Chern–Simons Origin of Superstring Integrability

B. Stefanski
City, University of London

2005.03064 by Kevin Costello

to appear in PRL
4d Chern-Simons

Long-suspected connection CS theory \leftrightarrow YBE realised for

$$S_{4d} = \int \omega \wedge \left[A \wedge A + \frac{2}{3} A \wedge A \wedge A \right]$$

gauge group G

ω a holomorphic one-form $\omega = dz$

$$A = A_w dw + A_{\bar{w}} d\bar{w} + A_z d\bar{z} + A_{\bar{z}} dz$$

Σ: Riemann surface (\mathbb{R}^2 today)

C: complex curve (\mathbb{C}^* today)
$S_{4d} = \frac{1}{\hbar} \int \omega \wedge \left[A_x dA + \frac{2}{3} A \wedge A \wedge A \right]$

$\Sigma^{(0,1) \times C^2}$

\[\text{Eoms:} \quad F_{\omega \omega} = 0 \quad \text{flat ball on } \Sigma \]

\[F_{\omega \bar{z}} = F_{\bar{z} \omega} = 0 \quad \text{holomorphic on } C \]

Mixed topological/holomorphic theory

All counterterms vanish by Eoms IR-free theory

quantization possible
4d \mathcal{CS} has no local observables (like 3d \mathcal{CS})

Observables are open Wilson lines $\Sigma \times \{z_i\}$

\sim

Topological in Σ: so $\sim \Rightarrow$ YBE ✓

Lines don't cross in 4d.

The free theory: gauge fields vanish at infinity so

Holonomy: good observable (no trace)
Interactions in 4d CS

\[1 + \hbar r(z_{1}, z_{2}) \]

\(r \) is classical \(r \)-matrix of hom. \(G \) spin chain!
Costello-Yamazaki '19: A, ω poles + zeros in \mathbb{C}
200 of integrable σ-models from S^4!

Let $L_{\omega, \sigma} = \langle A_{\omega, \sigma} \rangle$

Like CY '19 we set $G = PSU(2,2|4)^4$

$$\omega = \prod_{k=1}^{3} \frac{(z - q_k)(\bar{z} - \bar{q}_k)}{(z - p_i)^2} \, \, dz$$

Quantum 4d CS well-defined \[PSU(1) \]

$$A_{\omega} \sim \frac{1}{z - q_k}, \quad A_{\bar{\omega}} \sim \frac{1}{z - \bar{q}_k}$$

$$A_{\omega}, A_{\bar{\omega}}, A_{\xi} \sim (z - p_i)$$

gauge \mathbb{Z}_4 sym \[\{ A^i \rightarrow SL(A^{i+1}) \} \]

$$z \rightarrow e^{\pi i / 2} \, z$$

get σ-model on \[(2, 2|4) \, \cdot \, SO \, \times \, SO(5) \]

Pure spinor $q_{\, \omega} \Rightarrow 0$ Metsaev-Tseytlin $q_{\, \nu}, \tilde{q}_{\, \nu} \Rightarrow 0$
Pure spinor $q_i \to 0$

Metsaev-Tseytlin $q_{1,2,3} \tilde{q}_8 \to 0$

$q_i \to \infty$

$\tilde{q}_1 \tilde{q}_2 \tilde{q}_3 \to \infty$

\[
\begin{align*}
A_w &\sim \frac{1}{z^2} \quad A_w \sim z^2 \\
A_w &\sim \frac{1}{z} \quad A_w \sim z
\end{align*}
\]

$z \sim 0 \\
\sim \infty$
4d CS theory and diffeomorphisms

On manifold without boundary
4d CS is diffeomorphism invariant

With bdry/singular fields not necessarily!

$$\delta_{\nu} A_{a} \sim \partial_{\nu} v^b A_b$$

Near $z = 0$

$$A_{\bar{w}} \sim \frac{1}{z} \quad A_{w} \sim \frac{1}{z^2}$$

δ_{ν} mixes $A_{\bar{w}}$ and A_{w} so not compatible with
Beltrami-Chern-Simons Theory

Diff invariance adds new field β coupling to de Rham differential.

\[d \rightarrow d + d\beta \partial_{\beta} + d\bar{z} \partial_{\bar{z}} \]

\[S_{4d} \rightarrow S_{4d} + S_{\beta} \]

Cartan's formula for d

\[d_{\nu} = [d, e_{\nu}] \]

S_{β}: BRST-exact \Rightarrow field redefinition removes S_{β}

\[A_{\nu} \rightarrow A_{\nu} - \beta_{\nu} A_{\nu} \]

\[S_{4d} + S_{\beta} \rightarrow S_{4d} \]

$A_{\nu}, A_{\bar{\nu}}$ poles \Rightarrow cannot do redefinition β a bona fide field

\[S_{\text{BCS}} = S_{4d} + S_{\beta} \]

Easy check for $S_{\text{BCS}} = 0$ diff \checkmark

\[S_{\beta} S_{\text{BCS}} = 0 \Rightarrow A_{\nu}^{(2)} A_{\nu}^{(2)} \bigg|_{z=0} = 0 \]

\[A_{\nu}^{(2)} A_{\bar{\nu}}^{(2)} \bigg|_{\bar{z}=0} = 0 \]

VIRASORO!
Kappa Symmetry

\(S_{8CS} \) gauge invariant

\[\delta_k S_{8CS} = 0 \]

away from boundary

Usually gauge variation \(\kappa = 0 \) on \(\partial \mathcal{D} \) to eliminate \(\partial \mathcal{D} \) terms in \(\delta_k S_{8CS} \)

Instead, we allow

\[\kappa \sim \frac{3^{(3)}}{2} + \text{regular} \]

as expected for K-symmetry

So expect \(\delta_k S_{8CS} \neq 0 \)

\(z = 0 \)

\[A^w \sim z^3 + \cdots, \quad A^i, A^0, \quad w \sim z^3 \]

Explicitly near

\[\delta_k S_{4d} = \int \frac{d^3 z}{(2\pi)^3} \left[A_w \partial_\kappa \left(A_w, \kappa \right) - A_w \partial_\kappa \left(A_w, \kappa \right) \right] \]

\[\sim \int \frac{d^3 z}{(2\pi)^3} \left[\frac{A_w}{2} \partial_\kappa \left(\frac{1}{2^2} \right) \left[A_w, \kappa \right]^{(3)} + \frac{A_w}{2} \partial_\kappa \left(\frac{1}{2^2} \right) \left[A_w, \kappa \right]^{(3)} \right] \]

\[+ \frac{A_w}{2} \partial_\kappa \left(\frac{1}{2^2} \right) \left[A_w, \kappa \right]^{(3)} + \frac{A_w}{2} \partial_\kappa \left(\frac{1}{2^2} \right) \left[A_w, \kappa \right]^{(3)} \]

\[= \int \frac{d^2 \theta}{(2\pi)^2} A_w^{(3)} \left[A_w^{(2)} \right]^{(3)} + 2 \delta^2 \left(\kappa \right) A_w^{(2)} \left[A_w^{(2)} \right]^{(3)} \]

\[z = 0 \]

\[z = \infty \]

\[\delta_k S_{4d} = \frac{1}{2} \int \left[A^{(1)} A^{(2)} \right]^{(3)} \]
\(\delta_x S_{\text{4d}} \neq 0 \) localized at \(z = 0, \infty \)

\(\delta_x S_{\text{4d}} \) familiar from Arutyunov + Frolov!

it is \(\kappa \)-variation of matter fields in G S action

For some G, famous Fierz identities \(\Rightarrow \)
can cancel \(\delta_x S_{\text{4d}} \) by \(\delta_x (\text{metric}) \)

For BCS this is

\[\delta^a_{\Sigma} = A^a_w \kappa^a \kappa^b A^b_w \]

\[\delta_x \beta^w = \frac{\delta_k \kappa^{k \Sigma}}{2} + \kappa^{i \Sigma} [\kappa (3)] A^{(3)} A^i_{\Sigma \Sigma} \]

giving

\[\delta_x S_{\text{BCS}} = 0 \]
Quantizing BCS theory

Vacuum config has to reduce to BMN geodesic

\[J_w = J_{\bar{w}} = \kappa (T_E - T_J) \]

where \(T_E, T_J \in \text{psu}(2,2|4) \)

with the MT boundary conditions

\[a^{BMN}_{w} = (w + \bar{w}) \right_\partial \left. f \right|_{(T_E - T_J)} \]

\[a^{BMN}_{\bar{w}} = (f + \frac{1}{2z}) (T_E - T_J) \]

\[a^{BMN}_{w} = (f + \bar{w}^2) (T_E - T_J) \]

where \(f(z, \bar{z}) \) is a simple fn w/ suitable asymptotics

\[(f, \bar{f}) \sim 0, \quad f \sim (-1)^z, \quad z = \rho \bar{z} \]

The BRST operator w/ bkd \(a^{BMN} \) is

\[Q_{BRST} = \partial_b + a^{BMN} \]

This breaks

\[\text{psu}(2,2|4) \rightarrow \text{psu}(2|2) \]
and is starting point for quantization
Conclusions

Beltrami-Chern-Simons theory is a new formulation of Green-Schwarz superstring with integrability manifest works in plane-wave & flat space.

Other kids?

Quantize BCS theory as Beltrami's ghosts, $e = \Theta$-symmetry

TFT(ω,ω)

Church b-c ghosts from BCS anti-chiral b-c ghosts

Derive holographic integrability