Grafeno: a física na ponta de um lápis?

Departamento de Física, UFMG

Instituto Nacional de Ciência e Tecnologia em Nanomateriais de Carbono

TECNOLOGIA EM

O grafeno é uma folha de grafite de espessura atômica

O **Grafite** é formado por camadas de átomos de carbono dispostos numa estrutura hexagonal

O grafeno é uma única camada atômica formada por átomos de carbono

Imagem de microscopia eletrônica de alta resolução

Materiais de carbono

Diamante

Grafite

Mecânicas: o grafite é o material mais rígido e o diamante é o mais duro.

Térmicas: o diamante e o grafite têm a maior condutividade térmica, e apresentam o mais alto ponto de fusão.

Elétricas: o diamante é isolante e o grafite é condutor de eletricidade

Nobelprize.org

The Official Web Site of the Nobel Prize

The Nobel Prize in Physics 2010 Andre Geim, Konstantin Novoselov

Photo: Sergeom, Wikimedia Commons Andre Geim

Photo: University of Manchester, UK Konstantin Novoselov

Nanotubo de Carbono

Sumio lijima, *Nature*, 354, 56 (1991)

Grafeno enrolado na forma de um cilindro com diâmetro médio de 1 nm.

Os nanotubos podem ser metálicos ou semicondutores dependendo unicamente de como a folha de grafeno é enrolada.

Nanotubos de carbono (nanotubos de grafeno)

O grafeno é um material bi-dimensional

- Não tem volume
- Todos os átomos estão na superfície

1 g de grafeno tem a área de 1300 m²

- Misturas muito homogêneas
- Armanenamento de gases e cargas
- Sensores de gases, químicos e biológicos

Grafeno: fatos e mitos

25/07/19 10:46

MATERIALS SCIENCE

502 | NATURE | VOL 562 | 25 OCTOBER 2018

The war on source frame graphene

The material graphene has a vast number of potential applications — but a survey of commercially available graphene samples reveals that research could be undermined by the poor quality of the available material.

Solution in fight against fake graphene

Date:

November 13, 2018 Source: National University of Singapore

Summary:

onature

A new study has uncovered a major problem - a lack of graphene production standards has led to many cases of poor quality products from suppliers. Such practices can impede the progress of research that depend fundamentally on the use of high-quality graphene.

(C)

Page 2 of 8

Beware the fake graphene

(Nanowerk Spotlight) Peter Bøggild over at DTU just published an interesting opinion piece in Nature titled "The war on fake graphene".

The piece refers to a paper published in Advanced Materials ("The Worldwide Graphene Flake Production") that studied graphene purchased from 60 producers around the world.

Como produzir o grafeno?

Grafeno: esfoliação mecânica de grafite

Novoselov e Geim, 2004

Grafeno: esfoliação química de grafite

Esfoliação química

Tensão de cisalhamento

Produção de grafeno por deposição química da fase vapor (CVD)

Produção de nanotubos de carbono na UFMG 2000

Prof. Luiz Orlando Ladeira Produção de nanotubos por arco elétrico.

2003

Produção de nanotubos por CVD.

2017

Para que serve o grafeno?

Aplicações

- **Eletrônicas**: Alta mobilidade eletrônica, baixo ruido, frequências de 100 GHz, sensores, eletrônica analógica
- **Ópticas**: filmes condutores transparentes, absorvedores saturaveis
- **Mecânicas**: materiais compósitos rígidos e resistentes, NEMS sensores de pressão
- **Térmicas**: aumento da condutividade térmica de materiais compósitos
- Energia: supercapacitores, baterias

Nanocompósitos: mistura de grafeno ou nanotubos com materiais convencionais (polímeros, cerâmicas, etc.) propriedades mecânicas, térmicas, eletricas, etc.

	Aço	Grafeno
E(GPa)	200	1000
T(GPa)	0.4	130

Grafeno em super e ultra capacitores

Ultracapacitors are:

- A 100-year-old technology, enhanced by modern materials
- Based on polarization of an electrolyte, high surface area electrodes and extremely small charge separation
- Known as Electrochemical Double Layer Capacitors and Supercapacitors

Os elétrons no grafeno

Bandas de energia dos eletrons no grafeno

Graphene films by the roll - Plenty of Room Blog | Nature Publishing Group Cada camada de grafeno absorve 2,3% da luz

$$\pi a \approx 2.3\%$$

$$\alpha = \frac{e^2}{\hbar c} = \frac{1}{137}$$

Constante de estrutura fina

Eletrodos condutores transparentes

Sensores de gases de grafeno

Rodrigo G. Lacerda e colaboradores (UFMG)

Equação de Dirac: partícula spin 1/2

$$\begin{bmatrix} mc^2 & 0 & c\hbar k_z & c\hbar (k_x - ik_y) \\ 0 & mc^2 & c\hbar (k_x + ik_y) & -c\hbar k_z \\ c\hbar k_z & c\hbar (k_x - ik_y) & mc^2 & 0 \\ c\hbar (k_x + ik_y) & -c\hbar k_z & 0 & mc^2 \end{bmatrix} \begin{pmatrix} \Psi \\ \overline{\Psi} \\ \Phi \\ \overline{\Phi} \\ \overline{\Phi} \end{pmatrix} = E \begin{pmatrix} \Psi \\ \overline{\Psi} \\ \Phi \\ \overline{\Phi} \\ \overline{\Phi} \end{pmatrix}$$

$$E = \pm \sqrt{m^2 c^4} + \hbar^2 k^2 c^2$$

Equação de Dirac: partícula spin 1/2

$$\begin{bmatrix} 0 & 0 & c\hbar(k_x - ik_y) \\ 0 & 0 & c\hbar(k_x + ik_y) & 0 \\ 0 & c\hbar(k_x - ik_y) & 0 & 0 \\ c\hbar(k_x + ik_y) & 0 & 0 & 0 \end{bmatrix} \begin{pmatrix} \Psi \\ \overline{\Psi} \\ \Phi \\ \overline{\Phi} \\ \overline{\Phi} \end{pmatrix} = E \begin{pmatrix} \Psi \\ \overline{\Psi} \\ \Phi \\ \overline{\Phi} \\ \overline{\Phi} \end{pmatrix}$$

 $E = \pm c \hbar k$

Monocamada de grafeno

$$\begin{bmatrix} 0 & 0 & v_F \hbar(k_x - ik_y) \\ 0 & 0 & v_F \hbar(k_x + ik_y) & 0 \\ 0 & v_F \hbar(k_x - ik_y) & 0 & 0 \\ v_F \hbar(k_x + ik_y) & 0 & 0 & 0 \end{bmatrix} \begin{pmatrix} \Psi_A^K \\ \Psi_B^K \\ \Psi_A^K \\ \Psi_B^{K'} \\ \Psi_B^{K'} \\ \Psi_B^{K'} \end{pmatrix} = E \begin{pmatrix} \Psi_A^K \\ \Psi_B^K \\ \Psi_B^{K'} \\ \Psi_B^{K'} \\ \Psi_B^{K'} \end{pmatrix}$$

$$E = \pm v_F \hbar k$$

Time inversion symmetry

Dispositivos eletrônicos de grafeno

Novoselov et al, Science **306**, 666 (2004)

Bicamada de grafeno

$$H = \begin{pmatrix} 0 & -\frac{\hbar^2}{2m} (k_x - ik_y)^2 \\ -\frac{\hbar^2}{2m} (k_x + ik_y)^2 & 0 \end{pmatrix} E$$

Bicamadas de grafeno rodadas (Twisted bilayer graphene)

Supercondutvidade em bicamadas de grafeno rodadas de um ângulo mágico

P. Jarillo-Herrero

Nature volume 556, pages43-50(2018)

Previsão de receita para grafeno nos próximos 10 anos

Other

- Research
- Transparent conductive films
- Sensors and logic
- Inks, adhesives and coatings
- Energy storage and supercapacitors
 Composites

Source: IDTechEx

A curva da indústria do Grafeno e dos nanotubos

Source: IDTechEx

- (31) 3409-7387
- 🔀 contato@ctnano.org
- ctnano.org

QUEM SOMOS

Marcos Pimenta Departamento de Física

Glaura Goulart Silva Departamento de Química

CT EM NÚMEROS

R\$42,8 milhões captados

Luiz Orlando Ladeira José Marcio Calixto pepartamento de Física Escola de Engenharia

Ary Corréa Junior instituto de ciêncios sielógicas

۲

CTNANO

André Ferlauto Departamento de Física

CENTRO DE

E GRAFENO

UFMG TECNOLOGIA EM NANOMATERIAIS

formações de +"2"

área

Rodrigo Gribel Departamento de Físico

Hallen Daniel Departamento de Química

......

Rodrigo Lavall Departamento de Guímica

CTNANO - FRENTES DE ATUAÇÃO

CTNANO

TN ANO

Laboratório de Síntese de Nanomateriais - Nanotubos

Laboratório de Síntese de Nanomateriais - Grafeno

Laboratório de Química

Laboratório de Polímeros

SEGURANÇA, MEIO AMBIENTE E SAÚDE

Estudos de nanoecotoxicologia, Monitoramento da dispersão de nanomateriais, Desenvolvimento de protocolos para uso de nanomateriais, Análise do ciclo de vida dos produtos.

Aplicações

& Benefícios

- Gestão de risco no desenvolvimento de produtos utilizando nanomateriais;
- Garantir a segurança dos colaboradores ao atuar com nanomateriais;
- Manter o Centro atualizado em relação às melhores práticas de segurança utilizadas no mundo;
- Prestação de serviços para diversos setores industriais.

CARACTERIZAÇÃO E METROLOGIA

Análises metrológicas de nanomateriais: caracterizações espectroscópicas (Raman, FTIR, UV/VIS), térmicas (TG, DSC), mecânicas, elétricas, reológicas (DMA), Morfológicas (AFM, MEV), dentre outras.

Aplicações

& Benefícios

Atuação

- Garantir o controle de qualidade dos materiais e a confiabilidade dos resultados;
- Metrologia de todas as pesquisas realizadas no CTNano;
- Prestação de serviços para diversos setores industriais.

Materials in reduced dimensions behave vastly distinct from their bulk coursespecially when they come to few-atom-thick, and trigger great interests for the second states of the

Dicalcogenetos de metais de transição MX₂

MoS₂ (molibdenita) bi-dimensional e semicondutor

 $\begin{array}{l} MoS_2, WS_{2,}\\ MoSe_2, WSe_2,\\ MoTe_2, TaS_2,\\ NbS_2, TiS_2, etc \end{array}$

Hetero-estruturas de materiais bi-dimensionais

A. K. Geim and I Grigorieva, Nature 499, 419 (2013)

O Brasil é um país com muitos recursos naturais. Há espaço para competirmos no mercado de grafeno? Os melhores recursos de qualquer país são as pessoas. Há muitos cientistas bons no Brasil e isso é o importante. Atualmente vemos a guerra por talentos, e não por recursos naturais. Os talentos precisam ser valorizados. É bom ter acesso ao grafeno, mas a ciência está bastante avançada no Brasil e isso é o que importa.

K. Novoselov

Transferência do grafeno

