2D gravity, matrix integrals and the minimal string

Gustavo Joaquin Turiaci (UC Santa Barbara)

IGST Aug, 2020

Plan (and based on)

- Part 1: Jackiw-Teitelboim gravity [Saad Shenker Stanford 19]
- Part 2: Generalization with defects [Maxfield, GJT 20] [Witten 20]
- Part 3: 2D gravity and the minimal string [SSS]
 [Mertens, GJT 20]
 [Usatyuk, Weng, GJT wip]

Jackiw-Teitelboim Gravity

• Simple two dimensional theory of dilaton-gravity

$$I_{JT} = -\frac{S_0}{4\pi} \int R - \frac{1}{2} \int \phi(R+2) + I_{GHY}$$

• Asymptotically AdS_2 boundary conditions

$$\begin{split} \phi|_{\rm bdy} &= \frac{\gamma}{\varepsilon}, \ L|_{\rm bdy} = \frac{\beta}{\varepsilon} \\ &\varepsilon \to 0 \end{split}$$

- Theory reduces to a boundary mode
- Broken conformal symmetry
 [Almheiri, Polchinski 14] [Jensen 16]
 [Maldacena,Stanford,Yang16] [Englesoy, Mertens Verlinde 16]...

• Final answer for disk partition function

$$Z_{\rm disk}(\beta) = e^{S_0} \sqrt{\frac{\gamma^3}{2\pi\beta^3}} e^{\frac{2\pi^2\gamma}{\beta}}$$

[Stanford, Witten 17] Also [Altland, Bagrets, Kamenev 16] [Mertens, GJT, Verlinde 17] [Kitaev Suh 18] [Yang 18]

• Density of states:

$$\rho_{\rm JT}(E) = \frac{e^{S_0}}{4\pi^2} \sinh\left(2\pi\sqrt{2\gamma E}\right)$$

 Problem: The spectrum is continuous! SFF decays in time forever, matter correlators, etc...

• Final answer for disk partition function

$$Z_{\rm disk}(\beta) = e^{S_0} \sqrt{\frac{\gamma^3}{2\pi\beta^3}} e^{\frac{2\pi^2\gamma}{\beta}}$$

[Stanford, Witten 17] Also [Altland, Bagrets, Kamenev 16] [Mertens, GJT, Verlinde 17] [Kitaev Suh 18] [Yang 18]

Density of states:

$$\rho_{\rm JT}(E) = \frac{e^{S_0}}{4\pi^2} \sinh\left(2\pi\sqrt{2\gamma E}\right)$$

 Problem: The spectrum is continuous! SFF decays in time forever, matter correlators, etc...

 Saad-Shenker-Stanford: This can be solved by allowing to sum over topologies

Sum over topologies

 In 2D topologies are classified by genus. We will also include the possibility of having any number of boundaries

Sum over topologies

• Convenient to organize the path integral in the following way

$$\langle Z(\beta_1) \dots Z(\beta_n) \rangle_{\text{conn.}} = \sum_{g=0}^{\infty} e^{-(2g-2+n)S_0} Z_{g,n}(\beta_1, \dots, \beta_n)$$

• Ingredients:

⇒ Weil-Petersson volumes, computed using Mirzakhani recursion

Sum over topologies

• Final answer obtained by gluing:

$$Z_{g,n}(\beta_1, \dots, \beta_n) = \int_0^\infty b_1 db_1 Z_{\text{trumpet}}(\beta_1, b_1) \cdots \int_0^\infty b_n db_n Z_{\text{trumpet}}(\beta_n, b_n) V_{g,n}(b_1, \cdots, b_n)$$

$$Z(\beta_1) \qquad \qquad b_1 \qquad \qquad b_2 \qquad \qquad Z(\beta_2)$$

 $Z(\beta_3)$

JT gravity and matrices

- SSS figured out a systematic way to sum over topologies when doing the path integral of JT gravity.
- The theory is equivalent, in a holographic sense, to a **double scaled** matrix integral

$$\langle Z(\beta_1) \cdots Z(\beta_n) \rangle = \int dH \ \mu(H) \ \operatorname{Tr}(e^{-\beta_1 H}) \cdots \operatorname{Tr}(e^{-\beta_n H})$$

$$\uparrow$$
Operator that "creates" a boundary

• New insight: the observable dual to JT gravity is a boundary thermal partition function, averaged over hamiltonians for some measure

$$\mu(H) \propto e^{-L \operatorname{Tr} V(H)}$$

- **JT gravity:** Computed in terms of WP volumes. They satisfy a recursion of their own found by Mirzakhani.
- Matrix Integral: Computed in terms of the topological recursion of matrix models with $\rho_{\rm disk} = \rho_{JT}(E)$

Eynard and Orantin proved that both recursions are identical (up to an integral transform)

SSS: This implies that pure JT gravity is holographically dual to a matrix integral, interpreted as an average over Hamiltonians

Factorization vs Disorder

 The spacetime wormholes in the Euclidean path integral break factorization of non-interacting boundaries

 $\langle Z(\beta_1)Z(\beta_2)\rangle \neq \langle Z(\beta_1)\rangle\langle Z(\beta_2)\rangle$

 Explained by ensemble average over Hamiltonian of boundary theory. How to fix in string theory?

[Coleman]Holography: [Maldacena Maoz] [Arkani-[Giddings Strominger]Hamed Orgera Polchinski] ...

JT gravity with a gas of defects

- Motivations for doing this:
 - 1. Generalize the dual matrix integral to general dilaton gravity theories
 - 2. Application to 3D gravity

[Maxfield, GJT 20] [Witten 20]

- Repeat the same procedure but allow the presence of dynamical defects.
 Sum over any number of them and any position.
 - Defect fugacity: λ

• Deficit angle: $\theta = 2\pi(1 - \alpha)$

2D dilaton-gravity

• A defect is equivalent to inserting $\lambda \int \sqrt{g} e^{-2\pi(1-\alpha)\phi}$ in the JT path integral.

[Mertens, GJT 19] [Witten 20]

• Then JT gravity with a gas of defects is equivalent to the following modification of the action

$$I = -\frac{1}{2} \int d^2x \sqrt{g} (\phi R + U(\phi))$$

With potential $U(\phi) = 2\phi + 2\sum_i \lambda_i : e^{-2\pi(1-\alpha_i)\phi}:$

• This covers a large class of two-derivative pure dilaton-gravity.

Cut and glue v2

For defecit angles that satisfy $\alpha < 1/2$ there is always a geodesic homologous to the holographic boundary. Therefore we can still use trumpets to glue. For example

[Tan Wong Zhang] [Do Norbury]

Cut and glue v2

The fact that we restrict to $\alpha < 1/2$ is important. Consider for example the following two situations

Now the calculation becomes the same as in JT gravity but with a double expansion. We can also generalize to several flavors of defects:

$$\left\langle Z(\beta_1)\cdots Z(\beta_n)\right\rangle_C = \sum_{g,k_1,k_2,\ldots=0}^{\infty} e^{-(2g+n-2)S_0} \left(\prod_i \frac{\lambda_i^{k_i}}{k_i!}\right) Z_{g,n,k}(\beta_1,\ldots,\beta_n;\alpha_1,\ldots,\alpha_k)$$

For example, in the case of the single boundary:

JT gravity with defects

 Main questions: 1) Can we perform the sum over defects explicitly to get new d.o.s? And 2) Is the theory dual to a matrix integral?

The answer to both questions is **yes**!

• Before, it is instructive to consider the following question. Can we define a theory where we include a finite number of defects? For example, only one.

$$\rho(E) \sim e^{S_0} \left[\sqrt{E} + \frac{\lambda}{\sqrt{E}} - \frac{\lambda^2}{2E^{3/2}} + \dots \right]$$

$$1 \text{ defect} \qquad 2 \text{ defect}$$

$$\rho(E) \sim e^{S_0} \sqrt{E - E_0}$$

(Including a single defect is analogous to the Maloney Witten partition function in 3D, and its ill-defined for similar reasons)

Genus zero WP volumes

• To compute the genus zero d.o.s. we need to sum over defects. This is done with the following formula for genus zero WP volumes

[Mertens, GJT 20] [Budd wip]

[Zograf 98]

$$V_{0,n}(b_1,\ldots,b_n) = \frac{1}{2} \left(-\frac{\partial}{\partial x}\right)^{n-3} \left[J_0\left(b_1\sqrt{u_{\rm JT}(x)}\right)\cdots J_0\left(b_n\sqrt{u_{\rm JT}(x)}\right)u'_{\rm JT}(x)\right]\Big|_{x\to 0}$$

Where

$$\frac{\sqrt{u_{\rm JT}}}{2\pi}I_1\left(2\pi\sqrt{u_{\rm JT}}\right) = x$$

Replace borders by defects $b \rightarrow 2\pi i \alpha$

Exact density of states

• Using the previous formula for WP volumes we can compute the disk d.o.s. as

The new edge of the spectrum depends implicitly on the fugacity through

$$\sqrt{E_0}I_1\left(2\pi\sqrt{E_0}\right) + 2\pi\sum_i\lambda_iI_0\left(2\pi\alpha_i\sqrt{E_0}\right) = 0$$

• We can check this matches the previous perturbative calculation.

Exact density of states

• Some numerical calculation of the density of states:

- The theory is perfectly fine for $\lambda < 0$. For $\lambda_c < \lambda$ the density of states can become negative! This critical value is finite.
- The interpretation and fate of the model beyond the critical fugacity is an open question.

This can actually be generalized to any number of boundaries with g=0

$$\left\langle Z(\beta_1)\cdots Z(\beta_n)\right\rangle_{g=0} = \frac{e^{(2-n)S_0}}{2\pi^{n/2}} \frac{\sqrt{\beta_1\cdots\beta_n}}{\beta_1+\ldots+\beta_n} \left(\frac{\partial}{\partial x}\right)^{n-2} e^{-u(x)(\beta_1+\ldots+\beta_n)}\Big|_{x=0}$$

With "string equation":
$$\frac{\sqrt{u(x)}}{2\pi} I_1\left(2\pi\sqrt{u(x)}\right) + \lambda I_0\left(2\pi\alpha\sqrt{u(x)}\right) = x,$$

• This is the answer for a hermitian matrix integral in the double scaling limit!

[Ambjorn, Jurkiewicz, Makeenko]

[Moore Seiberg Staudacher]

• Useful to work with the "string equation" instead of the disk d.o.s

$$\left\langle Z(\beta) \right\rangle_{g=0} = \frac{e^{S_0}}{\sqrt{4\pi\beta}} \int_0^\infty dx e^{-\beta u(x)}$$

[Brezin, Kazakov] [Douglas Shenker] [Gross Migdal] [Banks Douglas Seiberg Shenker]

- JT gravity + defects: Computed in terms of WP volumes and includes a sum over defects
- Matrix Integral: Computed in terms of the topological recursion of matrix models applied to the new density of

states $\rho_{\text{disk}} = \rho_{JT+def}(E)$

Eynard and Orantin "deformation theorem" guarantees both procedures agree!

JT gravity with a gas of defects (or pure dilaton-gravity) is holographically dual to a matrix integral, interpreted as an average over Hamiltonians

Minimal string theory

• The world-sheet description is the (*p*, *q*) minimal model coupled to Liouville gravity and ghosts

• We focus on the series (2,p) with p = 3,5,... Liouville coupling is $b = \sqrt{2/p}$. Dual to one-matrix integral

[Kazakov] [Staudacher]

• In the limit $p \to \infty$ the theory becomes JT gravity. New twist: interpret the matrix as a dual random Hamiltonian.

[SSS 19]

[Mertens GJT 20]

The minimal string theory

• The density of states of the minimal string for $p \to \infty$ matches JT gravity

$$\rho_p(E) = \frac{1}{4\pi^2} \sinh\left(\frac{p}{2}\cosh^{-1}\left(1 + \frac{8\pi^2}{p^2}E\right)\right) \quad \rightarrow \quad \rho_{\rm JT}(E) = \frac{1}{4\pi^2} \sinh\left(2\pi\sqrt{E}\right)$$

Consider the following deformation of the minimal string

$$I = I_{(2,p)} + \sum_{n} \tau_n \int e^{2\alpha_n \phi} \mathcal{O}_{1,n}$$

For MM ops: $n = p \frac{1-\alpha}{2}$
$$\mathcal{O}_{1,\frac{p-1}{2}}$$

$$\mathcal{O}_{1,1}$$

$$\mathcal{O}_{1,1}$$

$$\mathcal{O}_{1,1}$$

• We can check the deformed minimal string "string equation" reduces for $p \rightarrow \infty$, to the JT + defects "string equation"!

[Moore Seiberg Staudacher 91] [Belavin Zamolodchikov 08]

JT gravity with generic defects

[Usatyuk, Weng, GJT wip] [Budd wip]

• The minimal string result is valid for any defect angle. Using Belavin-Zamolodchikov string equation, it gives a prediction in the JT limit

$$\frac{\sqrt{u}}{2\pi}I_1(2\pi\sqrt{u}) + \sum_{L=1}^{\lfloor\frac{1}{1-\alpha}\rfloor} \frac{\lambda^L}{L!} \left(\frac{2\pi(1-L(1-\alpha))}{\sqrt{u}}\right)^{L-1} I_{L-1} \left(2\pi(1-L(1-\alpha))\sqrt{u}\right) = x$$

Gives disk d.o.s $\rho_{\lambda,\alpha}(E)$ with $0 < \alpha < 1$

- This is outside the SSS framework. No geodesics, no trumpets.
- Non-trivial check: gives back JT when $\alpha \rightarrow 1$
- Non-analytic behavior in the angle

- Summary:
 - Pure JT gravity is dual, in a holographic sense, to an ensemble of Hamiltonians
 - The same is true for a two-parameter deformation of JT gravity, which is equivalent to more general pure dilaton-gravity theories
 - This duality can be understood as the $p \to \infty$ limit of the (2,p) minimal string. This is useful to get new JT gravity results too!
- Some open questions:
 - Similar dualities for theories with matter?
 - Matrix integral emerge from triangulation of hyperbolic surfaces? [Kazakov Staudacher Wynter]
 - Relation between minimal strings and double-scaled SYK?

[Berkooz Isachenkov Narovlansky Torrents]

- Applications of quantum effects in disk:
 - Large quantum effects at low temperature in near extremal black holes. Reliably captured by JT gravity.
 - Under general assumptions, Schwarzian sector inside 2D CFT

[Ghosh Maxfield GJT 19]

Quantum effects near extremality in higher dimensions?

[Iliesiu GJT 20] ...

• Applications of non-perturbative effects:

Near extremality, sum over Seifert manifolds in 3D is related to sum over defects. Non-perturbative shifts of extremality bound

[Maxfield GJT 20]

2D CFT Ensemble dual to pure 3D gravity?

[Cotler Jensen 20] ...

Thank you for your attention!!