Delayed Deconfinement and the Hawking-Page Transition

Luigi Tizzano

Simons Center for Geometry and Physics, Stony Brook, NY

Based on arXiv:2008.04950 with Christian Copetti, Alba Grassi and Zohar Komargodski

In large-N Yang–Mills theory a criterion for confinement is whether the free energy is $\mathcal{O}(1)$, receiving contributions from color singlets, or $\mathcal{O}(N^2)$ reflecting gluons contributions.

Thanks to the AdS/CFT correspondence the deconfinement transition can be interpreted in terms of black hole formation in AdS via the Hawking–Page phase transition. [Witten]

Our goal is to revisit this idea in the context of $\mathcal{N}=4$ supersymmetric Yang–Mills theory. More precisely, we would like to know if the superconformal index \mathcal{I} can "deconfine" and account for the Hawking–Page transition.

Introduction

A central tool in the study of large-N confinement/deconfinement transition in $\mathcal{N} = 4$ SYM is a unitary matrix model [Sundborg; Aharony-Marsano-Minwalla-Papadodimas-Van Raamsdonk]

$$\int \prod_{i=1}^{N} \frac{d\theta_i}{2\pi} \exp\left(\sum_{n=1}^{\infty} \frac{1}{n} \left(a_n - 1\right) \operatorname{Tr} U^n \operatorname{Tr} U^{-n}\right) \,,$$

with a_n some known real couplings. The phase transition is usually described in the following way:

- If $\underline{a_n 1 < 0}$, the most dominant contribution is Tr $U^n = 0$ with n < N. Eigenvalues are spread on the unit circle typical of confined phase.
- If <u>a_n − 1 > 0</u> (for some n), eigenvalues have support only on a subset of the unit circle, center symmetry is broken → deconfined phase.

At the special point where

$$\operatorname{sgn}(a_n-1)<0\longrightarrow\,\operatorname{sgn}(a_n-1)>0\,,$$

we should discard the confined saddle and switch to a deconfined one. This is a weakly first order phase transition since the two phases never co-exist.

Here we will argue that, for complex couplings a_n , this logic has to be revised

- The large-N saddle point analysis receives additional cancellations in such a way that the phase transition does not take place when (Re a_n 1) changes sign. This is what we call "Delayed Deconfinement".
- The phase transition is **first-order** and this will be important for the application to gravity.

Complex Couplings

We describe these new features using a single complex coupling model with $a_1 = |a_1|e^{i\phi}$.

It is also convenient to introduce a Hubbard–Stratonovich complex field g to decouple the double trace interaction [Klebanov-Hashimoto; Liu]

$$Z[a_1, N] = \int_{\gamma(\phi)} dgg \exp\left(-\frac{N^2 g^2}{4a_1}\right) \int [DU] \exp\left(\frac{Ng}{2} \left(\operatorname{Tr} U + \operatorname{Tr} U^{-1}\right)\right) \,,$$

where $\operatorname{Re}(a_1) > 0$ and $\gamma(\phi)$ is a line in complex plane at angle ϕ . The second integral is also known as [Gross-Witten, Wadia] GWW matrix model. For real g its genus zero free-energy $F_0(g)$ is given by

$$F_0(g) = egin{cases} rac{g^2}{4}, & ext{ungapped, one-cut} \ g - rac{1}{2}\log g - rac{3}{4}, & ext{gapped, one-cut} . \end{cases}$$

Multi-Cuts

We would like to study the GWW model for $\underline{complex \ g}$ where a complete picture is not yet available. The matrix model could have *multi-cuts* phases

$$Z[g, N] \sim \sum_{N_1+\dots+N_s=N} Z[g, N_1, \dots, N_s],$$

where we sum over all arrangements of eigenvalues.

For a given g we can think about sub-dominant large-N saddles in the sum as instanton solutions with action

$$\exp(-N^2A(g))\,,$$

connected to the dominant saddle via tunnelling. In the gapped one-cut phase this action is [Marino]

$$A^{
m s}(g) = 2\sqrt{g(g-1)} - \cosh^{-1}(2g-1) \; .$$

We expect that there is a region in g-plane where the gapped one-cut can be analytically continued.

In order to determine such region we require that matrix model instanton tunnelling is suppressed [David]:

 $\operatorname{Re}(A^{s}(g)) > 0$.

We can similarly determine such region also in the ungapped one-cut phase.

The full complex-HS integral at large-N is given by

$$Z[a_1,N] pprox \sum_{g_*} \exp\left(N^2 Q(a_1,g)
ight), \quad ext{where} \quad Q(a_1,g) \equiv -rac{g^2}{4a_1} + F_0(g)\,.$$

The saddle $g_* = 0$ leads to a confining behavior with $\mathcal{O}(1)$ contribution. We can find a second self-consistent, $\operatorname{Re}(A^s(g_*)) > 0$, complex saddle:

$$g_* = a_1 + \sqrt{a_1(a_1-1)} \,.$$

As a function of complex a_1 , there is a region $\text{Re}(Q(a_1, g_*)) > 0$ where the partition function has exponentially growing deconfined behavior.

The boundary of the region with exponentially growing behavior is what we call deconfinement curve \mathcal{C}_D

$$\mathcal{C}_{D}$$
: $\operatorname{Re}(Q(a_{1},g_{*}))=0$

• For real a_1 , the integral is over \mathbb{R} , and \mathcal{C}_D is equivalent to

$$a_1 = 1$$
.

However, for complex a_1 the transition happens behind $\operatorname{sgn}(\operatorname{Re} a_1 - 1) > 0$ in the region bounded by $\mathcal{C}_D \Rightarrow$ deconfinement is delayed.

In the blue region the ungapped and gapped phase of the full model co-exist but only the ungapped saddle dominates. Across C_D the gapped saddle begins to dominate. This is a first order transition. For real a₁ the blue region pinches at a₁ = 1 and there is never phase co-existence. This is instead a weakly first order transition.

In 4D $\mathcal{N}=1$ SCFTs a natural observable to study is $Z_{S^3\times S^1}$

- Counts supersymmetric states on $S^3 imes \mathbb{R}_{\mathrm{time}}$,
- → BPS local operator in flat space (State-Operator Correspondence), [Römelsberger; Kinney-Maldacena-Minwalla-Raju]
- Independent of exactly marginal deformations.

Pick a supercharge Q such that $\{Q,Q^{\dagger}\}\sim\Delta-2j_1+rac{3}{2}r=0$, then

$$\mathcal{I} = \mathsf{Tr}_{\mathcal{H}_{\mathrm{BPS}}} (-1)^F p^{\frac{1}{3}(\Delta+j_1)+j_2} q^{\frac{1}{3}(\Delta+j_1)-j_2}.$$

For $\mathcal{N}=4$ SYM \Rightarrow 1/16-BPS local operators.

The $\mathcal{N}=4$ superconformal index belongs to the class of unitary matrix models described here with

$$a_n(p,q)-1=rac{((pq)^{n/3}-1)^3}{(1-p^n)(1-q^n)}$$

For $p,q \in \mathbb{R}$ and $0 < p,q < 1 \Rightarrow a_n(p,q) - 1 < 0$. At large-N

 $\log \mathcal{I} \sim \mathcal{O}(1)$

where Tr $U^n = 0$ is the most dominant contribution \rightarrow confined phase.

This is disappointing for holography since we expect deconfinement to be described by large BPS black holes in AdS_5 whose entropy grows like $\mathcal{O}(N^2)$.

 $\label{eq:charged} \begin{array}{l} \mbox{Charged and rotating $1/16$-BPS black holes in AdS_5 [Gutowski-Reall; $Chong-Cvetic-Lu-Pope; Kunduri-Lucietti-Reall]} \end{array}$

- Electric Charges $Q_1, Q_2, Q_3
 ightarrow U(1)^3 \subset SO(6)$
- Angular Momentum J_1, J_2
- Extremality \rightarrow non-linear relation between 5 charges.

The simplest black hole has $Q_1 = Q_2 = Q_3 \equiv Q$, $J_1 = J_2 \equiv J$ and its Bekenstein–Hawking entropy is given by

$$S_{BH} = \frac{\text{Area}}{4G_N} = 2\pi\sqrt{3Q^2 - N^2J}$$

 S_{BH} can be obtained from a Legendre transform of the black hole free energy [Sen; Benini-Hristov-Zaffaroni; Review by Zaffaroni]

$$F_{BH}=-rac{4N^2(\omega-\pi i)^3}{27\omega^2}\,.$$

with complex chemical potentials $\Delta \leftrightarrow Q$ and $\omega \leftrightarrow J$ subject to $3\Delta = 2\omega - 2\pi i$.

We can define a Hawking–Page line in ω -plane separating a thermal gravitons dominated phase from an AdS black hole phase

$$\operatorname{Re}(F_{BH}) = 0.$$

Recent developments indicates that to capture the $\mathcal{O}(N^2)$ behavior it is necessary to allow for general complex fugacities. [Cabo Bizet-Cassani-Martelli-Murthy; Choi-J.-Kim-S.-Kim-Nahmgoong; Benini-Milan]

In our work we adopted a general parametrization $p = q = ye^{i\psi}$ and studied the behavior of the index as a function of (y, ψ) .

The couplings $a_n(p)$ become <u>complex</u> and we can use all our tools to compute C_D starting from the model with a single complex coupling

$$\mathsf{a}_1(\mathsf{p}) = 1 - rac{(1-\mathsf{p}^{2/3})^3}{(1-\mathsf{p})^2}\,.$$

The transition is <u>first order</u> so we cannot ignore corrections to C_D due to $a_{n>1}$ couplings.

However, near the HP transition region the effects of $a_{n>1}$ are numerically small and already studying a_2 leads to remarkable agreement with gravity.

Figure 1: C_D for a_1 model — C_D for $a_1 + a_2$ model — $\text{Re}(F_{BH}) = 0$

Thank You for Your Attention!

Extra

Even if there is no parametric suppression for $a_{n>1}$ these couplings are sufficiently small and one can study a systematic truncation of the model. We can look at a model with both a_1 and a_2

$$Z[a_1, a_2, N] = \int [DU] \exp\left(a_1 \operatorname{Tr} U \operatorname{Tr} U^{-1} + \frac{a_2}{2} \operatorname{Tr} U^2 \operatorname{Tr} U^{-2}\right),$$

and repeat the saddle point analysis using two HS fields g, h to obtain

$$\int dg \, dh \exp\left[-\frac{N^2 g^2}{4a_1} - \frac{N^2 h^2}{2a_2} + N^2 F_0(g,h)\right]$$

 $ert p_{
m HP} ert pprox 0.314 \Rightarrow ert p_{\star} ert < ert p_{
m HP} ert$ $ert p_{\star}^{(2)} ert pprox 0.312$ model with $a_1 + a_2$