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Bootstrap

• Inequalities are (almost) as good as equalities when we 
have many of them


• Bootstrap


1. Restricted set of “data” 


2. Some positive norm


3. Another relation (e.g. crossing) which does not 
obviously satisfy (2)

see also Anderson Kruczenski 2017

  Jevicki Rodrigues 1983



(Multi-)Matrix Model

0) Does it exist?

1) Determine values as a function of couplings.
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Positivity constraints
Let     be an arbitrary superposition of matrices.
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For single matrix model,
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searches over the space of possible values of the correlation functions which are consistent
with the analytics. The resulting bounds obtained are rigorous, even if they were obtained
numerics.

A word about notation: we will normalize little trace and big Trace via tr1 = 1
NTr 1 =

1.

2 Review of Large-N Loop Equations

The loop equations of a random matrix theory are nothing but the Schwinger-Dyson
equations. They can be derived by the standard trick of integrating a total derivative
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The derivative can act on either the Mk or the e�S term.
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Using large N factorization, we can rewrite the double trace term as a product of sin-
gle traces. To understand these equations, it is helpful to consider their diagrammatic
interpretation. Let us set V (M) = 1

2M
2 + g

4M
4 for simplicity. Then,

M = (2.3)

The loop equations state the following: consider the computation of a k-pt function. At
large N , this is a sum of planar diagrams with k external lines. Follow one of the external
lines into the diagram. If this edge never encounters a vertex, it must become another
external line. In this case, it divides the planar diagrams into two parts. Otherwise, the
line must end in a vertex. So we get a relationship between lower-pt correlation functions
and higher-pt ones.

(2.4)
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Search space
Loop equations relate low-pt functions to higher-pt 
functions. “Initial conditions” 


search space S = min set of correlators such that the loop 
equations fully determine the rest


• 1-matrix model: potential of degree D, dim S  = D - 2


• m-matrix model:
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1-matrix
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1-matrix
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Peninsula
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2-cut model
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[aside] filling fractions

dim S ≥ # filling fractions dim S = # unphysical filling fractions

anti-e
igenvalues

Se↵[⇢]/N =

Z
dx⇢(x)V (x)�

Z
dxdx0⇢(x)⇢ (x0) log |x� x0|



Why does the method work 
well?

The space of positive 
semi-definite matrices 
forms a high-dim convex 
cone. 


We expect the method to 
work well if the exact 
solution lies near the bd of 
the cone
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Nearly null vector
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Ising model
��
��

0.2 0.3 0.4 0.5 0.6 0.7
0.2

0.4

0.6

0.8

1.0

1.2

1.4

�� �



Multi-matrix, W quartic
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Future directions

Search for new string worldsheet theories?


Fermions/complex couplings


1/N corrections


Higher dimensions (c=1, BFSS/BMN, …, Large N QCD?)


18

see Anderson Kruczenski 2017



QM discussion

We have only been using positivity of the measure 


Alternatively, reflection positivity 


No problem with fermions


Time translation symmetry

Z
dMe�S(· · · )

Han, Hartnoll, Kruthoff; 2004.10212 + WIP

0 = h@tOi = h[H,O]i



BFSS matrix model

SUSY-invariant ground states:


Bound on size of matrices


Take 


h0|{Q↵,OF }|0i = h0|[Q↵,OB ]|0i = 0
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Apply gauge invariance +  Large N + positivity 

Polchinski ‘99

BFSS matrix model

Size of matrices ~ size of gravity region ~ N1/3

Can we derive an upper bound?

Higher moments?


