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Some References
Interesting reviews on entanglement entropy in QFT can be found in https://arxiv.org/
abs/1803.04993 (Witten; more advanced, algebraic-oriented, more about “fundamentals”)
and https://arxiv.org/pdf/1801.10352.pdf (Nishioka; more basic, with more explicit cal-
culations and methods).
The algebraic/axiomatic approach to QFT is extensively discussed in R. Haag’s, Local
quantum physics: Fields, particles, algebras. 1992. This is a pretty advanced book, but
at least some sections should be reasonably followable by hep-th M.Sc./Ph.D. students.
The axiomatic formulation of QFT presented here is due to Wightman, and it also
appears discussed e.g., in Haag’s book.
The Reeh-Schlieder theorem is an old result in algebraic QFT (1961). It appears nicely
discussed in Witten’s review and in Haag’s book.
EE in the context of QFT was first considered by Sorkin et al https://journals.aps.org/
prd/abstract/10.1103/PhysRevD.34.373, https://arxiv.org/pdf/1402.3589.pdf and Srednicki
https://arxiv.org/pdf/hep-th/9303048.pdf. The area-law of EE was also first discussed in
these papers.
An interesting paper on the general structure of EE in QFT is https://arxiv.org/pdf/
1202.2070.pdf.
The use of mutual information as a geometric regulator for EE is discussed e.g., in
https://arxiv.org/pdf/1506.06195.pdf.
The standard review for entanglement entropy for free QFTs is Casini and Huerta’s
https://arxiv.org/pdf/0905.2562.pdf.
The RG flow approach to QFTs (Wilson, etc.) is discussed e.g., in Rychkov’s lec-
tures https://arxiv.org/pdf/1601.05000.pdf, where CFTs in d ≥ 3 are also extensively
discussed.
The entropic c-theorem proof appeared in Casini and Huerta’s https://arxiv.org/pdf/
cond-mat/0610375.pdf. A general account of entropic monotonicity theorems in various
dimensions can be found in https://arxiv.org/pdf/1704.01870.pdf.
The quantum version of the Bekenstein bound was proven by Casini in https://arxiv.
org/pdf/0804.2182.pdf. The original Bekenstein paper is https://journals.aps.org/prd/
abstract/10.1103/PhysRevD.23.287 —see also https://arxiv.org/pdf/1810.01880.pdf.

3 / 46

https://arxiv.org/abs/1803.04993
https://arxiv.org/abs/1803.04993
https://arxiv.org/pdf/1801.10352.pdf
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.34.373
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.34.373
https://arxiv.org/pdf/1402.3589.pdf
https://arxiv.org/pdf/hep-th/9303048.pdf
https://arxiv.org/pdf/1202.2070.pdf
https://arxiv.org/pdf/1202.2070.pdf
https://arxiv.org/pdf/1506.06195.pdf
https://arxiv.org/pdf/0905.2562.pdf
https://arxiv.org/pdf/1601.05000.pdf
https://arxiv.org/pdf/cond-mat/0610375.pdf
https://arxiv.org/pdf/cond-mat/0610375.pdf
https://arxiv.org/pdf/1704.01870.pdf
https://arxiv.org/pdf/0804.2182.pdf
https://arxiv.org/pdf/0804.2182.pdf
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.23.287
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.23.287
https://arxiv.org/pdf/1810.01880.pdf


Aspects of quantum fields, algebras, etc.

Aspects of quantum fields,
algebras, etc.

3 / 46



Aspects of quantum fields, algebras, etc.

A crash course on quantum field theory
So far we have been dealing with standard quantum mechanics of
discrete systems. Now we consider quantum fields...

Relativistic theories ⇒ fixed background: Minkowski spacetime.

We also have a Hilbert space of states H. Special state |Ω〉 ∈ H
of minimal energy (vacuum state).

Fundamental objects are “fields”, Φ(x). These are “operator-
valued distributions”. Relevant (quasi-local) operators obtained
by smearing out the fields over regions:

Φ(f) ≡
∫

Φ(x)f(x)d4x

for test functions with fast fall-offs (like Gaussians).

All states in H can be created by some linear combination of
products of Φ(f) acting on the vacuum: |ψ〉 = Φ(f1) · · ·Φ(fn) |Ω〉
generate the full H.
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Aspects of quantum fields, algebras, etc.

A crash course on quantum field theory

States and fields “respect” the symmetries of Minkowski spacetime (they
transform under certain “representations” of the Poincaré and Lorentz groups).
This has to do with the spin of the fields.

Fields respect causality: if supports of f(x) and h(x) spacelike to each other,
then: either [Φ(f),Φ(h)] = 0 or {Φ(f),Φ(h)} = 0 (fermions).
There is some “dynamical law” which allows to compute fields at any time
in terms of fields in a small time slice Σt,ε = {x : |x0 − t| < ε}. This means
that we can actually obtain any state in H using test functions restricted to
Σt,ε. This is similar to the classical statement that we can obtain x(t) for
any t if we know x(0) and ẋ(0) = [x(ε)− x(0)]/ε.

Wightman’s reconstruction theorem states that the full information about
the QFT (fields and Hilbert space) is contained in the vacuum fluctutations:

{Φ(x),H} ⇔ 〈Ω|Φ(x1), . . . ,Φ(xn)|Ω〉
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Aspects of quantum fields, algebras, etc.

Algebras of operators
An algebra is a set of operators (matrices) closed under linear combinations, prod-
ucts and taking adjoints. Multiples of the identity are also included:

1 ∈ A, a, b ∈ A, α, β ∈ C ⇒ αa+ βb ∈ A , ab ∈ A , a† ∈ A

Which sets of operators form algebras? Von Neumann theorem: Let A′ ≡ {b :
[b, a] = 0, ∀a ∈ A} be the “commutant” of A.

Whatever A is, A′ is an algebra
A is an algebra ⇔ A = A′′

It is useful to think of states as operations which take operators and give numbers
(expectation values). E.g., ω : A → C. They should be normalized and when ap-
plied to Hermitian operators with positive spectrum they should produce positive
numbers:

ω(αa+ βb) = αω(a) + βω(b) , ω(aa†) ≥ 0 , ω(1) = 1

For any state ω acting on A, ∃! density matrix ρω ∈ A such that

ω(a) = Tr(ρωa) ∀a ∈ A

In words, a state in an algebra selects an operator in the algebra itself (the den-
sity matrix). Once we have the density matrix representation, we can compute
functionals to get numbers out of it (like EE, S = −Tr ρ log ρ). These functionals
will be an intrinsic property of the state and the algebra (and nothing else!).
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Aspects of quantum fields, algebras, etc.

Algebras of operators
Operators in QFT organize themselves in algebras. In fact, the Haag-Kastler
formulation of QFT takes as fundamental objects algebras A(W ) of operators
localized at spacetime regions W .

There are a couple of basic properties that
these must satisfy

Isotony: if V ⊆W ⇒ A(V ) ⊆ A(W )
Causality: let V ′ ≡ {x : x spacelike to y,∀y ∈ V }. Then, A(V ) ⊆ (A(V ′))′.
Operators in spatially separated regions (anti)commute with each other.

Different regions may have the same algebra. The natural fundamental regions
are causal diamonds (domain of dependence of pieces of space-like regions). These
are defined by the property W = W ′′.

When the causality condition becomes equality, A(V ) = (A(V ′))′, the theory is
said to satisfy “Haag duality”. This happens for sufficiently complete theories...
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Aspects of quantum fields, algebras, etc.

Algebras of operators

The information about the QFT is not in the algebras themselves
(they are all isomorphic!). It is encoded in the relations between alge-
bras (the way they intersect and share operators).

Mutual information
between spatially separated regions does this: it measures correlations
between algebras. A natural unsolved question reminiscent to Wight-
man’s reconstruction theorem is:

{A(W ),H} ?⇔ I(V,W )

In words: can we reconstruct the full information of the QFT from
the mutual information of subregions?
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The Reeh-Schlieder theorem

The Reeh-Schlieder theorem
There exists an even more spectacular manifestation of the highly-
entangled nature of QFT states...

As we mentioned earlier, any state |ψ〉 ∈ H can be obtained by
acting on the vacuum with linear combinations of operators on
the neighborhood of a Cauchy slice Σt,ε = {x : |x0 − t| < ε}.

|ψ〉 = L.C.[Φ(f1) · · ·Φ(fn) |Ω〉] with Φ(f) =
∫

Σt,ε
Φ(x)f(x)d4x

[L.C. ≡ “linear combin.”, f(x) is essentially zero outside Σt,ε].
Reeh-Schlieder theorem: we can actually generate the full Hilbert
space H by restricting the support of the Φ(f) to an arbitrarily
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The Reeh-Schlieder theorem

The Reeh-Schlieder theorem

“We” can create a peanut in Andromeda by acting with local operators at
the university in Lima!

Let P̂ be the “peanut operator”, an operator supported in Andromeda such
that 〈ψ|P̂ |ψ〉 ≈ 0 for states which do not contain a peanut in Andromeda,
and 〈ψ|P̂ |ψ〉 ≈ 1 for states which do. In the vacuum state 〈Ω|P̂ |Ω〉 ≈ 0 (no
peanuts in Andromeda in the vacuum state).
According to R.S. theorem, ∃ some operator â with support in this room
such that

〈âΩ|P̂ |âΩ〉 ≈ 1

namely, such that in that state there is a peanut in Andromeda.
Since â and P̂ have support in space-like separated regions, they commute,
so

〈âΩ|P̂ |âΩ〉 = 〈Ω|â†P̂ â|Ω〉 = 〈Ω|P̂ â†â|Ω〉 ≈ 1

and at the same time we know that 〈Ω|P̂ |Ω〉 ≈ 0. Weird, isn’t it?
It is Ok, but â simply cannot be a unitary operator (such that â†â = 1).
Physically, we can only act with unitary operators, so this is not possible in
practice...
Still, manifests strong non-local quantum correlations. Non-separability à
la QFT: 〈Ω|P̂ â†â|Ω〉 6= 〈Ω|P̂ |Ω〉 〈Ω|â†â|Ω〉.
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Physically, we can only act with unitary operators, so this is not possible in
practice...
Still, manifests strong non-local quantum correlations. Non-separability à
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〈âΩ|P̂ |âΩ〉 ≈ 1

namely, such that in that state there is a peanut in Andromeda.
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and at the same time we know that 〈Ω|P̂ |Ω〉 ≈ 0. Weird, isn’t it?
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The Reeh-Schlieder theorem

The Reeh-Schlieder theorem

The Reeh-Schlieder theorem is a consequence of the analyticity of cor-
relation functions, which in turn follows from the positivity of energy
and Lorentz invariance.

Suppose that acting with operators in the arbitrarily small open setW
on the vacuum we did not obtain a dense set of vectors. Then, there
would be some vector |ψ〉 which is orthogonal to the generated set,
〈ψ|Φ(x1) . . .Φ(xn)|Ω〉 = 0, x1, . . . , xn ∈W . But, since the correlators
are analytic and vanish on W , they would have to vanish for every
x1, . . . , xn not restricted to W . But we know that operators defined
on the full space acting on the vacuum do generate the whole Hilbert
space. Then, the only possibility is |ψ〉 = 0, i.e., we do obtain a dense
set by acting on any W .
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Entanglement entropy in QFT

(No) entanglement entropy in QFT

Before, we were considering discrete subsystems, like two electrons.

The natural subsystems in QFT are spatial subregions (or their associated
causal diamonds): fix some time-slice Σ, divide it in two regions A and B:

First surprise: Hilbert space does not factorize! H 6= HA ⊗ HB . If it did,
there would exist some state |ψ〉 such that |ψ〉 = |φ〉A ⊗ |φ̃〉B , which would
imply

SEE(A) = 0 .

However, in QFT, the entanglement entropy of subregions is divergent in
any state, SEE(A) = +∞. There is infinite entanglement between any pair
of adjacent regions. This is actually related to the smoothness of spacetime.
Something with SEE(A) = 0 would be like a firewall at ∂A...
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Entanglement entropy in QFT

QFTs from the lattice

Often it is useful to think of a QFT as a discrete model, such as a
lattice, and then take the continuum limit, putting more and more
points in the lattice finally reproducing the results one would obtain
doing calculations directly in the continuum.

There may be many
ways to cutoff a theory, but all of them should arrive to the same
QFT. Only quantities that are well defined in the limit belong to the
continuum theory (are “universal”).
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Entanglement entropy in QFT

The “area-law” of entanglement entropy

The EE divergence comes from infinite correlations existing be-
tween degrees of freedom living in both sides of the interface ∂A
separating A and B.

We can analyze this divergence by considering a discretized ver-
sion of the QFT (imagine a lattice of coupled harmonic oscilla-
tors). If we use δ as the lattice spacing, (this is called a “UV
cutoff”), one finds for any QFT:

SEE(A) = c0
Area(∂A)
δd−2 + . . .

This holds in any state (any state looks like the vacuum at suf-
ficiently short distances). It is called the “area law” of entangle-
ment entropy.

One might have guessed that SEE(A) should scale with the vol-
ume of A, instead of with the area of ∂A.
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Entanglement entropy in QFT

The “area-law” of entanglement entropy

Heuristically, one can try to understand the origin of this area law as
follows.

As we argued before, SEE(A) = SEE(B) for global pure states like
|Ω〉.

In the QFT context, this means that the entanglement entropy
is not extensive at all. Regardless of how small we make A,
SEE(A) = SEE(B) holds.

One could think that SEE should depend on something which is
common to A and B, and the only thing available is precisely
the interface between both regions ∂A = ∂B.
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Entanglement entropy in QFT

EE general structure
Given some region A and a regulator δ, the entanglement entropy has
the general structure

SEE(A) =
∑
i

Ci(∂A) · δ−λi + S0(A)

where λi are dimensions, e.g., for smooth ∂A, λi = (d−2), (d−4), . . .

Ci(∂A):
Are terms additive on the entangling surface ∂A, given by inte-
grals over ∂A
They depend only on UV physics and the geometry of ∂A
They are state-independent

S0(A):
Are non-local (not given by integrals over ∂A, but rather de-
pending on the whole A)
They depend on the state (e.g., if the state is thermal, T would
appear here
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Entanglement entropy in QFT

Quantum information measures in QFT
If EE is not well defined in the continuum, what can we do?? Other
measures are... Mutual information between two regions

(can be de-
fined without reference to EE in terms of relative entropy)

I(A,B) ≡ SEE(A) + SEE(B)− SEE(A ∪B)

May be used as a regulator for entanglement entropy

Iε(A+, A−) ε→0−→ 2S(ε)
EE (A)

Certain pieces in EE survive the continuum limit and have well-defined
information. More about those universal terms in Lecture 4.
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Entanglement entropy in QFT

How do we actually compute EE?

Manipulating density matrices, algebras, taking traces, etc. is not an easy task in
QFT. So, how do we actually compute EE in (regulated) QFTs?

Replica trick: the n-th Rényi entropy is obtained from a certain partition
function on a complicated manifold obtained from considering n copies of
the original Euclidean manifold and sewing them successively through the
entangling surface. Analytically continuing the result and taking n→ 1 one
obtains the EE. This approach has many sub-approaches, ramifications and
applications...
Real-time methods for Gaussian systems: the idea is to relate the den-
sity matrix to the expectation value of the fundamental fields (scalars or
fermions), something that can be done for Gaussian systems. Those expec-
tation values can be then obtained from different methods and the EE can
be calculated.
Hard-core numerical methods.
Holographic theories: for CFTs which admit a (semi)classical gravity dual
in some regime, there is an additional geometric route for obtaining EE (the
Ryu-Takayanagi prescription and various generalizations).
Other special theories.
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Entanglement entropy in QFT

Summary of the first part
QFTs are relativistic quantum theories (in flat space). Relevant operators
obtained from smearings of fundamental local quantum fields.

States live in
some Hilbert space spanned by the action of the fields on the vacuum state.
Causality, Lorentz invariance and unitary evolution implemented.
Operators in QFT organize themselves in algebras. From this perspective,
states can be thought as objects which act on algebras of operators to pro-
duce numbers.To any state acting on an algebra corresponds a unique density
matrix. Functionals like EE are intrinsic properties of states and algebras.
Algebras of operators defined on spacetime regions respect causality: opera-
tors in a given region commute with those defined in its causal complement,
A(V ) ⊆ (A(V ′))′. Natural fundamental regions are causal diamonds, for
which W = W ′′.
The vacuum is full of entanglement. We can generate the full Hilbert space
acting on the vacuum with local operators with support in an arbitrarily
small spacetime region.
The EE of subregions is divergent in QFT. Entanglement between degrees
of freedom at both sides of the interface dominates it, giving rise to an
“area-law” for any state.
Regulating our QFT by putting it in a lattice, one can see that besides the
area-law there are extra local and non-local pieces, some of which contain
meaningful information about the continuum theory.
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Entanglement entropy in QFT

Some References
Interesting reviews on entanglement entropy in QFT can be found in https://arxiv.org/
abs/1803.04993 (Witten; more advanced, algebraic-oriented, more about “fundamentals”)
and https://arxiv.org/pdf/1801.10352.pdf (Nishioka; more basic, with more explicit cal-
culations and methods).
The algebraic/axiomatic approach to QFT is extensively discussed in R. Haag’s, Local
quantum physics: Fields, particles, algebras. 1992. This is a pretty advanced book, but
at least some sections should be reasonably followable by hep-th M.Sc./Ph.D. students.
The axiomatic formulation of QFT presented here is due to Wightman, and it also
appears discussed e.g., in Haag’s book.
The Reeh-Schlieder theorem is an old result in algebraic QFT (1961). It appears nicely
discussed in Witten’s review and in Haag’s book.
EE in the context of QFT was first considered by Sorkin et al https://journals.aps.org/
prd/abstract/10.1103/PhysRevD.34.373, https://arxiv.org/pdf/1402.3589.pdf and Srednicki
https://arxiv.org/pdf/hep-th/9303048.pdf. The area-law of EE was also first discussed in
these papers.
An interesting paper on the general structure of EE in QFT is https://arxiv.org/pdf/
1202.2070.pdf.
The use of mutual information as a geometric regulator for EE is discussed e.g., in
https://arxiv.org/pdf/1506.06195.pdf.
The standard review for entanglement entropy for free QFTs is Casini and Huerta’s
https://arxiv.org/pdf/0905.2562.pdf.
The RG flow approach to QFTs (Wilson, etc.) is discussed e.g., in Rychkov’s lec-
tures https://arxiv.org/pdf/1601.05000.pdf, where CFTs in d ≥ 3 are also extensively
discussed.
The entropic c-theorem proof appeared in Casini and Huerta’s https://arxiv.org/pdf/
cond-mat/0610375.pdf. A general account of entropic monotonicity theorems in various
dimensions can be found in https://arxiv.org/pdf/1704.01870.pdf.
The quantum version of the Bekenstein bound was proven by Casini in https://arxiv.
org/pdf/0804.2182.pdf. The original Bekenstein paper is https://journals.aps.org/prd/
abstract/10.1103/PhysRevD.23.287 —see also https://arxiv.org/pdf/1810.01880.pdf.
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Free field calculations

Free fields

The simplifications provided by assuming that the fields do not in-
teract allow for the application of various methods suitable for the
evaluation of EE and related quantities.

Sometimes the approaches are divided into “Euclidean” and “Real
time” due to the nature of the tools involved.

In the Euclidean approach, one uses a representation of the vacuum
state in terms of an Euclidean path integral and constructs the reduced
density matrix in terms of similar objects.

In the real time approach one aims at computing directly the reduced
density matrix corresponding to the global vacuum state in terms of
correlators of the fields.

Here I will give you a flavor of the second type of methods.
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Free field calculations

Free bosons
Consider a system of N scalar fields and momenta in a lattice.

By
definition, they satisfying canonical commutation relations

[φi, πj ] = iδij , [φi, φj ] = [πi, πj ] = 0 .

Define the correlation functions associated to ρA as

〈φiφj〉 ≡ Xij , 〈πiπj〉 ≡ Pij , 〈φiπj〉 = 〈πjφi〉∗ = i

2δij .

We are interested in Gaussian states (i.e., those for which all other
non-zero correlators follow from the two-point functions of the fields).
We can write in general

ρA = Ke−
∑

l
εla
†
l
al , K ≡

∏
l

(1− e−εl)

where we already diagonalized the modular Hamiltonian introducing
creation and annihilation operators (just like for the usual harmonic
oscillator), [ai, a†j ] = δij .
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Free field calculations

Free bosons
Now, a key point is that one can show that the eigenvalues of ρA can be
obtained in terms of the eigenvalues of C ≡

√
XP .

As a consequence,
we can write the EE in terms of C. The result reads

SEE(A) = Tr[(C + 1/2) log(C + 1/2)− (C − 1/2) log(C − 1/2)] .

In terms of the eigenvalues of C, {λk}, this can be alternatively written
as

SEE(A) =
∑
k

[(λk + 1/2) log(λk + 1/2)− (λk − 1/2) log(λk − 1/2)]

The thing is that computing correlators like Xij and Pij (and conse-
quently, Cij) is usually something rather doable, so we can evaluate
SEE(A) using the above formula. We will see examples later...

A prototypical case is when we consider the vacuum state, and a
global Hamiltonian of the form H = 1

2
∑
i π

2
i + 1

2φiKijφj . Then, the
correlators read Xij = 1

2 (K−1/2)ij , Pij = 1
2 (K1/2)ij .
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Free field calculations

Free fermions
The story is very similar for free fermions. In that case we start with
N fields satisfying anticommutation relations

{ψi, ψ†j} = δij ,

We define the correlators in the state ρA by

〈ψiψ†j 〉 ≡ Cij , 〈ψiψj〉 = 〈ψ†iψ
†
j 〉 = 0 .

Again we are interested in Gaussian states of the form

ρA = Ke−εld
†
l
dl , K ≡ (1 + e−εl)

where again we already diagonalized the modular Hamiltonian.

Similarly to the scalars case, the eigenvalues of ρA can be obtained in
terms of the eigenvalues of C, so we can write the EE in terms of that
correlators matrix. The result is:

SEE(A) = −Tr[(1− C) log(1− C) + C logC]
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Free field calculations

Ex 1: free fermion in d = 2

Let us consider first the case of a free fermion in d = 2, with A being
a single interval of length LA.

The lattice Hamiltonian reads

H ferm.
latt. = − i2

∑
j

[
ψ†jψj+1 − ψ†j+1ψj

]
,

The ground state correlators, Cjl ≡ 〈ψjψ†l 〉, read

Cjl =
{

(−1)(j−l)−1
2πi(j−l) j 6= l ,

1
2 j = l ,

.

For a general CFT2, the result for the EE of an interval reads

SEE = c

3 log(LA/δ) +O(δ0)

where c is the “Virasoro central charge” of the theory. In the case of
the free fermion, c = 1/2...
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Free field calculations

Ex 1: free fermion in d = 2
For technical reasons, when performing lattice calculations for fermions
there is an extra factor 2 which needs to be removed.

A small program
in Mathematica yields perfect agreement:
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Free field calculations

Ex 2: free scalar in d = 3

Consider now a free scalar in d = 3

Hscal.
latt. = +

1
2

∑
n,m

[
π2
n,m + (φn+1,m − φn,m)2 + (φn,m+1 − φn,m)2

]
,

Ground state correlators

〈φ0,0φi,j〉 =
1

8π2

∫ π

−π
dx
∫ π

−π
dy

cos(ix) cos(jy)√
2(1− cos(x)) + 2(1− cos(y))

,

〈π0,0πi,j〉 =
1

8π2

∫ π

−π
dx
∫ π

−π
dy cos(ix) cos(jy)

√
2(1− cosx) + 2(1− cos y) .
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Free field calculations

Ex 2: free scalar in d = 3

Take first A to be a square region

With a slightly more complicated Mathematica program, one finds

SEE ' 0.077× 4L
δ
−0.0116× 4 log(L/δ) +O(δ0)

We get an “area-law” piece plus a logarithmic correction, both of
them divergent in the continuum limit. The logarithmic piece is
related to the presence of corners in A.
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Free field calculations

Ex 2: free scalar in d = 3

What happens if we consider now a region with the same “area”
(length= 4L) but more corners?

Now the result reads

SEE ' 0.077× 4L
δ
−0.0116× 6 log(L/δ) +O(δ0)

The coefficient of the “area-law” does not change, but now we get a
different coefficient for the log term, proportional to the number of
corners.
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Free field calculations

Ex 2: free scalar in d = 3

This behavior is in fact general:

SEE = c1
L

δ
+
∑

cornerj

aj(θ) log(L/δ) +O(δ0)

where a(θ) is universal, i.e., well-defined in the continuum theory.
More in Lecture 4.
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Monotonicity theorems

Monotonicity theorems
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Monotonicity theorems

QFT reloaded
Before I presented an axiomatic formulation of QFTs.

A somewhat
complementary approach establishes that QFT is the study of Renor-
malization Group (RG) flows, i.e., how the theory evolves from the
Ultraviolet (UV) to the Infrared (IR) regimes...

What kinds of theories there exist at low energies?

Theories with a mass gap (e.g., QCD)

Theories with massless particles (e.g., QED)

Scale invariant theories with continuous spectrum: CFTs⇔ fixed
points of the RG flow (can be stable or unstable)
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Monotonicity theorems

Monotonicity of RG flows

RG flow ⇔ coarse graining of microscopic degrees of freedom heavier
than the relevant energy scale. As we move to lower energies and
“integrate out” higher-energy degrees of freedom, we loose information
about the theory. This results in a “trajectory of theories” in the space
of coupling constants {gi}.

Intuitively, physical degrees of freedom should decrease monotonically
under RG flows, since massive degrees of freedom are integrated out
once the energy scale of the flow becomes below the scale set by the
masses.

Finding functions c(λ) which quantify the effective number of degrees
of freedom (i.e., such that c(λ) decreases monotonically along the
RG flow) is an important problem in QFT. When they exist, they
are customarily called “c-functions”. In particular, they must satisfy
cUV > cIR for the fixed-point theories.

32 / 46



Monotonicity theorems

Monotonicity of RG flows

RG flow ⇔ coarse graining of microscopic degrees of freedom heavier
than the relevant energy scale. As we move to lower energies and
“integrate out” higher-energy degrees of freedom, we loose information
about the theory. This results in a “trajectory of theories” in the space
of coupling constants {gi}.

Intuitively, physical degrees of freedom should decrease monotonically
under RG flows, since massive degrees of freedom are integrated out
once the energy scale of the flow becomes below the scale set by the
masses.

Finding functions c(λ) which quantify the effective number of degrees
of freedom (i.e., such that c(λ) decreases monotonically along the
RG flow) is an important problem in QFT. When they exist, they
are customarily called “c-functions”. In particular, they must satisfy
cUV > cIR for the fixed-point theories.

32 / 46



Monotonicity theorems

Monotonicity of RG flows

RG flow ⇔ coarse graining of microscopic degrees of freedom heavier
than the relevant energy scale. As we move to lower energies and
“integrate out” higher-energy degrees of freedom, we loose information
about the theory. This results in a “trajectory of theories” in the space
of coupling constants {gi}.

Intuitively, physical degrees of freedom should decrease monotonically
under RG flows, since massive degrees of freedom are integrated out
once the energy scale of the flow becomes below the scale set by the
masses.

Finding functions c(λ) which quantify the effective number of degrees
of freedom (i.e., such that c(λ) decreases monotonically along the
RG flow) is an important problem in QFT. When they exist, they
are customarily called “c-functions”. In particular, they must satisfy
cUV > cIR for the fixed-point theories.

32 / 46



Monotonicity theorems

Monotonicity theorems

Throughout the years, c-functions have been found and monotonicity
theorems have been proven in various dimensions:

d = 2 theories, called the “c-theorem”. At the fixed points the c-
function coincides with the Virasoro central charges of the fixed
point CFTs.

d = 3 theories, called the “F-theorem”. At the fixed points the c-
function coincides with the free energy of the CFTs on S3 which
is the same as the EE universal term across a S1.

d = 4 theories, called the “a-theorem”. At the fixed points the
c-function coincides with the trace-anomaly coefficient a.

In all cases there exist versions of the theorems which make crucial
use of EE, but there are also alternative versions which do not. In
d = 3 the only available proof uses EE.
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Monotonicity theorems

Entropic c-theorem in d = 2
As an illustration, I will explicitly proof a c-theorem using EE
methods for d = 2 QFTs.

We start with an interval in a time slice of the theory. When
we make the interval very small (R �), we are probing UV
physics, and when we make it very large, we are probing IR
physics (R�).

We need to find a function cEE(R) such that:
1) it coincides with the central charge c of the CFT at the fixed
points

cEE(R)|CFT = c

2) it is monotonically decreasing under any RG flow,

c′EE(R) ≤ 0 .
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Monotonicity theorems

Entropic c-theorem in d = 2

The proposal for EE-based c-function reads

cEE(R) ≡ 3RS′EE(R)

where SEE(R) is the EE of an interval of length R.

This is well defined
for any QFT, and note also that by definition it is always finite (free
of divergences). Observe also that it satisfies requirement 1), since for
a CFT, the EE of an interval reads

SEE|CFT = c

3 log(R/δ) ⇒ cEE(R)|CFT = c .

Now, the hard part is to prove requirement 2). For that, we will use
the strong subadditivity (SSA) property of EE,

SEE(A ∪B ∪ C) + SEE(B) ≤ SEE(A ∪B) + SEE(B ∪ C) .
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Monotonicity theorems

Entropic c-theorem in d = 2
Consider two intervals A, C on the light rays t = ±x and an interval
B of width r on a time slice t = 0: A = {t = −x,−R/2 ≤ x ≤ −r/2},
B = {t = 0,−r/2 ≤ x ≤ r/2}, C = {t = x, r/2 ≤ x ≤ R/2}.

EE is invariant under unitary time evolution, so we can boost our
intervals and use, instead of A∪B, the straight interval which appears
in the figure, and the same for B ∪ C.
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Monotonicity theorems

Entropic c-theorem in d = 2

The starting and ending points of the boosted A ∪ B interval are
(t = 0, x = r/2) and (t = (R−r)/2, x = −R/2) respectively. Then, the
invariant length between the two points reads ∆s =

√
−∆t2 + ∆x2 =√

rR. The length of the boosted B∪C is the also
√
rR. For A∪B∪C

we can use the boosted straight interval shown in the figure, and for
that one, the length is R.
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Monotonicity theorems

Entropic c-theorem in d = 2

Now, let us use the SSA inequality:

SEE(A ∪B ∪ C) + SEE(B) ≤ SEE(A ∪B) + SEE(B ∪ C)

⇒ SEE(R) + SEE(r) ≤ 2SEE(
√
rR)

The last step is now to consider R to be slightly larger than r, namely,
R = r + ε with ε� r. Then, we can expand

SEE(R) + SEE(r) = 2SEE(r) + εS′EE(r) + 1
2ε

2S′′EE(r) + . . .

2SEE(
√
rR) = 2SEE(r) + εS′EE(r) + 1

4ε
2
[
−S
′
EE(r)
r

+ S′′EE(r)
]

+ . . .

Finally, the SSA inequality implies:

SEE(R) + SEE(r) ≤ 2SEE(
√
rR)⇒ ε2

4r [S′EE(r) + rS′′EE(r)] ≤ 0
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Monotonicity theorems

Entropic c-theorem in d = 2

Now, remember that what we wanted to prove for requirement 2) was
that c′EE(R) ≤ 0.

Using its definition, we have

c′EE(r) = 3 [S′EE(r) + rS′′EE(r)]
?
≤ 0

But this is exactly what we have just proven using SSA!!

Hence, cEE(R) = 3RS′EE(R) is a c-function for general QFTs in d = 2,
and we have just proven the monotonicity of RG flows in that number
of dimensions. The proof relies exclusively on SSA of EE and Lorentz
invariance.

Currently there exists a unified framework for EE-based monotonicity
theorems in d = 2, 3, 4.
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Quantum Bekenstein bound

The Bekenstein bound

The Bekenstein bound is a surprising result which states that the
entropy of an object with total energy E and with characteristic size
R (e.g., the size of the smallest sphere circumscribing it) cannot exceed
2πER,

S(object) ≤ 2πER

The argument uses a so-called “Geroch process”. The idea is as fol-
lows: when a stationary black hole absorbs an object of energy E and
radius R, its mass changes as

δM = E × R

4GM

(the second term is a red-shift factor), where G is the Newton con-
stant. As a consequence, its area changes as δA = 8πERG.ăThen,
the entropy of the black hole increases by δSBH = δA/(4G) = 2πER.
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Quantum Bekenstein bound

The Bekenstein bound

Now, from the second-law of thermodynamics the total entropy of the
combined black hole + object should increase, so

Sfinal − Sinitial ≥ 0

where Sfinal = SBH + δSBH and Sinitial = S(object) +SBH. Therefore,
S(object) ≤ 2πER follows.

It is interesting that while the derivation uses a gravitational process,
Newton’s constant G disappears from the final expression... This sug-
gests a broader/more fundamental origin for the bound.

41 / 46



Quantum Bekenstein bound

The Bekenstein bound

Now, from the second-law of thermodynamics the total entropy of the
combined black hole + object should increase, so

Sfinal − Sinitial ≥ 0

where Sfinal = SBH + δSBH and Sinitial = S(object) +SBH.

Therefore,
S(object) ≤ 2πER follows.

It is interesting that while the derivation uses a gravitational process,
Newton’s constant G disappears from the final expression... This sug-
gests a broader/more fundamental origin for the bound.

41 / 46



Quantum Bekenstein bound

The Bekenstein bound

Now, from the second-law of thermodynamics the total entropy of the
combined black hole + object should increase, so

Sfinal − Sinitial ≥ 0

where Sfinal = SBH + δSBH and Sinitial = S(object) +SBH. Therefore,
S(object) ≤ 2πER follows.

It is interesting that while the derivation uses a gravitational process,
Newton’s constant G disappears from the final expression... This sug-
gests a broader/more fundamental origin for the bound.

41 / 46



Quantum Bekenstein bound

The Bekenstein bound

Now, from the second-law of thermodynamics the total entropy of the
combined black hole + object should increase, so

Sfinal − Sinitial ≥ 0

where Sfinal = SBH + δSBH and Sinitial = S(object) +SBH. Therefore,
S(object) ≤ 2πER follows.

It is interesting that while the derivation uses a gravitational process,
Newton’s constant G disappears from the final expression... This sug-
gests a broader/more fundamental origin for the bound.

41 / 46



Quantum Bekenstein bound

Quantum Bekenstein bound

There are various issues with Bekenstein’s bound when considered
within the quantum framework:

The entropy, if localized, should include vacuum entanglement,
which can be divergent

The energy, if not global, could be negative (while the entropy is
always positive)

The size of the object is ill defined

These problems were historically preventing a better interpretation of
the bound.
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Quantum Bekenstein bound

Quantum Bekenstein bound

A quantum version of the Bekenstein bound can be proven by using
the positivity of relative entropy.

Recall that for any two states ρ and
ρ0, we had

Srel(ρ||ρ0) = Tr ρ(log ρ− log ρ0) ≥ 0

We can rewrite this formula as an all-order version of the first-law of
EE (it becomes equality when ρ = ρ0 + δρ)

Srel(ρ||ρ0) = Tr(ρ log ρ−ρ0 log ρ0+ρ0 log ρ0−ρ log ρ0) = ∆ 〈H〉−∆SEE ≥ 0

where we used the definition of the modular Hamiltonian for the orig-
inal state H = − log ρ0. So, for any pair of finite-energy states we
have

∆SEE ≤ ∆ 〈H〉

This can be thought of as a mega-generalized quantum version of the
Bekenstein bound.
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Quantum Bekenstein bound

Quantum Bekenstein bound
Let us compare the two versions: S ≤ 2πER vs ∆SEE ≤ ∆ 〈H〉.

Observe first that the quantum version requires a substraction of
entropies, which removes the UV divergences present in the EE.
The natural reference state ρ0 is the reduction of the vacuum
state to the corresponding region.
The piece 2πER is interpreted in terms of the modular Hamil-
tonian of the reduced density matrix ρ0. In general, modular
Hamiltonians are very complicated objects. However, for the
vacuum state, if we take for instance the entangling region to
be half space (x1 > 0) in Minkowski space (this is called the
“Rindler wedge”), it takes the form

H = 2π
∫
x1>0

dd−1xx1T00(x)

for any QFT in d dimensions, where T00(x) is the energy density
operator. (It is a remarkable fact that by reducing the vacuum
state to half space, we can learn about the energy density oper-
ator).
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Quantum Bekenstein bound

Quantum Bekenstein bound

Now, using the fact that 〈Ω|T00|Ω〉 = 0 (the expectation value of
the energy density in the vacuum is zero), we find

〈H〉 = 2π
∫
x1>0

dd−1xx1 〈T00(x)〉

where 〈T00(x)〉 ≡ Tr(ρT00(x)) is computed with respect to the
state ρ. Our quantum version of the Bekenstein bound becomes

∆SEE ≤ 2π
∫
x1>0

dd−1xx1 〈T00(x)〉

This looks pretty similar to S ≤ 2πER.
If the system is sharply localized at a distance R from x1 = 0,
the RHS can be actually approximated by 2πER, where E ≈∫
x1>0 dd−1x 〈T00(x)〉.
Other Bekenstein-type bounds involving energy and entropy can
be obtained whenever H is given in terms of the stress tensor,
like in the case of spheres.

45 / 46



Quantum Bekenstein bound

Quantum Bekenstein bound

Now, using the fact that 〈Ω|T00|Ω〉 = 0 (the expectation value of
the energy density in the vacuum is zero), we find

〈H〉 = 2π
∫
x1>0

dd−1xx1 〈T00(x)〉

where 〈T00(x)〉 ≡ Tr(ρT00(x)) is computed with respect to the
state ρ.

Our quantum version of the Bekenstein bound becomes

∆SEE ≤ 2π
∫
x1>0

dd−1xx1 〈T00(x)〉

This looks pretty similar to S ≤ 2πER.
If the system is sharply localized at a distance R from x1 = 0,
the RHS can be actually approximated by 2πER, where E ≈∫
x1>0 dd−1x 〈T00(x)〉.
Other Bekenstein-type bounds involving energy and entropy can
be obtained whenever H is given in terms of the stress tensor,
like in the case of spheres.

45 / 46



Quantum Bekenstein bound

Quantum Bekenstein bound

Now, using the fact that 〈Ω|T00|Ω〉 = 0 (the expectation value of
the energy density in the vacuum is zero), we find

〈H〉 = 2π
∫
x1>0

dd−1xx1 〈T00(x)〉

where 〈T00(x)〉 ≡ Tr(ρT00(x)) is computed with respect to the
state ρ. Our quantum version of the Bekenstein bound becomes

∆SEE ≤ 2π
∫
x1>0

dd−1xx1 〈T00(x)〉

This looks pretty similar to S ≤ 2πER.

If the system is sharply localized at a distance R from x1 = 0,
the RHS can be actually approximated by 2πER, where E ≈∫
x1>0 dd−1x 〈T00(x)〉.
Other Bekenstein-type bounds involving energy and entropy can
be obtained whenever H is given in terms of the stress tensor,
like in the case of spheres.

45 / 46



Quantum Bekenstein bound

Quantum Bekenstein bound

Now, using the fact that 〈Ω|T00|Ω〉 = 0 (the expectation value of
the energy density in the vacuum is zero), we find

〈H〉 = 2π
∫
x1>0

dd−1xx1 〈T00(x)〉

where 〈T00(x)〉 ≡ Tr(ρT00(x)) is computed with respect to the
state ρ. Our quantum version of the Bekenstein bound becomes

∆SEE ≤ 2π
∫
x1>0

dd−1xx1 〈T00(x)〉

This looks pretty similar to S ≤ 2πER.
If the system is sharply localized at a distance R from x1 = 0,
the RHS can be actually approximated by 2πER, where E ≈∫
x1>0 dd−1x 〈T00(x)〉.

Other Bekenstein-type bounds involving energy and entropy can
be obtained whenever H is given in terms of the stress tensor,
like in the case of spheres.

45 / 46



Quantum Bekenstein bound

Quantum Bekenstein bound

Now, using the fact that 〈Ω|T00|Ω〉 = 0 (the expectation value of
the energy density in the vacuum is zero), we find

〈H〉 = 2π
∫
x1>0

dd−1xx1 〈T00(x)〉

where 〈T00(x)〉 ≡ Tr(ρT00(x)) is computed with respect to the
state ρ. Our quantum version of the Bekenstein bound becomes

∆SEE ≤ 2π
∫
x1>0

dd−1xx1 〈T00(x)〉

This looks pretty similar to S ≤ 2πER.
If the system is sharply localized at a distance R from x1 = 0,
the RHS can be actually approximated by 2πER, where E ≈∫
x1>0 dd−1x 〈T00(x)〉.
Other Bekenstein-type bounds involving energy and entropy can
be obtained whenever H is given in terms of the stress tensor,
like in the case of spheres.

45 / 46



Quantum Bekenstein bound

Quantum Bekenstein bound

The interpretation of the original bound was that entropy cannot
increase too much for a fixed energy. It would be a kind of universal
bound on the number of degrees of freedom.

The interpretation of the quantum bound is very different: there is
no bound on degrees of freedom, it is rather related to the idea of
distinguishability: when restricted to a region, fluctuations can be as
large as to make it hard to distinguish the vacuum from another state
if the energy (times distance to the boundary) of this other state is
not big enough.
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Quantum Bekenstein bound

Summary of the second part
Free fields allow for special methods which simplify the task of computing
EE.

In particular, there are useful formulas for EE which are written in
terms of correlators of the fundamental fields. Our lattice calculations agree
with the expected general results for CFTs in d = 2 and d = 3.
QFTs can be thought as the study of RG flows. As we move from the UV to
the IR, we expect less and less degrees of freedom to survive. Finding quan-
tities which realize and quantify this monotonicity is an important problem
in QFT. We proved a c-theorem in d = 2 using EE. Similar theorems exist
for d = 3, 4 theories.
The Bekenstein bound is an old result which establishes that the entropy of
an object of energy E and size R is bounded as S ≤ 2πER. In its classical
form, it is not very rigorous statement... A quantum version of the bound
follows from the positivity of relative entropy. For any pair of states, one
can show that ∆SEE ≤ ∆ 〈H〉, where H is the modular Hamiltonian of the
reference state. If we choose that state to be the vacuum and the entangling
region to be the Rindler wedge, we find a quantum version of the bound,

∆SEE ≤ 2π
∫
x1>0

dd−1xx1 〈T00(x)〉

The quantum bound is interpreted as the fact that it becomes difficult to
distinguish a given state from the vacuum if its energy is too small.
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can show that ∆SEE ≤ ∆ 〈H〉, where H is the modular Hamiltonian of the
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If we choose that state to be the vacuum and the entangling
region to be the Rindler wedge, we find a quantum version of the bound,

∆SEE ≤ 2π
∫
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dd−1xx1 〈T00(x)〉

The quantum bound is interpreted as the fact that it becomes difficult to
distinguish a given state from the vacuum if its energy is too small.
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