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Some references
Some papers on the general structure of EE: https://arxiv.org/abs/1202.2070,
https://arxiv.org/abs/1108.4038.
Original paper on EE of CFTs in d = 2 by Calabrese and Cardy: https:

//arxiv.org/abs/hep-th/0405152.
The expression for the EE universal term in the case of smooth entangling
regions in d = 4 is due to Solodukhin: https://arxiv.org/abs/0802.3117.
The unitarity bounds are due to Hoffman and Maldacena: https://arxiv.org/

abs/0803.1467.
The connection between the disk entanglement entropy and the three-sphere
partition function is due to Casini, Huerta and Myers: https://arxiv.org/abs/

1102.0440.
A detailed account on the EE for entangling regions containing singularities
and references can be found in: https://arxiv.org/abs/1904.11495.
The relation between the corner coefficient σ and the stress tensor two point
function CT was conjectured in my paper with Myers and Witczak-Krempa:
https://arxiv.org/abs/1505.04804 based on free-field and holographic calculations,
and proved later for general CFTs by Faulkner, Leigh and Parrikar in: https:

//arxiv.org/abs/1511.05179.
The “extensive mutual information” model was proposed in https://arxiv.org/

abs/cond-mat/0505563 and https://arxiv.org/abs/hep-th/0405111 by Casini, Fosco and
Huerta.
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General structure of EE and universal terms

General structure of EE for CFTs

Given CFTd and smooth entangling region V , EE takes the
generic form

S
(d)
EE = bd−2

Hd−2

δd−2 + bd−4
Hd−4

δd−4 +

· · ·+

b1
H
δ + (−1)

d−1
2 suniv , (odd d)

b2
H2

δ2 + (−1)
d−2

2 suniv log
(
H
δ

)
+ b0 , (even d)

H is some characteristic length of V and δ a UV regulator.

non-universal and local; universal and local;
universal and non-local; non-universal and local+non-local
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General structure of EE and universal terms

General structure of EE for CFTs

In any state, leading term is “area-law” piece ∼ Hd−2/δd−2.

Exception for d = 2 theories. For single interval of length H,

S
(2)
EE = c

3 log
(
H

δ

)
+ b0 ,

where c is the Virasoro central charge of the theory.

Coefficients bd−2, . . . , b1 are “non-universal”: they are not well-
defined in the continuum. They are “local” in the sense that
they come from short-range correlations across ∂V .
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General structure of EE and universal terms

Universal terms: even dimensions

suniv are “universal”: they are well-defined in the continuum
and capture meaningful information about the CFT.

In even dimensions, the universal term is logarithmic and suniv is
given by a linear combination of local integrals over ∂V weighted
by theory-dependent coefficients which can be shown to coincide
with the trace-anomaly charges,

〈Tµµ 〉 = −2(−)d/2AXd +
∑
n

BnIn .
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General structure of EE and universal terms

Universal terms: even dimensions
For instance, in d = 4:

〈Tµµ 〉 = − a

16π2X4 + c

16π2CµνρσC
µνρσ

and

S
(4)
EE = b2

H2

δ2 −
[
a

2π

∫
∂V
R+ c

2π

∫
∂V

(
trk2 − 1

2k
2
)]

log
(
H

δ

)
+b0 .

Dependence on details of entangling-surface geometry and CFT
considered appear highly “disentangled” from each other.

For unitary CFTs, a and c constrained to the range:

1
3 ≤

a

c
≤ 31

18 .
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General structure of EE and universal terms

Universal terms: even dimensions

a and c can be isolated by considering entangling surfaces cor-
responding to spheres and cylinders, respectively,

S
(4)
EE |sphere ⊃ −4a log(R/δ) , S

(4)
EE |cylinder ⊃ −

c

2
L

R
log(R/δ) ,

where R is the radius of the sphere or the cylinder, respectively,
and L the length of the former.

For comparison, in d = 6 there are three “B-type” charges,
B1, B2, B3, besides the “A-type” one.

8 / 32



General structure of EE and universal terms

Universal terms: even dimensions

a and c can be isolated by considering entangling surfaces cor-
responding to spheres and cylinders, respectively,

S
(4)
EE |sphere ⊃ −4a log(R/δ) , S

(4)
EE |cylinder ⊃ −

c

2
L

R
log(R/δ) ,

where R is the radius of the sphere or the cylinder, respectively,
and L the length of the former.

For comparison, in d = 6 there are three “B-type” charges,
B1, B2, B3, besides the “A-type” one.

8 / 32



General structure of EE and universal terms

Universal terms: odd dimensions

In odd dimensions, no logarithmic term is present for smooth
entangling surfaces, and the universal contribution is a constant
term which no longer corresponds to an integral over ∂V . (Also,
there is no trace anomaly)

Simplest case corresponds to d = 3 CFTs, for which

S
(3)
EE = b1

H

δ
− F .

For ∂V = S1, F actually equals the free energy of the corre-
sponding theory on S3.

In F , dependence on geometric details of V and dependence
on the details of the CFT are no longer disentangled from each
other. In d = 5, 7, . . . similar story: for suniv for ∂V = Sd−2

equals free energy on Sd.
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General structure of EE and universal terms

General structure of EE for CFTs

non-universal and local; universal and local;
universal and non-local; non-universal and local+non-local

S
(d)
EE = bd−2

Hd−2

δd−2 + bd−4
Hd−4

δd−4 +

· · ·+

b1
H
δ + (−1)

d−1
2 suniv , (odd d)

b2
H2

δ2 + (−1)
d−2

2 suniv log
(
H
δ

)
+ b0 , (even d)

No one has ever payed much attention to the constant coef-
ficient b0 appearing for even-dimensional theories. Just like
bd−2, . . . , b1, this is a non-universal piece. However, all this pol-
lution has a local origin and b0 also contains a universal non-
local part which does not depend on the regulator details...
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General structure of EE and universal terms

Singular regions

When geometric singularities are present in ∂V , the structure
of divergences gets modified.

Prototypical case ⇒ entangling region bounded by a corner of
opening angle Ω in d = 3 CFTs. In that case, new logarithmic
term

S
(3)
EE |corner = b1

H

δ
− a(3)(Ω) log

(
H

δ

)
+ b̃0 ,

where a(3)(Ω) is a cutoff-independent function of the opening
angle.

The dependence of a(3)(Ω) on the opening angle changes (ap-
parently rather drastically) from one CFT to another.
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General structure of EE and universal terms

Singular regions

Some general properties:

a(3)(π + Ω) = a(3)(π − Ω) , a(3)(Ω) ≥ 0 ,

∂Ωa
(3)(Ω) ≤ 0 , ∂2

Ωa
(3)(Ω) ≥ −∂Ωa

(3)(Ω)
sin Ω for Ω ∈ [0, π] .

In the very-sharp and almost-smooth limits, the function be-
haves as

a(3)(Ω ' 0) = k

Ω+O(Ω) , a(3)(Ω ' π) = σ·(Ω−π)2+O(Ω−π)4 .

k is a constant which coincides with the universal coefficient
corresponding to a slab region for general theories.
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General structure of EE and universal terms

Singular regions

a(3)(Ω ' 0) = k

Ω+O(Ω) , a(3)(Ω ' π) = σ·(Ω−π)2+O(Ω−π)4 .

Leading coefficient in almost-smooth regime, σ, is related to the
stress-energy tensor two-point function coefficient* CT through

σ = π2

24CT ,

for general CFTs.

*For general CFTs in d dimensions, the stress-tensor correlator
behaves as 〈Tab(x)Tcd(0)〉 = CT Iab,cd(x)/|x|2d where Iab,cd(x)
is a fixed tensorial structure, and the only theory-dependence
appears through CT .

[In d = 4, CT is proportional to the trace-anomaly coefficient c]
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General structure of EE and universal terms

Singular regions
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θ

�
(θ
)/
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�

NOT

ALLOWED

Normalization by CT makes all curves lie very close to one another
throughout the whole range.

Lower bound on a(3)(Ω) valid for general CFTs

a(3)(Ω) ≥ amin(Ω) , where amin(Ω) ≡ π2CT

3 log [1/ sin(Ω/2)]
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General structure of EE and universal terms

Singular regions

a(3)(Ω) very different from analogous function a(4)(Ω) for a con-
ical entangling surface in d = 4.

Similar logarithmic enhancement of universal term

S
(4)
EE |cone = b2

H2

δ2 − a
(4)(Ω) log2 (H/δ) + b̃0 log (H/δ) + b0 ,

but now
a(4)(Ω) = c

4 ·
cos2 Ω
sin Ω

for all CFTs.

Only dependence on the theory under consideration appears
through the charge c
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General structure of EE and universal terms

Singular regions
Contrast between odd- and even-dimensional cases persists for
higher d.

For the latter

S
(d)(even)
EE |(hyper)cone ⊃ (−1)

d−2
2 a(d)(Ω) log2 (H/δ)

where

a(d)(Ω) = cos2 Ω
sin Ω

d−4
2∑
j=0

[
γ

(d)
j cos(2jΩ)

]
Again functional dependence on Ω completely fixed for any CFT
up to (d/2−1) coefficients γ(d)

j related to trace-anomaly charges.
On the other hand, for odd-d one finds something like

S
(d)(odd)
EE |(hyper)cone ⊃ (−1)

d−1
2 a(d)(Ω) log (H/δ) ,

where a(d)(Ω) differs for each CFT.
Still some degree of universality in almost-smooth limit ⇔ CT
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General structure of EE and universal terms

Singular regions

One can consider other types of singular regions, with their
own peculiarities and features. These include wedges, cones
with non-circular sections, curved corners and cones, polyhedral
corners, etc.

Polyhedral corner of opening angles θ1, θ2, . . . , θj

S
(4)
EE |polyh. = b2

H2

δ2 −w1
H

δ
+ v(θ1, θ2, · · · , θj) log

(
H

δ

)
+ b0

Infinite wedge of opening angle Ω

S
(4)
EE |wedge = b2

H2

δ2 − f(Ω)H
δ

+ b0
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The “extensive mutual information” model

The “extensive mutual
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The “extensive mutual information” model

The “extensive mutual information” model

A model has an extensive mutual information if the “tripartite
information” vanishes

I3(A;B,C) ≡ I(A,B)+ I(A,C)− I(A,B∪C) = 0 ∀ A,B,C

⇒ No overlap between the information shared by A and B and
the one shared by A and C. This is the case of a (1 + 1)-
dimensional Dirac fermion.

[In general, it is possible both I3(A;B,C) ≥ 0 and I3(A;B,C) ≤
0].

Imposing I3(A;B,C) = 0 + some physically reasonable require-
ments such as causality and Poincaré invariance, strongly re-
stricts the form of EE and mutual information in general d.
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The “extensive mutual information” model

The “extensive mutual information” model

The result defines the EMI model. Its EE is given by

SEMI
EE = κ(d)

∫
∂A

dd−2σ1

∫
∂A

dd−2σ2
ni(x1)nj(x2)δij
|x1 − x2|2(d−2)

where ni(x1) is the unit normal vector to the boundary of A,
∂A, at the point x1 and κ(d) is a positive parameter.

It is an open problem to find out whether this is the EE of an
actual CFT for d ≥ 3.

Regardless of this, the model respects all general principles of
EE and is a useful tool for understanding various features. Com-
putationally, even simpler than Ryu-Takayanagi formula.
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The “extensive mutual information” model

EE of a disk in d = 3
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The “extensive mutual information” model

EE of a disk in d = 3

Consider disk region of radius R.

Due to the symmetry of the
problem, we can fix x2 = (R, 0), and then ~n(x2) = (1, 0), which
makes one of them trivial. On the other hand, we have x1 =
(R cos θ1, R sin θ1), ~n(x1) = (cos θ1, sin θ1). Also, dσ1 = Rdθ1,
dσ2 = Rdθ2. From this, one finds|x1− x2|2 = 2R2(1− cos θ1) =
4R2 sin2(θ/2). Then, we have

SEMI
EE = κ(3)

∫ 2π

0
Rdθ2

∫
Rdθ1

cos θ1
4R2 sin2(θ/2)

.

Second integral diverges when |x1 − x2|2 → 0, so we need to
regulate it:
1) allow only for angles larger than δ/R;
2) replace |x1 − x2|2 → |x1 − x2|2 + δ2.
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The “extensive mutual information” model

EE of a disk in d = 3

First regulator:

SEMI
EE =

πκ(3)
2 · 2

∫ π

δ/R

cos θ1dθ1
sin2(θ/2)

= 4πκ(3)
R

δ
− 2π2κ(3)

Second regulator:

SEMI
EE = 2πR2κ(3)

∫ 2π

0

cos θ1dθ1
[4R2 sin2(θ/2) + δ2]

= 2π2κ(3)
R

δ
− 2π2κ(3)

Universal piece unchanged, F = 2π2κ(3), whereas b1 depends on
regulator.
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The “extensive mutual information” model

EE across sphere in d = 4
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The “extensive mutual information” model

EE across sphere in d = 4

Radius-R spherical entangling surface.

All points equivalent on
sphere surface, so we can fix x2 = (0, 0, R) and ~n(x2) = (0, 0, 1).
On the other hand, x1 = R(sin θ1 cosφ1, sin θ1 sinφ1, cos θ1) and
~n(x1) = (sin θ1 cosφ1, sin θ1 sinφ1, cos θ1). From this, we find
~n(x1) · ~n(x2) = cos θ1, and |x1 − x2|4 = 16R4 sin2(θ1/2). Also,
d2σ1 = R2 sin θ1dθ1dφ1, and so on. Putting the pieces together,
we can perform three of the four integrals to get

SEMI
EE = κ(4) · 4πR2 · 2πR2

∫
dθ1

sin θ1 cos θ1
16R4 sin4(θ1/2)

.

Regulators:
1) allow only for angles larger than δ/R;
2) |x1 − x2|4 → |x1 − x2|4 + δ4.
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The “extensive mutual information” model

EE across sphere in d = 4
First regulator:

SEMI
EE =

π2κ(4)
2

∫ π

δ/R
dθ1

sin θ1 cos θ1
sin4(θ/2)

= 4π2κ(4)
R2

δ2 − 4π2κ(4) log (R/δ)− π2κ(4)

[2
3 + 4 log 2

]
.

Second regulator:

SEMI
EE = 8π2R4κ(4)

∫ π

0
dθ1

sin θ1 cos θ1
[16R4 sin4(θ/2) + δ4]

= 2π3κ(4)
R2

δ2 − 4π2κ(4) log (R/δ)− π2κ(4) [1 + 4 log 2] .

Would-be trace-anomaly coefficient aEMI = π2κ(4). Non-universal
piece b2 depends on regulator. b0 has a “piece” which remains
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The “extensive mutual information” model

EE across cylinder in d = 4
Cylinder of radius R.

In cylindrical coordinates we can write
x1 = (R cosφ1, R sinφ1, z1), ~n(x1) = (cosφ1, sinφ1, 0), and x2 =
(R, 0, z2), ~n(x2) = (1, 0, 0), where we already took advantage of
the circular symmetry of the surface. Now, d2σ1 = Rdφ1dz1
and the same for 2. We have now |x1−x2|4 = [4R2 sin2(φ1/2)+
(z1 − z2)2]2. So we find

SEMI
EE = κ(4) · 2π

∫
Rdz2

∫
Rdz1

∫
dφ1

cosφ1
[4R2 sin2(φ1/2) + (z1 − z2)2]2

.

We can set z1 = 0 and regulate
∫ L/2
−L/2 dz1 = L. In the resulting

expression, we can perform the integral over z2, which requires
no regulation,

SEMI
EE = 2πR2 · L · κ(4) ·

∫
dφ1

π cosφ1
16R3 sin3(φ1/2)

.

26 / 32



The “extensive mutual information” model

EE across cylinder in d = 4
Cylinder of radius R. In cylindrical coordinates we can write
x1 = (R cosφ1, R sinφ1, z1), ~n(x1) = (cosφ1, sinφ1, 0), and x2 =
(R, 0, z2), ~n(x2) = (1, 0, 0), where we already took advantage of
the circular symmetry of the surface.

Now, d2σ1 = Rdφ1dz1
and the same for 2. We have now |x1−x2|4 = [4R2 sin2(φ1/2)+
(z1 − z2)2]2. So we find

SEMI
EE = κ(4) · 2π

∫
Rdz2

∫
Rdz1

∫
dφ1

cosφ1
[4R2 sin2(φ1/2) + (z1 − z2)2]2

.

We can set z1 = 0 and regulate
∫ L/2
−L/2 dz1 = L. In the resulting

expression, we can perform the integral over z2, which requires
no regulation,

SEMI
EE = 2πR2 · L · κ(4) ·

∫
dφ1

π cosφ1
16R3 sin3(φ1/2)

.

26 / 32



The “extensive mutual information” model

EE across cylinder in d = 4
Cylinder of radius R. In cylindrical coordinates we can write
x1 = (R cosφ1, R sinφ1, z1), ~n(x1) = (cosφ1, sinφ1, 0), and x2 =
(R, 0, z2), ~n(x2) = (1, 0, 0), where we already took advantage of
the circular symmetry of the surface. Now, d2σ1 = Rdφ1dz1
and the same for 2. We have now |x1−x2|4 = [4R2 sin2(φ1/2)+
(z1 − z2)2]2.

So we find

SEMI
EE = κ(4) · 2π

∫
Rdz2

∫
Rdz1

∫
dφ1

cosφ1
[4R2 sin2(φ1/2) + (z1 − z2)2]2

.

We can set z1 = 0 and regulate
∫ L/2
−L/2 dz1 = L. In the resulting

expression, we can perform the integral over z2, which requires
no regulation,

SEMI
EE = 2πR2 · L · κ(4) ·

∫
dφ1

π cosφ1
16R3 sin3(φ1/2)

.

26 / 32



The “extensive mutual information” model

EE across cylinder in d = 4
Cylinder of radius R. In cylindrical coordinates we can write
x1 = (R cosφ1, R sinφ1, z1), ~n(x1) = (cosφ1, sinφ1, 0), and x2 =
(R, 0, z2), ~n(x2) = (1, 0, 0), where we already took advantage of
the circular symmetry of the surface. Now, d2σ1 = Rdφ1dz1
and the same for 2. We have now |x1−x2|4 = [4R2 sin2(φ1/2)+
(z1 − z2)2]2. So we find

SEMI
EE = κ(4) · 2π

∫
Rdz2

∫
Rdz1

∫
dφ1

cosφ1
[4R2 sin2(φ1/2) + (z1 − z2)2]2

.

We can set z1 = 0 and regulate
∫ L/2
−L/2 dz1 = L. In the resulting

expression, we can perform the integral over z2, which requires
no regulation,

SEMI
EE = 2πR2 · L · κ(4) ·

∫
dφ1

π cosφ1
16R3 sin3(φ1/2)

.

26 / 32



The “extensive mutual information” model

EE across cylinder in d = 4
Cylinder of radius R. In cylindrical coordinates we can write
x1 = (R cosφ1, R sinφ1, z1), ~n(x1) = (cosφ1, sinφ1, 0), and x2 =
(R, 0, z2), ~n(x2) = (1, 0, 0), where we already took advantage of
the circular symmetry of the surface. Now, d2σ1 = Rdφ1dz1
and the same for 2. We have now |x1−x2|4 = [4R2 sin2(φ1/2)+
(z1 − z2)2]2. So we find

SEMI
EE = κ(4) · 2π

∫
Rdz2

∫
Rdz1

∫
dφ1

cosφ1
[4R2 sin2(φ1/2) + (z1 − z2)2]2

.

We can set z1 = 0 and regulate
∫ L/2
−L/2 dz1 = L.

In the resulting
expression, we can perform the integral over z2, which requires
no regulation,

SEMI
EE = 2πR2 · L · κ(4) ·

∫
dφ1

π cosφ1
16R3 sin3(φ1/2)

.

26 / 32



The “extensive mutual information” model

EE across cylinder in d = 4
Cylinder of radius R. In cylindrical coordinates we can write
x1 = (R cosφ1, R sinφ1, z1), ~n(x1) = (cosφ1, sinφ1, 0), and x2 =
(R, 0, z2), ~n(x2) = (1, 0, 0), where we already took advantage of
the circular symmetry of the surface. Now, d2σ1 = Rdφ1dz1
and the same for 2. We have now |x1−x2|4 = [4R2 sin2(φ1/2)+
(z1 − z2)2]2. So we find

SEMI
EE = κ(4) · 2π

∫
Rdz2

∫
Rdz1

∫
dφ1

cosφ1
[4R2 sin2(φ1/2) + (z1 − z2)2]2

.

We can set z1 = 0 and regulate
∫ L/2
−L/2 dz1 = L. In the resulting

expression, we can perform the integral over z2, which requires
no regulation,

SEMI
EE = 2πR2 · L · κ(4) ·

∫
dφ1

π cosφ1
16R3 sin3(φ1/2)

.

26 / 32



The “extensive mutual information” model

EE across cylinder in d = 4

First regulator:

SEMI
EE = π2κ(4)

RL

δ2 −
3π2κ(4)

4
L

R
log (R/δ)−

π2κ(4)
2

[ 1
12 + 3 log 2

]
L

R
.

Second regulator:

SEMI
EE = π3κ(4)

RL

δ2 −
3π2κ(4)

4
L

R
log (R/δ)−

π2κ(4)
2

[
−1

2 + 9
2 log 2

]
L

R
.

Would-be trace-anomaly coefficient cEMI = 3π2κ(4)/2. For the
EMI model aEMI/cEMI = 2/3⇐ satisfies unitarity bounds.Non-
universal piece b2 depends on regulator. In this case b0 “changes
completely”.
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The “extensive mutual information” model

EE for a corner in d = 3
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The “extensive mutual information” model

EE for a corner in d = 3
Entangling surface is defined by the lines Y (X) = 0 and Y (X) =
X · tan Ω with X ≥ 0.

In this case there are two contributions,
one from considering 1 and 2 on the same line, and another
one from considering 1 on the Y (X) = 0 line and 2 on the
Y (X) = X · tan Ω one. Each of these appears twice in the EE
expression. We write: SEMI

EE = 2(sI + sII). First contribution:
~n(X1) = ~n(X2) = (0, 1) and dσ1 = dX1, dσ2 = dX2,

sI = κ(3)

∫
dX1

∫
dX2

1
(X1 −X2)2 .

Second contribution: ~n(X1) = (0,−1), ~n(X2) = (− sin Ω, cos Ω),
dσ1 = dX1, dσ2 = dX2/ cos Ω,

sII = −κ(3)

∫
dX1

∫
dX2

1
(X1 −X2)2 + tan2 ΩX2

2
.
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The “extensive mutual information” model

EE for a corner in d = 3
Possible regulator:∫

dX1 →
∫ H

δ
dX1 ,

∫
dX2 →

[∫ x1−δ

0
dX2 +

∫ ∞
x1+δ

dX2

]
.

Final result:

SEMI
EE =

4κ(3)H

δ
− a(3)

EMI(Ω) log(H/δ) +O(δ0) ,

where
a

(3)
EMI(Ω) = 2κ(3)[1 + (π − Ω) cot Ω] .

This satisfies all general properties for a decent EE corner func-
tion. In particular, in the very-sharp and almost-smooth limits,

a
(3)
EMI(Ω ' 0) = k

Ω+O(Ω) , a
(3)
EMI(Ω ' π) = σ·(Ω−π)2+O(Ω−π)4 .

kEMI = 2πκ(3) and σEMI = 2κ(3)/3.Value of the would-be stress-
tensor two-point function charge CEMI

T = 16κ(3)/π
2.
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The “extensive mutual information” model

EE across a cone in d = 4

Parametrize cone in cylindrical coordinates by z = ρ/ tan Ω.

Induced metric on cone: ds2
h = dρ2/ sin2 Ω + ρ2dφ, so d2σ1 =

[ρ1/ sin Ω]dρ1dφ1 and analogously for 2. Given the symmetry
of the problem, we can set φ2 = 0 everywhere and multiply the
remainder integrals by an overall 2π. The unit normal vector
to the cone surface is given ~n = ~uρ cos Ω− ~uz sin Ω, where ~uρ =
cosφ~ux+sinφ~uy. Using this, it is straightforward to find ~n(x1) ·
~n(x2) = cos2 Ω cosφ1 + sin2 Ω . Similarly, we find |x1 − x2|4 =[
ρ2

1 + ρ2
2 − 2ρ1ρ2 cosφ1 + (ρ1 − ρ2)2/ tan2 Ω

]2.Then, we are left
with the integrals

SEMI
EE =

2πκ(4)
sin2 Ω

∫
ρ1dρ1

∫
ρ2dρ2

∫ 2π

0
dφ1

[cos2 Ω cosφ1 + sin2 Ω]
[a− b cosφ1]2

,

where a ≡ ρ2
1 + ρ2

2 + (ρ1 − ρ2)2/ tan2 Ω, b ≡ 2ρ1ρ2.
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EE across a cone in d = 4

Parametrize cone in cylindrical coordinates by z = ρ/ tan Ω.
Induced metric on cone: ds2

h = dρ2/ sin2 Ω + ρ2dφ, so d2σ1 =
[ρ1/ sin Ω]dρ1dφ1 and analogously for 2. Given the symmetry
of the problem, we can set φ2 = 0 everywhere and multiply the
remainder integrals by an overall 2π. The unit normal vector
to the cone surface is given ~n = ~uρ cos Ω− ~uz sin Ω, where ~uρ =
cosφ~ux+sinφ~uy.

Using this, it is straightforward to find ~n(x1) ·
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The “extensive mutual information” model

EE across a cone in d = 4
Performing the angular integrals, we are left with

SEMI
EE =

4π2κ(4)
sin2 Ω

[
cos2 Ω sI + sin2 Ω sII

]
,

where

sI =
∫ ∫

b ρ1ρ2
(a2 − b2)3/2 dρ1dρ2 , sII =

∫ ∫
a ρ1ρ2

(a2 − b2)3/2 dρ1dρ2 .

Possible regulator:∫
dρ1 →

∫ H

δ
dρ1 ,

∫
dρ2 →

[∫ ρ1−δ

0
dρ2 +

∫ ∞
ρ1+δ

dρ2

]
.

Putting pieces together, we are left with

SEMI
EE ⊃ −

3π2κ(4)
8 · cos2 Ω

sin Ω log2 (H/δ) .

Angular dependence is the expected one. Also, cEMI = 3π2κ(4)/2,
which matches the cylinder result.
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The “extensive mutual information” model

Bonus track: EE across a deformed sphere
Parametrizing the deformed sphere as

r(Ωd−2) = 1 + ε
∑

`,m1,...,md−3

a`,m1,...,md−3Y`,m1,...,md−3(Ωd−2) ,

where the Y`,m1,...,md−3(Ωd−2) are real (hyper)spherical harmon-
ics, for general CFTs,

the universal contribution suniv takes the
form

suniv = suniv
0 + ε2suniv

2 +O(ε3) ,
where suniv

0 is the result for the round sphere in each case (e.g.,
suniv

0 = F in d = 3 and suniv
0 = 4a in d = 4) and

s
univ
2 = CT

π
d+2

2 (d − 1)
2d−2Γ(d + 2)Γ(d/2)

∑
`,m1,...,md−3

a
2
`,m1,...,md−3

Γ(d + ` − 1)
Γ(` − 1)

×
{

π/2 (d odd)
1 (d even) .

Sphere is a local extremum of the EE. Leading correction con-
trolled by stress-tensor two-point function charge CT .
No one has verified this result in the EMI...
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