2} \left(\frac{u_{i}}{u_{i+1}} \right) + C_{0}.$$

• Exponentiation: $\ln \mathcal{E}_6$ contains only $\mathcal{O}(\ln^2 u_i)$, $\mathcal{O}(\ln^0 u_i)$ terms!

•
$$\Gamma_{\text{oct}} = 4g^2 - \frac{8\pi^2 g^4}{3} + \frac{128\pi^4 g^6}{45} - \frac{1088\pi^6 g^8}{315} + \mathcal{O}(g^{10}),$$

• $\Gamma_{\text{oct}} \rightarrow \frac{2}{\pi^2} \ln \cosh(2\pi g) \, ! \, ^{[\text{Basso, Dixon, GP}]}$

In the origin limit $u_i \rightarrow 0$, from perturbative results up to 7 loops, observed that six-particle amplitude takes the form, ^[Caron-Huot,Dixon,Dulat,McLeod,Hippel,GP]

$$\ln \mathcal{E}_{6} = -\frac{\Gamma_{\text{oct}}}{24} \ln^{2} \left(u_{1} u_{2} u_{3} \right) - \frac{\Gamma_{\text{hex}}}{24} \sum_{i=1}^{3} \ln^{2} \left(\frac{u_{i}}{u_{i+1}} \right) + C_{0}.$$

• Exponentiation: $\ln \mathcal{E}_6$ contains only $\mathcal{O}(\ln^2 u_i)$, $\mathcal{O}(\ln^0 u_i)$ terms!

$$\Gamma_{\rm oct} = 4g^2 - \frac{8\pi^2 g^4}{3} + \frac{128\pi^4 g^6}{45} - \frac{1088\pi^6 g^8}{315} + \mathcal{O}(g^{10}) \,,$$

•
$$\Gamma_{\text{oct}} \rightarrow \frac{2}{\pi^2} \ln \cosh \left(2\pi g\right) \,! \, [\text{Basso, Dixon, GP}]$$

 Same quantity appears in lightlike limit of "simplest 4-point correlator" of MSYM. [Coronado][Kostov,Petkova,Serban][Belitsky,Korchemsky] [See talks by Korchemsky,Fleury,Kostov]

In the origin limit $u_i \rightarrow 0$, from perturbative results up to 7 loops, observed that six-particle amplitude takes the form, ^[Caron-Huot,Dixon,Dulat,McLeod,Hippel,GP]

$$\ln \mathcal{E}_{6} = -\frac{\Gamma_{\text{oct}}}{24} \ln^{2} \left(u_{1} u_{2} u_{3} \right) - \frac{\Gamma_{\text{hex}}}{24} \sum_{i=1}^{3} \ln^{2} \left(\frac{u_{i}}{u_{i+1}} \right) + C_{0}.$$

• Exponentiation: $\ln \mathcal{E}_6$ contains only $\mathcal{O}(\ln^2 u_i)$, $\mathcal{O}(\ln^0 u_i)$ terms!

$$\Gamma_{\text{oct}} = 4g^2 - \frac{8\pi^2 g^4}{3} + \frac{128\pi^4 g^6}{45} - \frac{1088\pi^6 g^8}{315} + \mathcal{O}(g^{10}) ,$$

•
$$\Gamma_{\text{oct}} \rightarrow \frac{2}{\pi^2} \ln \cosh \left(2\pi g\right) \, ! \, ^{[\text{Basso, Dixon, GP}]}$$

 Same quantity appears in lightlike limit of "simplest 4-point correlator" of MSYM. [Coronado][Kostov,Petkova,Serban][Belitsky,Korchemsky] [See talks by Korchemsky,Fleury,Kostov]

Connection? How about Γ_{hex}, C_0 ? Finite coupling?

Integrability in Scattering Amplitudes/Wilson Loops?

Integrability in Scattering Amplitudes/Wilson Loops?

Not yet understood in general kinematics. Good starting point, however, particular collinear limit.

Integrability in Scattering Amplitudes/Wilson Loops?

Not yet understood in general kinematics. Good starting point, however, particular collinear limit. In new kinem. variables τ, σ, ϕ , given by $\tau \to \infty$.

$$u_{2} = \frac{1}{e^{2\tau} + 1}, \quad u_{1} = e^{2\tau + 2\sigma} u_{2} u_{3},$$
$$u_{3} = \frac{1}{1 + e^{2\sigma} + 2e^{\sigma - \tau} \cosh \varphi + e^{-2\tau}}.$$

Not yet understood in general kinematics. Good starting point, however, particular collinear limit. In new kinem. variables τ, σ, ϕ , given by $\tau \to \infty$.

In convenient normalization,

$$\mathcal{W}_6 \equiv \mathcal{E}_6 e^{\frac{1}{2}\Gamma_{\rm cusp}(\sigma^2 + \tau^2 + \zeta_2)}$$

Not yet understood in general kinematics. Good starting point, however, particular collinear limit. In new kinem. variables τ, σ, ϕ , given by $\tau \to \infty$.

In convenient normalization, conformal symmetry implies

$$\mathcal{W}_{6} = \sum_{\psi_{i}} e^{-E_{i}\tau + ip_{i}\sigma + a_{i}\phi} \mathcal{P}(0|\psi_{i})\mathcal{P}(\psi_{i}|0)$$

Not yet understood in general kinematics. Good starting point, however, particular collinear limit. In new kinem. variables τ, σ, ϕ , given by $\tau \to \infty$.

In convenient normalization, conformal symmetry implies

$$\mathcal{W}_{6} = \sum_{\psi_{i}} e^{-E_{i}\tau + ip_{i}\sigma + a_{i}\phi} \mathcal{P}(0|\psi_{i})\mathcal{P}(\psi_{i}|0)$$

Propagation of flux tube excitation

Not yet understood in general kinematics. Good starting point, however, particular collinear limit. In new kinem. variables τ, σ, ϕ , given by $\tau \to \infty$.

In convenient normalization, conformal symmetry implies

$$\mathcal{W}_{6} = \sum_{\psi_{i}} e^{-E_{i}\tau + ip_{i}\sigma + a_{i}\phi} \mathcal{P}(0|\psi_{i})\mathcal{P}(\psi_{i}|0)$$

- Propagation of flux tube excitation
- Emission/Absorption

Wilson Loop 'Operator Product Expansion (OPE)'

[Alday, Gaiotto, Maldacena, Sever, Vieira]

Not yet understood in general kinematics. Good starting point, however, particular collinear limit. In new kinem. variables τ, σ, ϕ , given by $\tau \to \infty$.

In convenient normalization, conformal symmetry implies

$$\mathcal{W}_{6} = \sum_{\psi_{i}} e^{-E_{i}\tau + ip_{i}\sigma + a_{i}\phi} \mathcal{P}(0|\psi_{i})\mathcal{P}(\psi_{i}|0)$$

- Propagation of flux tube excitation
- Emission/Absorption

Wilson Loop 'Operator Product Expansion (OPE)'

[Alday, Gaiotto, Maldacena, Sever, Vieira]

MSYM: ψ_i mapped to excitations of integrable $SL(2,\mathbb{R})$ spin chain, equivalently of Gubser-Polyakov-Klebanov string \Rightarrow exact E, \mathcal{P} [Basso+Sever,Vieira]

Not yet understood in general kinematics. Good starting point, however, particular collinear limit. In new kinem. variables τ, σ, ϕ , given by $\tau \to \infty$.

In convenient normalization, conformal symmetry implies

$$\mathcal{W}_{6} = \sum_{\psi_{i}} e^{-E_{i}\tau + ip_{i}\sigma + a_{i}\phi} \mathcal{P}(0|\psi_{i})\mathcal{P}(\psi_{i}|0)$$

- Propagation of flux tube excitation
- Emission/Absorption

Wilson Loop 'Operator Product Expansion (OPE)'

[Alday,Gaiotto,Maldacena,Sever,Vieira]

MSYM: ψ_i mapped to excitations of integrable $SL(2,\mathbb{R})$ spin chain, equivalently of Gubser-Polyakov-Klebanov string \Rightarrow exact E, \mathcal{P} [Basso+Sever,Vieira]

 $[Belitsky, Bonini, Bork, Caetano, Cordova, Drummond, Fioravanti, Hippel, Lam, Onishchenko, \ GP, Piscaglia, Rossi, \dots, Generative and the statement of the sta$

Origin does not intersect collinear limit

- Origin does not intersect collinear limit
- However part of double scaling limit:

- Origin does not intersect collinear limit
- However part of double scaling limit: Only simpler, gluon flux tube excitations contribute, [Basso,Sever,Vieira][Drummond,GP]

$$\mathcal{W}_6^{\mathsf{DS}} = \sum_{N=1}^{\infty} \mathcal{W}_{6[N]}, \text{ e.g.}$$

$$\mathcal{W}_{6[1]} = \sum_{a=1}^{\infty} e^{a\phi} \int \frac{du}{2\pi} \mu_a(u) e^{-E_a(u)\tau + p_a(u)\sigma}$$

- Origin does not intersect collinear limit
- However part of double scaling limit: Only simpler, gluon flux tube excitations contribute, [Basso,Sever,Vieira][Drummond,GP]

$$\mathcal{W}_6^{\mathsf{DS}} = \sum_{N=1}^{\infty} \mathcal{W}_{6[N]}, \text{ e.g.}$$

$$\mathcal{W}_{6[1]} = \sum_{a=1}^{\infty} e^{a\phi} \int \frac{du}{2\pi} \mu_a(u) e^{-E_a(u)\tau + p_a(u)\sigma}$$

• Origin: $\phi - \tau \rightarrow \infty$, outside of radius of convergence of sum B

- Origin does not intersect collinear limit
- However part of double scaling limit: Only simpler, gluon flux tube excitations contribute, [Basso,Sever,Vieira][Drummond,GP]

$$\mathcal{W}_6^{\mathsf{DS}} = \sum_{N=1}^{\infty} \mathcal{W}_{6[N]}, \text{ e.g.}$$

$$\mathcal{W}_{6[1]} = \sum_{a=1}^{\infty} e^{a\phi} \int \frac{du}{2\pi} \mu_a(u) e^{-E_a(u)\tau + p_a(u)\sigma}$$

- Origin: $\phi \tau \rightarrow \infty$, outside of radius of convergence of sum \oplus
- ▶ Pert. resummation: $\mathcal{W}_{6[N]} \sim \mathcal{O}(g^{2N^2}) \Rightarrow \mathcal{W}_{6[1]}$ good up to 3 loops \bigcirc

- Origin does not intersect collinear limit
- However part of double scaling limit: Only simpler, gluon flux tube excitations contribute, [Basso,Sever,Vieira][Drummond,GP]

$$\mathcal{W}_6^{\mathsf{DS}} = \sum_{N=1}^{\infty} \mathcal{W}_{6[N]}, \text{ e.g.}$$

$$\mathcal{W}_{6[1]} = \sum_{a=1}^{\infty} e^{a\phi} \int \frac{du}{2\pi} \mu_a(u) e^{-E_a(u)\tau + p_a(u)\sigma}$$

- Origin: $\phi \tau \rightarrow \infty$, outside of radius of convergence of sum B
- ▶ Pert. resummation: $\mathcal{W}_{6[N]} \sim \mathcal{O}(g^{2N^2}) \Rightarrow \mathcal{W}_{6[1]}$ good up to 3 loops ©
- Pert. resummation for $N \ge 2$ possible, but much harder $\textcircled{\sc i}$

- Origin does not intersect collinear limit
- However part of double scaling limit: Only simpler, gluon flux tube excitations contribute, [Basso,Sever,Vieira][Drummond,GP]

$$\mathcal{W}_6^{\mathsf{DS}} = \sum_{N=1}^{\infty} \mathcal{W}_{6[N]}, \text{ e.g.}$$

$$\mathcal{W}_{6[1]} = \sum_{a=1}^{\infty} e^{a\phi} \int \frac{du}{2\pi} \mu_a(u) e^{-E_a(u)\tau + p_a(u)\sigma}$$

- Origin: $\phi \tau \rightarrow \infty$, outside of radius of convergence of sum \oplus
- ▶ Pert. resummation: $\mathcal{W}_{6[N]} \sim \mathcal{O}(g^{2N^2}) \Rightarrow \mathcal{W}_{6[1]}$ good up to 3 loops ©
- Pert. resummation for $N \ge 2$ possible, but much harder $\textcircled{\circlet}$
- ► As we'll see however, not really necessary! ☺

Sommerfeld-Watson Transform

Similar to Regge theory, where it amounts to analytic continuation in spin,

$$\sum_{a \ge 1} (-1)^a f(a) \to \int_{+\infty - i\epsilon}^{+\infty + i\epsilon} \frac{if(a)da}{2\sin(\pi a)},$$

provided f(z) decays faster than 1/z as $z \to \infty$.

Sommerfeld-Watson Transform

(

Similar to Regge theory, where it amounts to analytic continuation in spin,

$$\sum_{a \ge 1} (-1)^a f(a) \to \int_{+\infty - i\epsilon}^{+\infty + i\epsilon} \frac{if(a)da}{2\sin(\pi a)},$$

provided f(z) decays faster than 1/z as $z \to \infty$. Indeed the case, and in fact can deform contour to run parallel to imaginary axis, C.

Sommerfeld-Watson Transform

(

Similar to Regge theory, where it amounts to analytic continuation in spin,

$$\sum_{a \ge 1} (-1)^a f(a) \to \int_{+\infty - i\epsilon}^{+\infty + i\epsilon} \frac{if(a)da}{2\sin(\pi a)},$$

provided f(z) decays faster than 1/z as $z \to \infty$. Indeed the case, and in fact can deform contour to run parallel to imaginary axis, C.

Finally, closing contour around a = 0 on the left-hand side yields all nonvanishing terms at origin at finite coupling!

Further manipulating previously found integrand leads to finite-coupling conjecture, ,

Further manipulating previously found integrand leads to finite-coupling conjecture, ,

$$\ln \mathcal{E}_6 = -\frac{\Gamma_0}{24} \ln^2 \left(u_1 u_2 u_3 \right) - \frac{\Gamma_{\pi/3}}{24} \sum_{i=1}^3 \ln^2 \left(\frac{u_i}{u_{i+1}} \right) + C_0 \,,$$

Further manipulating previously found integrand leads to finite-coupling conjecture, ,

$$\ln \mathcal{E}_6 = -\frac{\Gamma_0}{24} \ln^2 \left(u_1 u_2 u_3 \right) - \frac{\Gamma_{\pi/3}}{24} \sum_{i=1}^3 \ln^2 \left(\frac{u_i}{u_{i+1}} \right) + C_0 \,,$$

$$\Gamma_{\alpha} = 4g^2 \left[\frac{1}{1 + \mathbb{K}(\alpha)} \right]_{11} = 4g^2 \left[1 - \mathbb{K}(\alpha) + \mathbb{K}^2(\alpha) + \dots \right]_{11},$$

Further manipulating previously found integrand leads to finite-coupling conjecture, in terms of *tilted Beisert-Eden-Staudacher kernel* $\mathbb{K}(\alpha)$,

$$\ln \mathcal{E}_6 = -\frac{\Gamma_0}{24} \ln^2 \left(u_1 u_2 u_3 \right) - \frac{\Gamma_{\pi/3}}{24} \sum_{i=1}^3 \ln^2 \left(\frac{u_i}{u_{i+1}} \right) + C_0 \,,$$

$$\Gamma_{\alpha} = 4g^{2} \left[\frac{1}{1 + \mathbb{K}(\alpha)} \right]_{11} = 4g^{2} \left[1 - \mathbb{K}(\alpha) + \mathbb{K}^{2}(\alpha) + \ldots \right]_{11} ,$$
$$\mathbb{K}(\alpha) = 2\cos\alpha \left[\begin{array}{c} \cos\alpha \,\mathbb{K}_{\circ\circ} & \sin\alpha \,\mathbb{K}_{\circ\circ} \\ \sin\alpha \,\mathbb{K}_{\circ\circ} & \cos\alpha \,\mathbb{K}_{\circ\circ} \end{array} \right], \quad \begin{array}{c} \mathbb{K}_{\circ\circ} = \mathbb{K}_{2n+1,2m+1} , \\ \mathbb{K}_{\circ\circ} = \mathbb{K}_{2n+1,2m} \text{ etc}, \end{array}$$

Further manipulating previously found integrand leads to finite-coupling conjecture, in terms of *tilted Beisert-Eden-Staudacher kernel* $\mathbb{K}(\alpha)$,

$$\ln \mathcal{E}_6 = -\frac{\Gamma_0}{24} \ln^2 \left(u_1 u_2 u_3 \right) - \frac{\Gamma_{\pi/3}}{24} \sum_{i=1}^3 \ln^2 \left(\frac{u_i}{u_{i+1}} \right) + C_0 ,$$

$$\Gamma_{\alpha} = 4g^{2} \left[\frac{1}{1 + \mathbb{K}(\alpha)} \right]_{11} = 4g^{2} \left[1 - \mathbb{K}(\alpha) + \mathbb{K}^{2}(\alpha) + \dots \right]_{11},$$
$$\mathbb{K}(\alpha) = 2\cos\alpha \left[\begin{array}{c} \cos\alpha \,\mathbb{K}_{\circ\circ} & \sin\alpha \,\mathbb{K}_{\circ\circ} \\ \sin\alpha \,\mathbb{K}_{\circ\circ} & \cos\alpha \,\mathbb{K}_{\circ\circ} \end{array} \right], \quad \begin{array}{c} \mathbb{K}_{\circ\circ} = \mathbb{K}_{2n+1,2m+1}, \\ \mathbb{K}_{\circ\circ} = \mathbb{K}_{2n+1,2m} \text{ etc.} \end{array}$$

[Basso, Dixon,GP]

$$\mathbb{K}_{ij} = 2j(-1)^{ij+j} \int_{0}^{\infty} \frac{dt}{t} \frac{J_i(2gt)J_j(2gt)}{e^t - 1},$$

Further manipulating previously found integrand leads to finite-coupling conjecture, in terms of *tilted Beisert-Eden-Staudacher kernel* $\mathbb{K}(\alpha)$,

$$\ln \mathcal{E}_6 = -\frac{\Gamma_0}{24} \ln^2 \left(u_1 u_2 u_3 \right) - \frac{\Gamma_{\pi/3}}{24} \sum_{i=1}^3 \ln^2 \left(\frac{u_i}{u_{i+1}} \right) + C_0 \,,$$

$$\Gamma_{\alpha} = 4g^{2} \left[\frac{1}{1 + \mathbb{K}(\alpha)} \right]_{11} = 4g^{2} \left[1 - \mathbb{K}(\alpha) + \mathbb{K}^{2}(\alpha) + \dots \right]_{11},$$
$$\mathbb{K}(\alpha) = 2\cos\alpha \left[\begin{array}{c} \cos\alpha \,\mathbb{K}_{\circ\circ} & \sin\alpha \,\mathbb{K}_{\circ\circ} \\ \sin\alpha \,\mathbb{K}_{\circ\circ} & \cos\alpha \,\mathbb{K}_{\circ\circ} \end{array} \right], \quad \begin{array}{c} \mathbb{K}_{\circ\circ} = \mathbb{K}_{2n+1,2m+1}, \\ \mathbb{K}_{\circ\circ} = \mathbb{K}_{2n+1,2m} \text{ etc,} \end{array}$$

[Basso, Dixon,GP]

$$\mathbb{K}_{ij} = 2j(-1)^{ij+j} \int_{0}^{\infty} \frac{dt}{t} \frac{J_i(2gt)J_j(2gt)}{e^t - 1},$$
$$C_0 = -\frac{\zeta_2}{2}\Gamma_{\pi/4} + D(\pi/4) - D(\pi/3) - \frac{1}{2}D(0), \quad D(\alpha) \equiv \ln \det \left[1 + \mathbb{K}(\alpha)\right].$$

~~

Comparison: Finite-coupling numerics & weak/strong coupling analytics

Comparison: Finite-coupling numerics & weak/strong coupling analytics

Expanded Γ_{α} to four orders in 1/g, and C_0 to two. For example,

$$\Gamma_{\alpha} = \frac{8\alpha g}{\pi \sin(2\alpha)} + \mathcal{O}(g^0), \quad D(\alpha) = 4\pi g \left[\frac{1}{4} - \frac{\alpha^2}{\pi^2}\right] + \mathcal{O}(g^0).$$

Expanded Γ_{α} to four orders in 1/g, and C_0 to two. For example,

$$\Gamma_{\alpha} = \frac{8\alpha g}{\pi \sin(2\alpha)} + \mathcal{O}(g^0), \quad D(\alpha) = 4\pi g \left[\frac{1}{4} - \frac{\alpha^2}{\pi^2}\right] + \mathcal{O}(g^0).$$

Via gauge/string duality, at leading strong-coupling order $\mathcal{W} \sim e^{-2g(\text{Area})}$ of string ending on \mathcal{W} at boundary of AdS space. ^[Alday,Maldacena]

Image Credit: A. Sever

Expanded Γ_{α} to four orders in 1/g, and C_0 to two. For example,

$$\Gamma_{\alpha} = \frac{8\alpha g}{\pi \sin(2\alpha)} + \mathcal{O}(g^0), \quad D(\alpha) = 4\pi g \left[\frac{1}{4} - \frac{\alpha^2}{\pi^2}\right] + \mathcal{O}(g^0).$$

Via gauge/string duality, at leading strong-coupling order $\mathcal{W} \sim e^{-2g(\text{Area})}$ of string ending on \mathcal{W} at boundary of AdS space. ^[Alday,Maldacena]

Image Credit: A. Sever

Expanded Γ_{α} to four orders in 1/g, and C_0 to two. For example,

$$\Gamma_{\alpha} = \frac{8\alpha g}{\pi \sin(2\alpha)} + \mathcal{O}(g^0), \quad D(\alpha) = 4\pi g \left[\frac{1}{4} - \frac{\alpha^2}{\pi^2}\right] + \mathcal{O}(g^0).$$

Via gauge/string duality, at leading strong-coupling order $\mathcal{W} \sim e^{-2g(\text{Area})}$ of string ending on \mathcal{W} at boundary of AdS space. ^[Alday,Maldacena]

Image Credit: A. Sever

Expanded Γ_{α} to four orders in 1/g, and C_0 to two. For example,

$$\Gamma_{\alpha} = \frac{8\alpha g}{\pi \sin(2\alpha)} + \mathcal{O}(g^0), \quad D(\alpha) = 4\pi g \left[\frac{1}{4} - \frac{\alpha^2}{\pi^2}\right] + \mathcal{O}(g^0).$$

Via gauge/string duality, at leading strong-coupling order $\mathcal{W} \sim e^{-2g(\text{Area})}$ of string ending on \mathcal{W} at boundary of AdS space. ^[Alday,Maldacena]

The high-energy/multi-Regge Limit (MRL)

May similarly relate integrable collinear limit with conceptually and practically important $1 + 2 \rightarrow 3 + \ldots + N - 2$ high-energy limit.

The high-energy/multi-Regge Limit (MRL)

May similarly relate integrable collinear limit with conceptually and practically important $1 + 2 \rightarrow 3 + \ldots + N - 2$ high-energy limit.

Obtain well-defined dispersion integral represented graphically as

and determine previously unknown building block, \tilde{C}_{ii+1} to all loops.

The high-energy/multi-Regge Limit (MRL)

May similarly relate integrable collinear limit with conceptually and practically important $1 + 2 \rightarrow 3 + \ldots + N - 2$ high-energy limit.

Obtain well-defined dispersion integral represented graphically as

and determine previously unknown building block, \tilde{C}_{ii+1} to all loops.

All-order amplitudes in MRL at any multiplicity!

[Del Duca,Druc,Drummond,Duhr,Dulat,Marzucca,GP,Verbeek;PRL 124, 161602 (2020)]

Higher Multiplicity in General Kinematics

In improved perturbation theory (amplitude bootstrap), essential input is knowledge of amplitude singularities.

Higher Multiplicity in General Kinematics

In improved perturbation theory (amplitude bootstrap), essential input is knowledge of amplitude singularities.

n = 6,7: Strong indications that they are dictated by cluster algebras [Golden,Goncharov, Spradlin,Vergu,Volovich]

Higher Multiplicity in General Kinematics

In improved perturbation theory (amplitude bootstrap), essential input is knowledge of amplitude singularities.

- n = 6,7: Strong indications that they are dictated by cluster algebras [Golden,Goncharov, Spradlin,Vergu,Volovich]
- ▶ $n \ge 8$, however, cluster algebra becomes infinite!

Higher Multiplicity in General Kinematics

In improved perturbation theory (amplitude bootstrap), essential input is knowledge of amplitude singularities.

- n = 6,7: Strong indications that they are dictated by cluster algebras [Golden,Goncharov, Spradlin,Vergu,Volovich]
- $n \ge 8$, however, cluster algebra becomes infinite!

Very recently, proposal for finite subset in agreement with all known data [Henke, Papathanasiou] [Arkani-Hamed,Lam,Spradlin] [Drummond,Foster,Gurdogan,Kalousios]

Higher Multiplicity in General Kinematics

In improved perturbation theory (amplitude bootstrap), essential input is knowledge of amplitude singularities.

- n = 6,7: Strong indications that they are dictated by cluster algebras [Golden,Goncharov, Spradlin,Vergu,Volovich]
- $n \ge 8$, however, cluster algebra becomes infinite!

Very recently, proposal for finite subset in agreement with all known data [Henke, Papathanasiou] [Arkani-Hamed,Lam,Spradlin] [Drummond,Foster,Gurdogan,Kalousios]

based on relation of cluster algebras with tropical geometry.

In this presentation, I talked about the beauty and simplicity of amplitudes in maximally supersymmetric Yang-Mills theory.

In this presentation, I talked about the beauty and simplicity of amplitudes in maximally supersymmetric Yang-Mills theory.

In this presentation, I talked about the beauty and simplicity of amplitudes in maximally supersymmetric Yang-Mills theory.

In this presentation, I talked about the beauty and simplicity of amplitudes in maximally supersymmetric Yang-Mills theory.

Starting from tremendous improvements in perturbation theory, arrived at

Six-particle amplitude in new, origin limit at finite coupling

also in agreement with string theory predictions!

In this presentation, I talked about the beauty and simplicity of amplitudes in maximally supersymmetric Yang-Mills theory.

Starting from tremendous improvements in perturbation theory, arrived at

Six-particle amplitude in new, origin limit at finite coupling

also in agreement with string theory predictions!

- Tilt angle interpretation/connection to correlators? [Vieira,Gonçalves,Bercini]
- Higher Points? [Basso,Dixon,Liu,GP; in progress][Dixon,Liu]
- Resummation to more general kinematics? \rightarrow multi-Regge

In this presentation, I talked about the beauty and simplicity of amplitudes in maximally supersymmetric Yang-Mills theory.

Starting from tremendous improvements in perturbation theory, arrived at

Six-particle amplitude in new, origin limit at finite coupling

also in agreement with string theory predictions!

- Tilt angle interpretation/connection to correlators? [Vieira,Gonçalves,Bercini]
- Higher Points? [Basso,Dixon,Liu,GP; in progress][Dixon,Liu]
- Resummation to more general kinematics? \rightarrow multi-Regge

Ultimately, can the integrability of planar SYM theory, together with a thorough knowledge of the analytic structure of its amplitudes, lead us to the theory's exact S-matrix?

QFT Property

Computation

QFT Property	Computation
Physical Branch Cuts	$A_6^{(L)}, L = 3, 4$
[Gaiotto,Maldacena,	[Dixon,Drummond, (Henn,)
Sever, Vieira]	Duhr/Hippel,Pennington]

QFT Property	Computation
Physical Branch Cuts	$A_6^{(L)}, L = 3, 4$
[Gaiotto,Maldacena, Sever,Vieira]	[Dixon,Drummond, (Henn,) Duhr/Hippel,Pennington]
Cluster Algebras	$A^{(3)}_{7,MHV}$
[Golden,Goncharov,	[Drummond, GP,
Spradlin, Vergu, Volovich]	Spradlin]

$$A_{\mathsf{MHV}} = A(--+\ldots+)$$
$$A_{\mathsf{NMHV}} = A(--+\ldots+)$$

$$A_{\mathsf{MHV}} = A(--+\ldots+)$$
$$A_{\mathsf{NMHV}} = A(--+\ldots+)$$

Computation	
$A_6^{(L)}, L = 3, 4$	
[Dixon,Drummond, (Henn,) Duhr/Hippel,Pennington]	
$A^{(3)}_{7,MHV}$	
[Drummond, GP, Spradlin]	
$A_6^{(5)}, A_{7,NMHV}^{(3)}, A_{7,MHV}^{(4)}$	
[Caron-Huot,Dixon,] [Dixon,, GP,Spradlin]	
$A_{7,NMHV}^{(4)}$	
[Drummond,Foster, Gurdogan, GP]	
$\Leftrightarrow A_6^{(6)}, A_{6,MHV}^{(7)}$	
[Caron-Huot,Dixon,Dulat, McLeod,Hippel,GP]	

$$A_{\mathsf{MHV}} = A(--+\ldots+)$$
$$A_{\mathsf{NMHV}} = A(--+\ldots+)$$

See also recent $S(A_7) \rightarrow A_7$ work by ^[Dixon,Liu]

Weak coupling expansion of Γ_{α}

	<i>L</i> = 1	<i>L</i> = 2	<i>L</i> = 3	L = 4
$\Gamma_{\rm oct}$	4	$-16\zeta_2$	$256\zeta_4$	$-3264\zeta_6$
$\Gamma_{\rm cusp}$	4	$-8\zeta_2$	$88\zeta_4$	$-876\zeta_6 - 32\zeta_3^2$
$\Gamma_{\rm hex}$	4	$-4\zeta_2$	$34\zeta_4$	$-\frac{603}{2}\zeta_6 - 24\zeta_3^2$
C_0	$-3\zeta_2$	$\frac{77}{4}\zeta_4$	$-\frac{4463}{24}\zeta_6+2\zeta_3^2$	$\frac{67645}{32}\zeta_8 + 6\zeta_2\zeta_3^2 - 40\zeta_3\zeta_5$

$$\begin{aligned} \frac{\Gamma_{\alpha}}{4g^2} &= 1 - 4c^2 \zeta_2 g^2 + 8c^2 (3 + 5c^2) \zeta_4 g^4 \\ &- 8c^2 \left[(25 + 42c^2 + 35c^4) \zeta_6 + 4s^2 \zeta_3^2 \right] g^6 + \dots, \\ D(\alpha) &= 4c^2 \zeta_2 g^2 - 4c^2 (3 + 5c^2) \zeta_4 g^4 \\ &+ \frac{8}{3}c^2 \left[(30 + 63c^2 + 35c^4) \zeta_6 + 12s^2 \zeta_3^2 \right] g^6 + \dots, \\ \Gamma_{\text{oct}} &= \Gamma_0, \quad \Gamma_{\text{cusp}} = \Gamma_{\pi/4}, \quad \Gamma_{\text{hex}} = \Gamma_{\pi/3} \end{aligned}$$

Strong coupling expansion of Γ_{α}

Letting $a = \alpha/\pi$, find

$$\Gamma_{\alpha} = \frac{8ag}{\sin(2\pi a)} \left[1 - \frac{s_1}{2\sqrt{\lambda}} - \frac{as_2}{4\lambda} - \frac{a(s_1s_2 + as_3)}{8(\sqrt{\lambda})^3} + \dots \right],$$

where

$$s_{k+1} = \{\psi_k(1) - \psi_k(\frac{1}{2} + a)\} + (-1)^k \{\psi_k(1) - \psi_k(\frac{1}{2} - a)\},\$$

and $\psi_k(z) = \partial_z^{k+1} \ln \Gamma(z)$ the polygamma function.

Secretly Gaussian integral

Origin=OPE integrand in modified integration contour. Can recast as infinite-dimensional integral,

$$\mathcal{E} = \mathcal{N} \int \prod_{i=1}^{\infty} d\xi_i F(\vec{\xi}) e^{-\vec{\xi} \cdot M \cdot \vec{\xi}},$$

where $M = (1 + \mathbb{K}) \cdot \mathbb{Q}$ and $F(\xi, \phi, \tau, \sigma)$ complicated Fredholm determinant. Remarkably, observe that perturbatively

$$\mathcal{E} = \mathcal{N} \int \prod_{i=1}^{\infty} d\xi_i \, e^{-\vec{\xi} \cdot (M + \delta M) \cdot \vec{\xi}} \,,$$

becomes Gaussian but with modified kernel \Rightarrow evaluate explicitly!

Rich history within analytic S-matrix program of the 60's.

Rich history within analytic S-matrix program of the 60's.

$$1 + 2 \rightarrow 3 + 4$$
: $s >> -t$, where $s = (p_1 + p_2)^2$, $t = (p_2 + p_3)^2$,

Rich history within analytic S-matrix program of the 60's.

$$1 + 2 \rightarrow 3 + 4$$
: $s \gg -t$, where $s = (p_1 + p_2)^2$, $t = (p_2 + p_3)^2$,

Due to analyticity in spin, behavior

$$\left(A_4 \sim s^{\alpha(t)}\right)$$

Construction of a Crossing-Simmetric, Regge-Behaved Amplitude for Linearly Rising Trajectories.

G. VENEZIANO (*) CERN - Geneva

Rich history within analytic S-matrix program of the 60's.

 $1 + 2 \rightarrow 3 + 4$: s >> -t, where $s = (p_1 + p_2)^2$, $t = (p_2 + p_3)^2$,

Due to analyticity in spin, behavior

$$\boxed{A_4 \sim s^{\alpha(t)}}$$

instrumental for the birth and development of string theory.

Construction of a Crossing-Simmetric, Regge-Behaved Amplitude for Linearly Rising Trajectories.

G. VENEZIANO (*) CERN - Geneva

Rich history within analytic S-matrix program of the 60's.

 $1 + 2 \rightarrow 3 + 4$: s >> -t, where $s = (p_1 + p_2)^2$, $t = (p_2 + p_3)^2$,

Due to analyticity in spin, behavior

$$\boxed{A_4 \sim s^{\alpha(t)}}$$

instrumental for the birth and development of string theory.

 Recently, essential in resolving disputes in binary black hole dynamics [Bern,Ita,Parra-Martinez,Ruf]

With establishment of QCD, Regge behavior obtained by perturbatively resumming large logarithms in kinematic variables:

 $A_4 \sim s^{\alpha(t)}$

With establishment of QCD, Regge behavior obtained by perturbatively resumming large logarithms in kinematic variables:

$$A_4 \sim s^{\alpha(t)}$$
 planar: $g^2 = \lambda/(4\pi)^2$,

~ $\sum_{n\geq 0} c_n^{(0)} g^{2n} \log^n s$: Leading Logarithmic Approximation (LLA)

With establishment of QCD, Regge behavior obtained by perturbatively resumming large logarithms in kinematic variables:

$$A_4 \sim s^{\alpha(t)}$$
 planar: $g^2 = \lambda/(4\pi)^2$,

 $\sim \sum_{n \ge 0} c_n^{(0)} g^{2n} \log^n s :$ Leading Logarithmic Approximation (LLA) + $\sum_{n \ge 1} c_n^{(1)} g^{2n} \log^{n-1} s :$ Next-to-LLA (NLLA) etc.

With establishment of QCD, Regge behavior obtained by perturbatively resumming large logarithms in kinematic variables:

$$\begin{split} A_4 &\sim s^{\alpha(t)} & \text{planar:} \ g^2 &= \lambda/(4\pi)^2 \ , \\ &\sim \sum_{n\geq 0} c_n^{(0)} g^{2n} \log^n s : & \text{Leading Logarithmic Approximation (LLA} \\ &+ \sum_{n\geq 1} c_n^{(1)} g^{2n} \log^{n-1} s : & \text{Next-to-LLA (NLLA) etc.} \end{split}$$

• Gives rise to effective particle with *t*-dependent spin: *reggeized gluon*, and bound states [Balitsky,Fadin,Kuraev,Lipatov]

With establishment of QCD, Regge behavior obtained by perturbatively resumming large logarithms in kinematic variables:

$$A_4 \sim s^{\alpha(t)}$$
 planar: $g^2 = \lambda/(4\pi)^2$,

$$\sim \sum_{n\geq 0} c_n^{(0)} g^{2n} \log^n s :$$
Leading Logarithmic Approximation (LLA)
+ $\sum_{n\geq 1} c_n^{(1)} g^{2n} \log^{n-1} s :$ Next-to-LLA (NLLA) etc.

- Gives rise to effective particle with *t*-dependent spin: *reggeized gluon*, and bound states [Balitsky,Fadin,Kuraev,Lipatov]
- Utility: "Regge theory provides a very simple and economical description of all total cross sections" [Donnachie,Landshoff'92]

With establishment of QCD, Regge behavior obtained by perturbatively resumming large logarithms in kinematic variables:

$$A_4 \sim s^{\alpha(t)}$$
 planar: $g^2 = \lambda/(4\pi)^2$,

$$\sim \sum_{n \ge 0} c_n^{(0)} g^{2n} \log^n s :$$
 Leading Logarithmic Approximation (LLA)
+ $\sum_{n \ge 1} c_n^{(1)} g^{2n} \log^{n-1} s :$ Next-to-LLA (NLLA) etc.

- Gives rise to effective particle with *t*-dependent spin: *reggeized gluon*, and bound states ^[Balitsky,Fadin,Kuraev,Lipatov]
- Utility: "Regge theory provides a very simple and economical description of all total cross sections" ^[Donnachie,Landshoff'92]
- Beauty: First instance of integrability in gauge theory! [Lipatov][Faddeev,Korchemsky]

For $1 + 2 \rightarrow 3 + \ldots + n$ scattering, defined (in COM frame) as

For $1 + 2 \rightarrow 3 + \ldots + n$ scattering, defined (in COM frame) as

with 2D transverse plane components held fixed,

$$\mathbf{p}_{i+1} \equiv p_{i+1}^1 + i p_{i+1}^2 \equiv \mathbf{x}_i - \mathbf{x}_{i-1}, \ i = 1, \dots n-2.$$

For $1 + 2 \rightarrow 3 + \ldots + n$ scattering, defined (in COM frame) as

with 2D transverse plane components held fixed,

$$\mathbf{p}_{i+1} \equiv p_{i+1}^1 + i p_{i+1}^2 \equiv \mathbf{x}_i - \mathbf{x}_{i-1}, \ i = 1, \dots n-2.$$

MSYM: Dual conformal symmetry $\rightarrow SL(2,\mathbb{C})$ (plus small)!

$$z_{i} \equiv \frac{(\mathbf{x}_{1} - \mathbf{x}_{i+3}) (\mathbf{x}_{i+2} - \mathbf{x}_{i+1})}{(\mathbf{x}_{1} - \mathbf{x}_{i+1}) (\mathbf{x}_{i+2} - \mathbf{x}_{i+3})}, \quad \tau_{i} \equiv \sqrt{u_{1i+3} u_{ni+2}} \to 0, \quad i = 1 \dots n - 5.$$

For $1 + 2 \rightarrow 3 + \ldots + n$ scattering, defined (in COM frame) as

with 2D transverse plane components held fixed,

$$\mathbf{p}_{i+1} \equiv p_{i+1}^1 + i p_{i+1}^2 \equiv \mathbf{x}_i - \mathbf{x}_{i-1}, \ i = 1, \dots n-2.$$

MSYM: Dual conformal symmetry $\rightarrow SL(2,\mathbb{C})$ (plus small)!

$$z_{i} \equiv \frac{(\mathbf{x}_{1} - \mathbf{x}_{i+3}) (\mathbf{x}_{i+2} - \mathbf{x}_{i+1})}{(\mathbf{x}_{1} - \mathbf{x}_{i+1}) (\mathbf{x}_{i+2} - \mathbf{x}_{i+3})}, \quad \tau_{i} \equiv \sqrt{u_{1i+3} u_{ni+2}} \to 0, \quad i = 1 \dots n - 5.$$

Euclidean region: $\mathcal{R}_n \rightarrow 1$. Here: analytically continue (2-Reggeon region)

$$u_{2,n-1} \to e^{-2\pi i} u_{2,n-1}$$

The six-particle amplitude in the multi-Regge limit

The six-particle amplitude in the multi-Regge limit

BFKL approach: Dispersion integral

[Bartels,Lipatov,Sabio Vera][Caron-Huot]

The six-particle amplitude in the multi-Regge limit

BFKL approach: Dispersion integral [Bartels,Lipatov,Sabio Vera][Caron-Huot]

$$\frac{\mathcal{W}_6}{2\pi i} = \sum_{n_1} \left(\frac{z_1}{z_1^*}\right)^{\frac{n_1}{2}} \int \frac{d\nu_1}{2\pi} \tilde{\Phi}_1 |z_1|^{2i\nu_1} e^{-L_1\omega_1} =$$

BFKL approach: Dispersion integral [Bartels,Lipatov,Sabio Vera][Caron-Huot]

$$\frac{\mathcal{W}_6}{2\pi i} = \sum_{n_1} \left(\frac{z_1}{z_1^*}\right)^{\frac{n_1}{2}} \int \frac{d\nu_1}{2\pi} \tilde{\Phi}_1 |z_1|^{2i\nu_1} e^{-L_1\omega_1} =$$

+ $\mathcal{W}_6 \equiv \mathcal{R}_6 e^{i \tilde{\delta}_6}$, with phase a contribution from BDS ansatz

BFKL approach: Dispersion integral [Bartels,Lipatov,Sabio Vera][Caron-Huot]

$$\frac{\mathcal{W}_6}{2\pi i} = \sum_{n_1} \left(\frac{z_1}{z_1^*}\right)^{\frac{n_1}{2}} \int \frac{d\nu_1}{2\pi} \tilde{\Phi}_1 |z_1|^{2i\nu_1} e^{-L_1\omega_1} =$$

- $\mathcal{W}_6 \equiv \mathcal{R}_6 e^{i \hat{\delta}_6}$, with phase a contribution from BDS ansatz
- ▶ v₁, n₁: Fourier-Mellin variables = SL(2, C) quantum numbers of bound state of two Reggerized gluons

BFKL approach: Dispersion integral [Bartels,Lipatov,Sabio Vera][Caron-Huot]

$$\frac{\mathcal{W}_6}{2\pi i} = \sum_{n_1} \left(\frac{z_1}{z_1^*}\right)^{\frac{n_1}{2}} \int \frac{d\nu_1}{2\pi} \tilde{\Phi}_1 |z_1|^{2i\nu_1} e^{-L_1\omega_1} =$$

- $\mathcal{W}_6 \equiv \mathcal{R}_6 e^{i \hat{\delta}_6}$, with phase a contribution from BDS ansatz
- ▶ v₁, n₁: Fourier-Mellin variables = SL(2, C) quantum numbers of bound state of two Reggerized gluons
- $\omega_1 \equiv \omega(\nu_1, n_1)$: (adjoint) BFKL eigenvalue = energy of this state

BFKL approach: Dispersion integral [Bartels,Lipatov,Sabio Vera][Caron-Huot]

$$\frac{\mathcal{W}_6}{2\pi i} = \sum_{n_1} \left(\frac{z_1}{z_1^*}\right)^{\frac{n_1}{2}} \int \frac{d\nu_1}{2\pi} \tilde{\Phi}_1 |z_1|^{2i\nu_1} e^{-L_1\omega_1} =$$

- $\mathcal{W}_6 \equiv \mathcal{R}_6 e^{i \tilde{\delta}_6}$, with phase a contribution from BDS ansatz
- ▶ v₁, n₁: Fourier-Mellin variables = SL(2, C) quantum numbers of bound state of two Reggerized gluons
- $\omega_1 \equiv \omega(\nu_1, n_1)$: (adjoint) BFKL eigenvalue = energy of this state
- $\tilde{\Phi}_1 \equiv \tilde{\Phi}(\nu_1, n_1) \equiv \chi_1 \bar{\chi}_1$: Product of impact factors

BFKL approach: Dispersion integral [Bartels,Lipatov,Sabio Vera][Caron-Huot]

$$\frac{\mathcal{W}_6}{2\pi i} = \sum_{n_1} \left(\frac{z_1}{z_1^*}\right)^{\frac{n_1}{2}} \int \frac{d\nu_1}{2\pi} \tilde{\Phi}_1 |z_1|^{2i\nu_1} e^{-L_1\omega_1} =$$

- $\mathcal{W}_6 \equiv \mathcal{R}_6 e^{i \hat{\delta}_6}$, with phase a contribution from BDS ansatz
- ▶ v₁, n₁: Fourier-Mellin variables = SL(2, C) quantum numbers of bound state of two Reggerized gluons
- $\omega_1 \equiv \omega(\nu_1, n_1)$: (adjoint) BFKL eigenvalue = energy of this state
- $\tilde{\Phi}_1 \equiv \tilde{\Phi}(\nu_1, n_1) \equiv \chi_1 \bar{\chi}_1$: Product of impact factors
- Kinematic dependence in z_i and $L_1 = \log \tau_1 + i\pi$

Direct computation very challenging beyond first few orders. However, progress via collinear limit.

Coll. Kinematics: $T \rightarrow 0$ in convenient choice of kin.variables F, T, S.

Coll. Kinematics: $T \rightarrow 0$ in convenient choice of kin.variables F, T, S.

Dynamics: Governed by integrable "flux tube" or $SL(2,\mathbb{R})$ spin chain,

Coll. Kinematics: $T \to 0$ in convenient choice of kin.variables F, T, S. Dynamics: Governed by integrable "flux tube" or $SL(2,\mathbb{R})$ spin chain,

[Alday, Gaiotto, Maldacena, Sever, Vieira]

$$\mathcal{W}_6^{\mathsf{coll}} = \sum_{a=1}^\infty (FT)^a \int \frac{du}{2\pi} \,\mu_a(u) S^{ip_a(u)} T^{\gamma_a(u)} =$$

where γ_a, p_a, μ_a excitation energy, momentum and integration measure known at finite coupling ^[Basso,Sever,Vieira]

Coll. Kinematics: $T \to 0$ in convenient choice of kin.variables F, T, S. Dynamics: Governed by integrable "flux tube" or $SL(2, \mathbb{R})$ spin chain,

[Alday, Gaiotto, Maldacena, Sever, Vieira]

$$\mathcal{W}_6^{\mathsf{coll}} = \sum_{a=1}^\infty (FT)^a \int \frac{du}{2\pi} \,\mu_a(u) S^{ip_a(u)} T^{\gamma_a(u)} =$$

where γ_a, p_a, μ_a excitation energy, momentum and integration measure known at finite coupling $^{\rm [Basso, Sever, Vieira]}$

Compare with MRK:
$$\frac{\mathcal{W}_6}{2\pi i} = \sum_{n_1} \left(\frac{z_1}{z_1^*}\right)^{\frac{n_1}{2}} \int \frac{d\nu_1}{2\pi} \tilde{\Phi}_1 |z_1|^{2i\nu_1} e^{-L_1\omega_1}$$

Coll. Kinematics: $T \to 0$ in convenient choice of kin.variables F, T, S. Dynamics: Governed by integrable "flux tube" or $SL(2,\mathbb{R})$ spin chain,

[Alday, Gaiotto, Maldacena, Sever, Vieira]

$$\mathcal{W}_6^{\mathsf{coll}} = \sum_{a=1}^\infty (FT)^a \int \frac{du}{2\pi} \,\mu_a(u) S^{ip_a(u)} T^{\gamma_a(u)} =$$

where γ_a, p_a, μ_a excitation energy, momentum and integration measure known at finite coupling ^[Basso,Sever,Vieira]

Compare with MRK:
$$\frac{\mathcal{W}_6}{2\pi i} = \sum_{n_1} \left(\frac{z_1}{z_1^*}\right)^{\frac{n_1}{2}} \int \frac{d\nu_1}{2\pi} \tilde{\Phi}_1 |z_1|^{2i\nu_1} e^{-L_1\omega_1}$$

Intriguing resemblance...

The two limits have overlapping domain of validity.

The two limits have overlapping domain of validity.

• Compute $\mathcal{W}_6^{\text{coll}}$ perturbatively, and promote overlap to full \mathcal{W}_6 from knowledge of space of functions ^[Drummond,GP]

The two limits have overlapping domain of validity.

- Compute $\mathcal{W}_6^{\text{coll}}$ perturbatively, and promote overlap to full \mathcal{W}_6 from knowledge of space of functions ^[Drummond,GP]
- ► Alternatively, analytic continuation C directly at the integrand level [Basso, Caron-Huot,Sever]

The two limits have overlapping domain of validity.

- Compute $\mathcal{W}_6^{\text{coll}}$ perturbatively, and promote overlap to full \mathcal{W}_6 from knowledge of space of functions ^[Drummond,GP]
- ► Alternatively, analytic continuation C directly at the integrand level [Basso, Caron-Huot,Sever]

Exact
$$(E_a, p_a) \xrightarrow{\mathcal{C}} (\omega, \nu), \quad \mu_a \, du \xrightarrow{\mathcal{C}} \tilde{\Phi} \, d\nu.$$

The two limits have overlapping domain of validity.

- Compute $\mathcal{W}_6^{\text{coll}}$ perturbatively, and promote overlap to full \mathcal{W}_6 from knowledge of space of functions ^[Drummond,GP]
- Alternatively, analytic continuation ${\cal C}$ directly at the integrand level $_{\rm [Basso, \ Caron-Huot, Sever]}$

Exact
$$(E_a, p_a) \xrightarrow{\mathcal{C}} (\omega, \nu), \quad \mu_a \, du \xrightarrow{\mathcal{C}} \tilde{\Phi} \, d\nu.$$

For example,

$$\omega(u,n) = -4g(\mathbb{M} \cdot \kappa)_{1}, \quad \mathbb{M} \equiv (1+\mathbb{K})^{-1},$$
$$\mathbb{K}_{ij} = 2j(-1)^{ij+j} \int_{0}^{\infty} \frac{dt}{t} \frac{J_{i}(2gt)J_{j}(2gt)}{e^{t}-1}, \quad i,j = 1,2,\dots \quad J_{i}(x) : \text{Bessel f}^{n}$$
$$\kappa_{j}(u,n) = -\int_{0}^{\infty} \frac{dt}{t} \frac{J_{j}(2gt)}{e^{t}-1} \left(\frac{1}{2} \left[e^{\frac{t(1+(-)^{j})}{2}} - (-)^{j}e^{\frac{t(1-(-)^{j})}{2}}\right] \cos(ut)e^{-\frac{nt}{2}} - J_{0}(2gt)\right).$$

For n = 7 at LLA, can generalize n = 6 BFKL approach.

[Bartels,Kormilitzin, Lipatov, Prygarin]

$$\mathcal{W}_{7}^{\mathsf{MRL}} = \prod_{i=1}^{2} \sum_{n_{i}} \left(\frac{z_{i}}{z_{i}^{*}}\right)^{\frac{n_{i}}{2}} \int \frac{d\nu_{i}}{2\pi} \times |z_{i}|^{2i\nu_{i}} e^{-L_{i}\omega_{i}} \tilde{\Phi}_{1} \tilde{C}_{12} \bar{\Phi}_{2} =$$

For n = 7 at LLA, can generalize n = 6 BFKL approach.

[Bartels,Kormilitzin, Lipatov, Prygarin]

New ingredient: Central emission vertex.

For n = 7 at LLA, can generalize n = 6 BFKL approach.

[Bartels,Kormilitzin, Lipatov, Prygarin]

New ingredient: Central emission vertex. At leading $\mathcal{O}(1/g^2)$ order,

$$\tilde{C}_{12}^{(0)} = \frac{\Gamma\left(1 - i\nu_1 - \frac{n_1}{2}\right)\Gamma\left(1 + i\nu_2 + \frac{n_2}{2}\right)\Gamma\left(i\nu_1 - i\nu_2 - \frac{n_1}{2} + \frac{n_2}{2}\right)}{\Gamma\left(i\nu_1 - \frac{n_1}{2}\right)\Gamma\left(-i\nu_2 + \frac{n_2}{2}\right)\Gamma\left(1 - i\nu_1 + i\nu_2 - \frac{n_1}{2} + \frac{n_2}{2}\right)}$$

For n = 7 at LLA, can generalize n = 6 BFKL approach.

[Bartels,Kormilitzin, Lipatov, Prygarin]

New ingredient: Central emission vertex. At leading $\mathcal{O}(1/g^2)$ order,

$$\tilde{C}_{12}^{(0)} = \frac{\Gamma\left(1 - i\nu_1 - \frac{n_1}{2}\right)\Gamma\left(1 + i\nu_2 + \frac{n_2}{2}\right)\Gamma\left(i\nu_1 - i\nu_2 - \frac{n_1}{2} + \frac{n_2}{2}\right)}{\Gamma\left(i\nu_1 - \frac{n_1}{2}\right)\Gamma\left(-i\nu_2 + \frac{n_2}{2}\right)\Gamma\left(1 - i\nu_1 + i\nu_2 - \frac{n_1}{2} + \frac{n_2}{2}\right)}$$

Beyond LLA however, contains unphysical divergences!

For n = 7 at LLA, can generalize n = 6 BFKL approach.

[Bartels,Kormilitzin, Lipatov, Prygarin]

New ingredient: Central emission vertex. At leading $\mathcal{O}(1/g^2)$ order,

$$\tilde{C}_{12}^{(0)} = \frac{\Gamma\left(1-i\nu_1-\frac{n_1}{2}\right)\Gamma\left(1+i\nu_2+\frac{n_2}{2}\right)\Gamma\left(i\nu_1-i\nu_2-\frac{n_1}{2}+\frac{n_2}{2}\right)}{\Gamma\left(i\nu_1-\frac{n_1}{2}\right)\Gamma\left(-i\nu_2+\frac{n_2}{2}\right)\Gamma\left(1-i\nu_1+i\nu_2-\frac{n_1}{2}+\frac{n_2}{2}\right)} \,.$$

Beyond LLA however, contains unphysical divergences! For $n_i = \nu_i = 0$, double pole $\Phi_i \rightarrow \nu_i^{-2}$ pinching integration contour.

Found finite-coupling regularization of dispersion integral: Exploit soft limits, ^[Del Duca,Druc,Drummond,Duhr,Dulat,Marzucca,GP,Verbeek'18]

Found finite-coupling regularization of dispersion integral: Exploit soft limits, ^[Del Duca,Druc,Drummond,Duhr,Dulat,Marzucca,GP,Verbeek'18]

Found finite-coupling regularization of dispersion integral: Exploit soft limits, ^[Del Duca,Druc,Drummond,Duhr,Dulat,Marzucca,GP,Verbeek'18]

These dictate location of poles on real axis, prescription around them, and imply *exact bootstrap conditions* for integrand building blocks,

Found finite-coupling regularization of dispersion integral: Exploit soft limits, ^[Del Duca,Druc,Drummond,Duhr,Dulat,Marzucca,GP,Verbeek'18]

These dictate location of poles on real axis, prescription around them, and imply *exact bootstrap conditions* for integrand building blocks, e.g

$$\omega_0(\pm \pi \Gamma) = 0, \quad \operatorname{Res}_{\nu=\pm \pi \Gamma} \left(\tilde{\Phi}(\nu, 0) \right) = \pm \frac{1}{2\pi},$$

$$\tilde{C}(\pi \Gamma, 0, \nu_2, n_2) = \tilde{C}(\nu_1, n_1, -\pi \Gamma, 0) = 2\pi i,$$

Found finite-coupling regularization of dispersion integral: Exploit soft limits, ^[Del Duca,Druc,Drummond,Duhr,Dulat,Marzucca,GP,Verbeek'18]

These dictate location of poles on real axis, prescription around them, and imply *exact bootstrap conditions* for integrand building blocks, e.g

$$\omega_0(\pm \pi \Gamma) = 0, \quad \operatorname{Res}_{\nu=\pm \pi \Gamma} \left(\tilde{\Phi}(\nu, 0) \right) = \pm \frac{1}{2\pi},$$
$$\tilde{C}(\pi \Gamma, 0, \nu_2, n_2) = \tilde{C}(\nu_1, n_1, -\pi \Gamma, 0) = 2\pi i,$$

For earlier work on n = 6, see also ^[Caron-Huot]

Only unknown quantity: central emission block C_{12} ,

$$\mathcal{W}_{7}^{\mathsf{MRL}} = \prod_{i=1}^{2} \sum_{n_{i}=-\infty}^{\infty} \left(\frac{z_{i}}{z_{i}^{*}}\right)^{\frac{n_{i}}{2}} \int \frac{d\nu_{i}}{2\pi} |z_{i}|^{2i\nu_{i}} e^{-L_{i}\omega_{i}} \tilde{\Phi}_{1}C_{12}\bar{\Phi}_{2} \,.$$

Only unknown quantity: central emission block C_{12} ,

$$\mathcal{W}_{7}^{\mathsf{MRL}} = \prod_{i=1}^{2} \sum_{n_{i}=-\infty}^{\infty} \left(\frac{z_{i}}{z_{i}^{*}}\right)^{\frac{n_{i}}{2}} \int \frac{d\nu_{i}}{2\pi} |z_{i}|^{2i\nu_{i}} e^{-L_{i}\omega_{i}} \tilde{\Phi}_{1} C_{12} \bar{\Phi}_{2} \,.$$

Compare with single-particle gluon OPE contribution,

Only unknown quantity: central emission block C_{12} ,

$$\mathcal{W}_{7}^{\mathsf{MRL}} = \prod_{i=1}^{2} \sum_{n_{i}=-\infty}^{\infty} \left(\frac{z_{i}}{z_{i}^{*}}\right)^{\frac{n_{i}}{2}} \int \frac{d\nu_{i}}{2\pi} |z_{i}|^{2i\nu_{i}} e^{-L_{i}\omega_{i}} \tilde{\Phi}_{1} C_{12} \bar{\Phi}_{2} \,.$$

Compare with single-particle gluon OPE contribution,

$$\mathcal{W}_{7[1]} \equiv \prod_{i=1}^{2} \sum_{n_{i}=1}^{\infty} (F_{i}T_{i})^{n_{i}} \int \frac{du_{i}}{2\pi} S_{i}^{ip_{i}} T_{i}^{\gamma_{i}} \mu_{1} P_{12} \mu_{2}.$$

where P_{12} is the gluon 'Pentagon transition'.

Only unknown quantity: central emission block C_{12} ,

$$\mathcal{W}_{7}^{\mathsf{MRL}} = \prod_{i=1}^{2} \sum_{n_{i}=-\infty}^{\infty} \left(\frac{z_{i}}{z_{i}^{*}}\right)^{\frac{n_{i}}{2}} \int \frac{d\nu_{i}}{2\pi} |z_{i}|^{2i\nu_{i}} e^{-L_{i}\omega_{i}} \tilde{\Phi}_{1} C_{12} \bar{\Phi}_{2} \,.$$

Compare with single-particle gluon OPE contribution,

$$\mathcal{W}_{7[1]} \equiv \prod_{i=1}^{2} \sum_{n_{i}=1}^{\infty} (F_{i}T_{i})^{n_{i}} \int \frac{du_{i}}{2\pi} S_{i}^{ip_{i}} T_{i}^{\gamma_{i}} \mu_{1} P_{12} \mu_{2}.$$

where P_{12} is the gluon 'Pentagon transition'.

Assuming analytic continuation $P_{12} \xrightarrow{\mathcal{C}} \tilde{C}_{12}$ exists, and imposing consistency with soft limits and 3-loop perturbative data:

Only unknown quantity: central emission block C_{12} ,

$$\mathcal{W}_{7}^{\mathsf{MRL}} = \prod_{i=1}^{2} \sum_{n_{i}=-\infty}^{\infty} \left(\frac{z_{i}}{z_{i}^{*}}\right)^{\frac{n_{i}}{2}} \int \frac{d\nu_{i}}{2\pi} |z_{i}|^{2i\nu_{i}} e^{-L_{i}\omega_{i}} \tilde{\Phi}_{1} C_{12} \bar{\Phi}_{2} \,.$$

Compare with single-particle gluon OPE contribution,

$$\mathcal{W}_{7[1]} \equiv \prod_{i=1}^{2} \sum_{n_{i}=1}^{\infty} (F_{i}T_{i})^{n_{i}} \int \frac{du_{i}}{2\pi} S_{i}^{ip_{i}} T_{i}^{\gamma_{i}} \mu_{1} P_{12} \mu_{2}.$$

where P_{12} is the gluon 'Pentagon transition'.

Assuming analytic continuation $P_{12} \xrightarrow{\mathcal{C}} \tilde{C}_{12}$ exists, and imposing consistency with soft limits and 3-loop perturbative data:

7-gluon amplitude (\tilde{C}_{12}) in MRL to all loops!

[Del Duca, Druc, Drummond, Duhr, Dulat, Marzucca, GP, Verbeek; PRL 124, 161602 (2020)]

$$\tilde{C}_{12} = \frac{\tilde{C}_{12}^{(0)}}{g^2} Z_{12} h_1 \check{h}_2 \exp(f_{12} - f_{\tilde{1}\tilde{2}} - if_{\tilde{1}2} + if_{1\tilde{2}} - A)$$

[Del Duca, Druc, Drummond, Duhr, Dulat, Marzucca, GP, Verbeek; PRL 124, 161602 (2020)]

$$\tilde{C}_{12} = \frac{\tilde{C}_{12}^{(0)}}{g^2} Z_{12} h_1 \check{h}_2 \exp(f_{12} - f_{\tilde{1}\tilde{2}} - if_{\tilde{1}2} + if_{1\tilde{2}} - A)$$

where $\tilde{C}_{12}^{(0)}$ the LO contribution, A known constant,

[Del Duca,Druc,Drummond,Duhr,Dulat,Marzucca,GP,Verbeek;PRL 124, 161602 (2020)]

$$\tilde{C}_{12} = \frac{\tilde{C}_{12}^{(0)}}{g^2} Z_{12} h_1 \check{h}_2 \exp(f_{12} - f_{\tilde{1}\tilde{2}} - if_{\tilde{1}2} + if_{1\tilde{2}} - A)$$

where $\tilde{C}_{12}^{(0)}$ the LO contribution, A known constant,

$$Z_{12} = \sqrt{\frac{(x_1^- x_2^- - g^2)(x_1^+ x_2^+ - g^2)}{(x_1^+ x_2^- - g^2)(x_1^- x_2^+ - g^2)}}, \ x_r^{\pm} = x(u_r \pm \frac{in_r}{2}), \ x(u_r) = \frac{1}{2}(u_r + \sqrt{u_r^2 - 4g^2}),$$

[Del Duca,Druc,Drummond,Duhr,Dulat,Marzucca,GP,Verbeek;PRL 124, 161602 (2020)]

$$\tilde{C}_{12} = \frac{\tilde{C}_{12}^{(0)}}{g^2} Z_{12} h_1 \check{h}_2 \exp(f_{12} - f_{\tilde{1}\tilde{2}} - if_{\tilde{1}2} + if_{1\tilde{2}} - A)$$

where $\tilde{C}_{12}^{(0)}$ the LO contribution, A known constant,

$$Z_{12} = \sqrt{\frac{(x_1^- x_2^- - g^2)(x_1^+ x_2^+ - g^2)}{(x_1^+ x_2^- - g^2)(x_1^- x_2^+ - g^2)}}, \ x_r^{\pm} = x(u_r \pm \frac{in_r}{2}), \ x(u_r) = \frac{1}{2}(u_r + \sqrt{u_r^2 - 4g^2}),$$

$$h_{1} = \sqrt{\frac{x^{+}x^{-}}{u_{1}^{2} + \frac{n_{1}^{2}}{4}}} e^{\frac{i\pi\omega_{1}}{2} + \pi(u_{1} - \nu_{1}) + i\int_{0}^{\infty} \frac{dt}{t} \frac{(J_{0}(2gt) - 1)(e^{t} + 1)}{(e^{t} - 1)} \sin(u_{1}t)e^{-\frac{n_{1}}{2}t}}, \check{h}(u) = h(-u)$$
Central Emission Block to All Loops

[Del Duca, Druc, Drummond, Duhr, Dulat, Marzucca, GP, Verbeek; PRL 124, 161602 (2020)]

$$\tilde{C}_{12} = \frac{\tilde{C}_{12}^{(0)}}{g^2} Z_{12} h_1 \check{h}_2 \exp(f_{12} - f_{\tilde{1}\tilde{2}} - if_{\tilde{1}2} + if_{1\tilde{2}} - A)$$

where $\tilde{C}_{12}^{(0)}$ the LO contribution, A known constant,

$$Z_{12} = \sqrt{\frac{(x_1^- x_2^- - g^2)(x_1^+ x_2^+ - g^2)}{(x_1^+ x_2^- - g^2)(x_1^- x_2^+ - g^2)}}, \ x_r^{\pm} = x(u_r \pm \frac{in_r}{2}), \ x(u_r) = \frac{1}{2}(u_r + \sqrt{u_r^2 - 4g^2}),$$

$$h_{1} = \sqrt{\frac{x^{+}x^{-}}{u_{1}^{2} + \frac{n_{1}^{2}}{4}}} e^{\frac{i\pi\omega_{1}}{2} + \pi(u_{1} - \nu_{1}) + i\int_{0}^{\infty} \frac{dt}{t} \frac{(J_{0}(2gt) - 1)(e^{t} + 1)}{(e^{t} - 1)} \sin(u_{1}t)e^{-\frac{n_{1}}{2}t}}, \check{h}(u) = h(-u)$$

$$f_{rs} = 4\kappa(u_r, n_r) \cdot \mathbb{Q} \cdot \mathbb{M} \cdot \kappa(u_s, n_s), \text{ with } \mathbb{Q}_{ij} = \delta_{ij}(-1)^{i+1}i,$$

whereas the infinite-dimensional matrix \mathbb{M} and vector κ were defined earlier (with similar definitions for $\kappa \to \tilde{\kappa}$, $f_{rs} \to f_{\tilde{r}s}$)

Amplitudes at Any Multiplicity in the Multi-Regge Limit

Our regularization works for any number of gluons n, yielding

$$\mathcal{W}_{n}^{\mathsf{MRL}} = \prod_{i=1}^{n-5} \sum_{n_{i}=\infty}^{\infty} \left(\frac{z_{i}}{z_{i}^{*}}\right)^{\frac{n_{i}}{2}} \int \frac{d\nu_{i}}{2\pi} |z_{i}|^{2i\nu_{i}} A_{n} \equiv \mathcal{F}[A_{n}]$$

as a well-defined (n-5)-fold Fourier-Mellin (FM) transform \mathcal{F} .

Amplitudes at Any Multiplicity in the Multi-Regge Limit

Our regularization works for any number of gluons n, yielding

$$\mathcal{W}_{n}^{\mathsf{MRL}} = \prod_{i=1}^{n-5} \sum_{n_{i}=\infty}^{\infty} \left(\frac{z_{i}}{z_{i}^{*}}\right)^{\frac{n_{i}}{2}} \int \frac{d\nu_{i}}{2\pi} |z_{i}|^{2i\nu_{i}} A_{n} \equiv \mathcal{F}[A_{n}]$$

as a well-defined (n-5)-fold Fourier-Mellin (FM) transform \mathcal{F} .

Amplitudes at Any Multiplicity in the Multi-Regge Limit

Our regularization works for any number of gluons n, yielding

$$\mathcal{W}_{n}^{\mathsf{MRL}} = \prod_{i=1}^{n-5} \sum_{n_{i}=\infty}^{\infty} \left(\frac{z_{i}}{z_{i}^{*}}\right)^{\frac{n_{i}}{2}} \int \frac{d\nu_{i}}{2\pi} |z_{i}|^{2i\nu_{i}} A_{n} \equiv \mathcal{F}[A_{n}]$$

as a well-defined (n-5)-fold Fourier-Mellin (FM) transform \mathcal{F} .

All-order amplitudes in MRL at any multiplicity!

[Del Duca,Druc,Drummond,Duhr,Dulat,Marzucca,GP,Verbeek; PRL 124 (2020)]

Crucially relies in understanding relevant class of functions in MRK:

 $[Del \ Duca, Druc, Drummond, Duhr, Dulat, Marzucca, GP, Verbeek'16] [Dixon, Duhr, Pennington]$

Crucially relies in understanding relevant class of functions in MRK: [Del Duca,Druc,Drummond,Duhr,Dulat,Marzucca,GP,Verbeek'16] [Dixon,Duhr,Pennington]

Single-valued combinations of multiple polylogarithms (SVMPLs),

$$G(a_1, \dots, a_k; z) \equiv \int_0^z \frac{dt_1}{t_1 - a_1} G(a_2, \dots, a_k; t_1), \quad G(; z) = 1,$$

k: weight or transcendentality,

with their complex conjugates, such that all branch cuts cancel. [F.Brown]

Crucially relies in understanding relevant class of functions in MRK: [Del Duca,Druc,Drummond,Duhr,Dulat,Marzucca,GP,Verbeek'16][Dixon,Duhr,Pennington]

Single-valued combinations of multiple polylogarithms (SVMPLs),

$$G(a_1, \dots, a_k; z) \equiv \int_0^z \frac{dt_1}{t_1 - a_1} G(a_2, \dots, a_k; t_1), \quad G(; z) = 1,$$

k: weight or transcendentality,

with their complex conjugates, such that all branch cuts cancel. [F.Brown]

Systematically expanding integrand at weak coupling, and applying Stokes' theorem: prove principle of uniform & maximal transcendentality in MRK [Kotikov,Lipatov(Onishchenko,Velizhanin)]

Crucially relies in understanding relevant class of functions in MRK: [Del Duca,Druc,Drummond,Duhr,Dulat,Marzucca,GP,Verbeek'16][Dixon,Duhr,Pennington]

Single-valued combinations of multiple polylogarithms (SVMPLs),

$$G(a_1, \dots, a_k; z) \equiv \int_0^z \frac{dt_1}{t_1 - a_1} G(a_2, \dots, a_k; t_1), \quad G(; z) = 1,$$

k: weight or transcendentality,

with their complex conjugates, such that all branch cuts cancel. [F.Brown]

Systematically expanding integrand at weak coupling, and applying Stokes' theorem: prove principle of uniform & maximal transcendentality in MRK [Kotikov,Lipatov(Onishchenko,Velizhanin)]

An L-loop gluon amplitude in multi-Regge kinematics in planar MSYM has uniform weight 2L, for any helicity configuration and any number of legs.

• In reality DCI broken by divergences, (IR in massless N = 4/UV in cusped WL). Breaking controlled by conformal Ward identity.

[Drummond,Henn,Korchemsky,Sokatchev]

- In reality DCI broken by divergences, (IR in massless N = 4/UV in cusped WL). Breaking controlled by conformal Ward identity.
 [Drummond,Henn,Korchemsky,Sokatchev]
- For n = 4, 5, latter uniquely determines dimensionally regularized A_n/W_n . Given by Bern-Dixon-Smirnov-like ansatz $A_n^{\text{BDS-like}}$, essentially exponentiated 1-loop amplitude.

- In reality DCI broken by divergences, (IR in massless N = 4/UV in cusped WL). Breaking controlled by conformal Ward identity.
 [Drummond,Henn,Korchemsky,Sokatchev]
- For n = 4, 5, latter uniquely determines dimensionally regularized A_n/W_n . Given by Bern-Dixon-Smirnov-like ansatz $A_n^{\text{BDS-like}}$, essentially exponentiated 1-loop amplitude.

• For $n \ge 6$,

$$\left[A_n = A_n^{\text{BDS-like}} \mathcal{E}_n(u_1, \dots, u_m)\right]$$

where \mathcal{E}_n is a conformally invariant function of cross ratios u_i .

- In reality DCI broken by divergences, (IR in massless N = 4/UV in cusped WL). Breaking controlled by conformal Ward identity.
 [Drummond,Henn,Korchemsky,Sokatchev]
- For n = 4, 5, latter uniquely determines dimensionally regularized A_n/W_n . Given by Bern-Dixon-Smirnov-like ansatz $A_n^{\text{BDS-like}}$, essentially exponentiated 1-loop amplitude.

• For $n \ge 6$,

$$\left[A_n = A_n^{\text{BDS-like}} \mathcal{E}_n(u_1, \dots, u_m)\right]$$

where \mathcal{E}_n is a conformally invariant function of cross ratios u_i .

e.g.
$$n = 6$$
: $u_1 = \frac{x_{46}^2 x_{31}^2}{x_{36}^2 x_{41}^2} = x_5 \frac{x_1}{x_4} x_3 + \text{cyclic}$

- In reality DCI broken by divergences, (IR in massless N = 4/UV in cusped WL). Breaking controlled by conformal Ward identity.
 [Drummond,Henn,Korchemsky,Sokatchev]
- For n = 4, 5, latter uniquely determines dimensionally regularized A_n/W_n . Given by Bern-Dixon-Smirnov-like ansatz $A_n^{\text{BDS-like}}$, essentially exponentiated 1-loop amplitude.

• For $n \ge 6$,

$$A_n = A_n^{\text{BDS-like}} \mathcal{E}_n(u_1, \dots, u_m)$$

where \mathcal{E}_n is a conformally invariant function of cross ratios u_i .

e.g.
$$n = 6$$
: $u_1 = \frac{x_{46}^2 x_{31}^2}{x_{36}^2 x_{41}^2} = x_5 \frac{x_1}{x_4} x_3^2 + \text{cyclic}$

• In general, # of independent u_i : m = 4n - n - 15 = 3n - 15

Six-particle BDS(-like) Ansatz

[Bern,Dixon,Smirnov; Alday,Maldacena]

$$A_6^{\text{BDS-like}} = \exp\left[\sum_{L=1}^{\infty} (g^2)^L \left(f^{(L)}(\epsilon)\hat{M}_6(L\epsilon) + C^{(L)}\right)\right],$$

where

$$f(\epsilon) = \sum_{L=1}^{\infty} (g^2)^L f^{(L)}(\epsilon) = \frac{1}{4} \Gamma_{\text{cusp}} + \mathcal{O}(\epsilon).$$

and

$$\begin{split} \hat{M}_{6}(\epsilon) = & (4\pi e^{-\gamma_{E}})^{\epsilon} \sum_{i=1}^{6} \left[-\frac{1}{\epsilon^{2}} \left(1 + \epsilon \ln\left(\frac{\mu^{2}}{-s_{i,i+1}}\right) + \frac{\epsilon^{2}}{2} \ln^{2}\left(\frac{\mu^{2}}{-s_{i,i+1}}\right) \right) \\ & + \frac{1}{2} \ln^{2}\left(\frac{s_{i,i+1}}{s_{i+1,i+2}}\right) - \frac{1}{4} \ln^{2}\left(\frac{s_{i,i+1}}{s_{i+3,i+4}}\right) + \frac{3}{2}\zeta_{2} \right] + \mathcal{O}(\epsilon) \,, \end{split}$$

Relation to original, BDS ansatz:

$$A_6^{\text{BDS}} = A_6^{\text{BDS-like}} e^{\frac{\Gamma_{\text{cusp}}}{4} \mathcal{E}_6^{(1)}}, \quad \mathcal{E}_6^{(1)} = \sum_{i=1}^3 \text{Li}_2 \left(1 - \frac{1}{u_i}\right)$$

Special Conformal Ward Identity

[Drummond,Henn,Korchemsky,Sokatchev]

$$\begin{split} \mathbb{K}^{\nu} \ln W_n &= \sum_{i=1}^n (2x_i^{\nu} x_i \cdot \partial_i - x_i^2 \partial_i^{\nu}) \ln W_n \\ &= -\sum_{l \ge 1} g^{2l} \left(\frac{\Gamma_{\text{cusp}}^{(l)}}{l\epsilon} + \Gamma^{(l)} \right) \sum_{i=1}^n \left(-x_{i-1,i+1}^2 \mu^2 \right)^{l\epsilon} x_i^{\nu} + O(\epsilon), \end{split}$$

 $\Gamma:$ collinear anomalous dimension

▶ Form null square (OPSF), by connecting two non-intersecting edges.

- ▶ Form null square (OPSF), by connecting two non-intersecting edges.
- Put at origin, spacelike and null infinity in (x^0, x^1) by conformal transf. Invariant under dilatations D, boosts M_{01} , M_{23} rotations.

- ▶ Form null square (OPSF), by connecting two non-intersecting edges.
- Put at origin, spacelike and null infinity in (x^0, x^1) by conformal transf. Invariant under dilatations D, boosts M_{01} , M_{23} rotations.
- ▶ Collinear limit: Act with $e^{-\tau(D-M_{01})}$ on A and B, take $\tau \to \infty$. Parametrize kinematics by group coordinates τ, σ, ϕ .

- ▶ Form null square (OPSF), by connecting two non-intersecting edges.
- Put at origin, spacelike and null infinity in (x^0, x^1) by conformal transf. Invariant under dilatations D, boosts M_{01} , M_{23} rotations.
- ▶ Collinear limit: Act with $e^{-\tau(D-M_{01})}$ on A and B, take $\tau \to \infty$. Parametrize kinematics by group coordinates τ, σ, ϕ .

$$u_{2} = \frac{1}{e^{2\tau} + 1}, \quad u_{1} = e^{2\tau + 2\sigma} u_{2} u_{3},$$
$$u_{3} = \frac{1}{1 + e^{2\sigma} + 2e^{\sigma - \tau} \cosh \varphi + e^{-2\tau}}.$$

• Think of (PO), (SF) as color-electric flux tube sourced by $q\bar{q}$.

- Think of (PO), (SF) as color-electric flux tube sourced by $q\bar{q}$.
- Flux tube vacuum=strict limit, and excitations ψ_i =insertions of gluon, scalar, fermion fields of theory on (OF).

- Think of (PO), (SF) as color-electric flux tube sourced by $q\bar{q}$.
- Flux tube vacuum=strict limit, and excitations ψ_i =insertions of gluon, scalar, fermion fields of theory on (OF).

Schematically, decompose Wilson loop as

$$\mathcal{W} = \sum_{\psi_i} e^{-E_i \tau + i p_i \sigma + a_i \phi} \mathcal{P}(0|\psi_i) \mathcal{P}(\psi_i|0)$$

- Think of (PO), (SF) as color-electric flux tube sourced by $q\bar{q}$.
- Flux tube vacuum=strict limit, and excitations ψ_i =insertions of gluon, scalar, fermion fields of theory on (OF).

Schematically, decompose Wilson loop as

$$\mathcal{W} = \sum_{\psi_i} e^{-E_i \tau + ip_i \sigma + a_i \phi} \mathcal{P}(0|\psi_i) \mathcal{P}(\psi_i|0)$$

Propagation of square eigenstates

- Think of (PO), (SF) as color-electric flux tube sourced by $q\bar{q}$.
- Flux tube vacuum=strict limit, and excitations ψ_i =insertions of gluon, scalar, fermion fields of theory on (OF).

Schematically, decompose Wilson loop as

$$\mathcal{W} = \sum_{\psi_i} e^{-E_i \tau + ip_i \sigma + a_i \phi} \mathcal{P}(0|\psi_i) \mathcal{P}(\psi_i|0)$$

- Propagation of square eigenstates
- Transition between squares

- Think of (PO), (SF) as color-electric flux tube sourced by $q\bar{q}$.
- Flux tube vacuum=strict limit, and excitations ψ_i =insertions of gluon, scalar, fermion fields of theory on (OF).

Schematically, decompose Wilson loop as

$$\mathcal{W} = \sum_{\psi_i} e^{-E_i \tau + ip_i \sigma + a_i \phi} \mathcal{P}(0|\psi_i) \mathcal{P}(\psi_i|0)$$

- Propagation of square eigenstates
- Transition between squares

 $\Rightarrow WL \text{ 'Operator Product Expansion' (OPE)}, \\ \sim 4\text{-pt correlator }^{[Alday,Gaiotto,Maldacena,Sever,Vieira]}$

- Think of (PO), (SF) as color-electric flux tube sourced by $q\bar{q}$.
- Flux tube vacuum=strict limit, and excitations ψ_i =insertions of gluon, scalar, fermion fields of theory on (OF).

Schematically, decompose Wilson loop as

$$\mathcal{W} = \sum_{\psi_i} e^{-E_i \tau + ip_i \sigma + a_i \phi} \mathcal{P}(0|\psi_i) \mathcal{P}(\psi_i|0)$$

- Propagation of square eigenstates
- Transition between squares
- $\Rightarrow WL \text{ 'Operator Product Expansion' (OPE)}, \\ \sim 4\text{-pt correlator }^{[Alday,Gaiotto,Maldacena,Sever,Vieira]}$

MSYM: ψ_i mapped to excitations of integrable spin chain \Rightarrow exact E, \mathcal{P} [Basso,Sever,Vieira]

$$\mathcal{W}_{6[1]} = \sum_{l=1}^{\infty} g^{2l} \mathcal{W}_{6[1]}^{(l)} = \sum_{a=1}^{\infty} \int \frac{du}{2\pi} \mu_a(u) e^{-E_a(u)\tau + p_a(u)\sigma + a\phi} ,$$

$$\mathcal{W}_{6[1]} = \sum_{l=1}^{\infty} g^{2l} \mathcal{W}_{6[1]}^{(l)} = \sum_{a=1}^{\infty} \int \frac{du}{2\pi} \mu_a(u) e^{-E_a(u)\tau + p_a(u)\sigma + a\phi} ,$$

$$\mathcal{W}_{6[1]} = \sum_{l=1}^{\infty} g^{2l} \mathcal{W}_{6[1]}^{(l)} = \sum_{a=1}^{\infty} \int \frac{du}{2\pi} \mu_a(u) e^{-E_a(u)\tau + p_a(u)\sigma + a\phi},$$

Single sum + Fourier integral to do, but...

$$\mathcal{W}_{6[1]} = \sum_{l=1}^{\infty} g^{2l} \mathcal{W}_{6[1]}^{(l)} = \sum_{a=1}^{\infty} \int \frac{du}{2\pi} \mu_a(u) e^{-E_a(u)\tau + p_a(u)\sigma + a\phi},$$

Single sum + Fourier integral to do, but...

$$\begin{split} E_a(u) &= |a| + 4g \left[\mathbb{Q} \cdot \mathbb{M} \cdot \kappa(a, u) \right]_1, \quad p_a(u) = 2u - 4g \left[\mathbb{Q} \cdot \mathbb{M} \cdot \tilde{\kappa}(a, u) \right]_1, \\ \mathbb{Q}_{ij} &= \delta_{ij} (-1)^{i+1} i, \quad \mathbb{M} \equiv (1 + \mathbb{K})^{-1}, \\ \kappa_j(a, u) &\equiv \int_0^\infty \frac{dt}{t} \frac{J_j(2gt) (J_0(2gt) - \cos(ut) \left[e^{t/2} \right]^{(-1)^{j-|a|+1}})}{e^t - 1} \\ \tilde{\kappa}_j(a, u) &\equiv \int_0^\infty \frac{dt}{t} (-1)^{j+1} \frac{J_j(2gt) \sin(ut) \left[e^{t/2} \right]^{(-1)^{(j+1)} - |a| + 1}}{e^t - 1} \\ \mu_a(u) &\equiv F_a(u) e^{\tilde{f}(a, u) - f(a, u)}, \quad f(a, u) = 2\kappa(a, u) \cdot \mathbb{Q} \cdot \mathbb{M} \cdot \kappa(a, u), \\ \kappa &\to \tilde{\kappa} : f \to \tilde{f} \end{split}$$

$$\begin{split} \mathcal{W}_{6[1]} &= \sum_{l=1}^{\infty} g^{2l} \mathcal{W}_{6[1]}^{(l)} = \sum_{a=1}^{\infty} \int \frac{du}{2\pi} \,\mu_{a}(u) e^{-E_{a}(u)\tau + p_{a}(u)\sigma + a\phi} \,, \\ E_{a}(u) &= |a| + 4g \, \left[\mathbb{Q} \cdot \mathbb{M} \cdot \kappa(a, u) \right]_{1} \,, \quad p_{a}(u) = 2u - 4g \, \left[\mathbb{Q} \cdot \mathbb{M} \cdot \tilde{\kappa}(a, u) \right]_{1} \,, \\ \mathbb{Q}_{ij} &= \delta_{ij}(-1)^{i+1}i \,, \quad \mathbb{M} \equiv (1 + \mathbb{K})^{-1} \,, \\ \kappa_{j}(a, u) &\equiv \int_{0}^{\infty} \frac{dt}{t} \frac{J_{j}(2gt)(J_{0}(2gt) - \cos(ut) \left[e^{t/2} \right]^{(-1)^{j} - |a| + 1})}{e^{t} - 1} \\ \tilde{\kappa}_{j}(a, u) &\equiv \int_{0}^{\infty} \frac{dt}{t} (-1)^{j+1} \frac{J_{j}(2gt) \sin(ut) \left[e^{t/2} \right]^{(-1)^{(j+1)} - |a| + 1}}{e^{t} - 1} \,. \\ \mu_{a}(u) &\equiv F_{a}(u) e^{\tilde{f}(a, u) - f(a, u)} \,, \quad f(a, u) = 2\kappa(a, u) \cdot \mathbb{Q} \cdot \mathbb{M} \cdot \kappa(a, u) \,, \\ \kappa \to \tilde{\kappa} : f \to \tilde{f} \end{split}$$

$$\mathcal{W}_{6[1]} = \sum_{l=1}^{\infty} g^{2l} \mathcal{W}_{6[1]}^{(l)} = \sum_{a=1}^{\infty} \int \frac{du}{2\pi} \mu_a(u) e^{-E_a(u)\tau + p_a(u)\sigma + a\phi} \, ,$$

- 1. Evaluated for a = 1, 2, proved space of functions they span to all loops [GP'13][GP'14]
- 2. Perturbatively resummed $\forall a$. [Drummond,GP]