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generic form

Given CFTy and smooth entangling region V, EE takes the
( d) Hd 2

Hd4
Zbd 25d 2 +bd 45d 4+

blT + (_1)d2 Sumv
+ H2 d—2
bz +

(odd a)
(—1) 2 suniv log< )—H)o7 (even d)
H is some characteristic length of V and § a UV regulator
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General structure of EE for CFTs

In any state, leading term is “area-law” piece ~ H972/§472,
Exception for d = 2 theories. For single interval of length H,

c H
Sg;) =3 log (F) + bo ,

where c is the Virasoro central charge of the theory.

Coefficients b o,...,b; are “non-universal”: they are not well-
defined in the continuum. They are “local” in the sense that
they come from short-range correlations across V.
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Universal terms: even dimensions

s"V are “universal”: they are well-defined in the continuum
and capture meaningful information about the CFT.

In even dimensions, the universal term is logarithmic and s"™V is

given by a linear combination of local integrals over 0V weighted
by theory-dependent coefficients which can be shown to coincide
with the trace-anomaly charges,

(T = —2(=)Y2AX; + Y Bul,.
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Universal terms: even dimensions

For instance, in d = 4
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Dependence on details of entangling-surface geometry and CFT
considered appear highly “disentangled” from each other
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Universal terms: even dimensions

For instance, in d = 4

a
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and

2
S’éE) = sz

a < 2_ L E)
52 [27T/8VR+27T/<9V(trk 2k)]log<5 +bo .

Dependence on details of entangling-surface geometry and CFT
considered appear highly “disentangled” from each other

For unitary CFTs, a and ¢ constrained to the range
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Universal terms: even dimensions

a and ¢ can be isolated by considering entangling surfaces cor-
responding to spheres and cylinders, respectively,

C
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R
where R is the radius of the sphere or the cylinder, respectively,
and L the length of the former.
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Universal terms: even dimensions

a and ¢ can be isolated by considering entangling surfaces cor-
responding to spheres and cylinders, respectively,

cL
Sg}lz‘,) |sphere D —4a 10g(R/5) ) SEIL]L«:) |cylinder D) _§E lOg(R/é) )

where R is the radius of the sphere or the cylinder, respectively,
and L the length of the former.

For comparison, in d = 6 there are three “B-type” charges,
By, By, B3, besides the “A-type” one.
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In odd dimensions, no logarithmic term is present for smooth
entangling surfaces, and the universal contribution is a constant

term which no longer corresponds to an integral over V. (Also,
there is no trace anomaly)
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Universal terms: odd dimensions

In odd dimensions, no logarithmic term is present for smooth
entangling surfaces, and the universal contribution is a constant
term which no longer corresponds to an integral over V. (Also,
there is no trace anomaly)

Simplest case corresponds to d = 3 CFTs, for which

H
Sé?a’:m?—F.

For 0V = S!, F actually equals the free energy of the corre-
sponding theory on S3.
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Universal terms: odd dimensions

In odd dimensions, no logarithmic term is present for smooth
entangling surfaces, and the universal contribution is a constant
term which no longer corresponds to an integral over V. (Also,
there is no trace anomaly)

Simplest case corresponds to d = 3 CFTs, for which

H
S& == -F.
)
For 0V = S!, F actually equals the free energy of the corre-

sponding theory on S>.

In F, dependence on geometric details of V' and dependence
on the details of the CFT are no longer disentangled from each
other.
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General structure of EE and universal terms

Universal terms: odd dimensions

In odd dimensions, no logarithmic term is present for smooth
entangling surfaces, and the universal contribution is a constant
term which no longer corresponds to an integral over V. (Also,
there is no trace anomaly)

Simplest case corresponds to d = 3 CFTs, for which

H
S& == -F.
)
For 0V = S!, F actually equals the free energy of the corre-

sponding theory on S>.

In F, dependence on geometric details of V' and dependence
on the details of the CFT are no longer disentangled from each
other. In d = 5,7,... similar story: for s"™V for 9V = S92
equals free energy on S%.
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General structure of EE for CFTs

non-universal and local; universal and local;

universal and non-local; non-universal and local+non-local
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General structure of EE for CFTs

non-universal and local; universal and local;
universal and non-local; non-universal and local+non-local

Hd2 Hd4

S& =1 (125012 +b(145d4+

b 4 (—1)T g (odd d)
a—2
bgT +(=1)"2z s"WiViog ( ) + by, (even d)

No one has ever payed much attention to the constant coef-
ficient by appearing for even-dimensional theories. Just like
bg—9,...,b1, this is a non-universal piece. However, all this pol-
lution has a local origin and by also contains a universal non-
local part which does not depend on the regulator details...

o = = = = vae
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Singular regions

When geometric singularities are present in 0V, the structure
of divergences gets modified.
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Singular regions

When geometric singularities are present in 9V, the structure
of divergences gets modified.

Prototypical case = entangling region bounded by a corner of
opening angle 2 in d = 3 CFTs. In that case, new logarithmic
term
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SégE)|corner = I’lg — a(3)(Q) log <7> + bg ,

where a(*)(Q) is a cutoff-independent function of the opening
angle.



General structure of EE and universal terms

Singular regions

When geometric singularities are present in 9V, the structure
of divergences gets modified.

Prototypical case = entangling region bounded by a corner of
opening angle 2 in d = 3 CFTs. In that case, new logarithmic
term

H . H ~
SégE)|corner = blg - a(s)(Q) log (g) + by,

where a(*)(Q) is a cutoff-independent function of the opening
angle.

The dependence of a(*)(Q) on the opening angle changes (ap-
parently rather drastically) from one CFT to another.
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General structure of EE and universal terms

Some general properties:
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General structure of EE and universal terms

Some general properties:

daa'®(Q) <0,

080 (Q)
haves as

d(r+Q)=ad¥(r-Q),

 9aa?(9)

a®(Q) >0,
sin €} for

Qel0,7].
®3) _k ®3)
aV(~0)==40(Q), aV(Qx~m)

= 0-(Q—7)2+O(Q—m)*.
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In the very-sharp and almost-smooth limits, the function be-
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General structure of EE and universal terms

Some general properties:

daa'®(Q) <0,

aRa®(Q) >
haves as

AP +Q)=a®(r-Q),

a®(Q) >0,
daa® ()
~ sinQ for
(3) _k
a'”’ (2 ~0) 54—0

Qel0,7].
(6),

P (Q~ 1) =0 (Q—7)2+0(Q—7)* .
k is a constant which coincides with the universal coefficient
corresponding to a slab region for general theories.
o>« = E x 9ac
W 12 2

In the very-sharp and almost-smooth limits, the function be-
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Singular regions

a®(Q~0)= gw(a),

M (Q~ 1) =0 (Q—7)2+0(Q—7)*
Leading coefficient in almost-smooth regime, o, is related to the

2

stress-energy tensor two-point function coefficient™ C; through
T
=—C
g 24 T
for general CFTs.



General structure of EE and universal terms

Singular regions

a®(Q ~ 0) = £+0(Q) LA ~ 1) = 0 ()07
Leading coefficient in almost-smooth regime, o, is related to the

stress-energy tensor two-point function coefficient™ C; through

2

U:ﬁCT’

for general CFTs.

*For general CFTs in d dimensions, the stress-tensor correlator
behaves as (Tup(7)Teq(0)) = Crlopea(w)/|*? where Inpca(z)
is a fixed tensorial structure, and the only theory-dependence
appears through Cr.

[In d = 4, C; is proportional to the trace-anomaly coefficient ]
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Singular regions
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6 \‘ — scalar 1
‘\‘ — fermion
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N — holography
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0
Normalization by C; makes all curves lie very close to one another
throughout the whole range.
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Singular regions

5 :
6 \‘ — scalar
‘\‘ — fermion
5F \
N — holography
\
oAb Y o Ising (N=1)
Q \ v XY (N=2)
< 3- .
=t A Heisen. (N=3)
. NOT
==+ minimal
ALLOWED
0 77‘/4 7'(‘/2 377‘/4 n

0
Normalization by C; makes all curves lie very close to one another
throughout the whole range.
Lower bound on a*)(9) valid for general CFTs

w2C,

a¥(Q) > amin(Q), where amin(Q) = Y logﬁll/ sin(§2/2)]
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Singular regions

a'®)(Q) very different from analogous function a(*) (Q) for a con-
ical entangling surface in d = 4.
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Singular regions

a'®)(Q) very different from analogous function a(*) (Q) for a con-
ical entangling surface in d = 4.
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Similar logarithmic enhancement of universal term

4(Q)log® (H/8) + by log (H/5) + by ,



General structure of EE and universal terms

Singular regions

a'®)(Q) very different from analogous function a(*) (Q) for a con-
ical entangling surface in d = 4.

Similar logarithmic enhancement of universal term
2
4 H
S]E:E)|cone = bQﬁ —a
but now

4(Q)log® (H/8) + by log (H/5) + by ,

2
a(4)(Q) _ ¢ cos Q
for all CFTs.

T

sin
Only dependence on the theory under consideration appears
through the charge c
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Singular regions

higher d. For the latter

Contrast between odd- and even-dimensional cases persists for

S(d)(even)l(hyper)cone o (_1)
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Again functional dependence on {2 completely fixed for any CFT
up to (d/2—1) coefficients 7](-d) related to trace-anomaly charges
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Singular regions

Contrast between odd- and even-dimensional cases persists for
higher d. For the latter

ven =2
S(d)(e )l (hyper)cone D) (_1) 2 a(d)(Q) 10g2 (H/(S)

where
d—4

2
(@) = LS [ cos(2j0)]

sin iz

Again functional dependence on 2 completely fixed for any CF'T
up to (d/2—1) coefficients ’yj(-d) related to trace-anomaly charges.
On the other hand, for odd-d one finds something like
d)(odd d-1
S5 |tnyperscone > (1) 0l (©2) log (H/6) ,

where a(? (Q) differs for each CFT.

16 / 32



General structure of EE and universal terms

Singular regions

Contrast between odd- and even-dimensional cases persists for
higher d. For the latter

ven =2
S(d)(e )l (hyper)cone D) (_1) 2 a(d)(Q) log2 (H/(S)

where
d—4

2
a (@) = L85 [50 con(2j0)

sin iz

Again functional dependence on 2 completely fixed for any CF'T
up to (d/2—1) coefficients ’yj(-d) related to trace-anomaly charges.
On the other hand, for odd-d one finds something like

St yperyeone > (<1)7 0l (©2) log (H/3) ,
where a(? (Q) differs for each CFT.
Still some degree of universality in almost-smooth limit < Cp.

16 / 32
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One can consider other types of singular regions, with their
own peculiarities and features. These include wedges, cones

with non-circular sections, curved corners and cones, polyhedral
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General structure of EE and universal terms

Singular regions

One can consider other types of singular regions, with their
own peculiarities and features. These include wedges, cones

with non-circular sections, curved corners and cones, polyhedral
corners, etc.

@ Polyhedral corner of opening angles 01, 6s,...,0;
H? H H
Sglla)|polyh. = b25—2 — wl? + v(91, Bo, - - 79]‘) log (?) +bo

o Infinite wedge of opening angle (2

H? H
Sg]?lwedge = b2_2 - f(Q)_ + bO
) §
o = = T wace



The “extensive mutual
information” model
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The “extensive mutual information’ model

A model has an extensive mutual information if the “tripartite
information” vanishes

I3(A; B,C) = I(A,B)+I(A,C)—I(A,BUC) =0 ¥ A,B,C

= No overlap between the information shared by A and B and
the one shared by A and C. This is the case of a (1 + 1)-
dimensional Dirac fermion.

[In general, it is possible both I3(A4; B,C') > 0 and I3(A; B,C) <
0].

Imposing I3(A; B,C') = 0 + some physically reasonable require-
ments such as causality and Poincaré invariance, strongly re-
stricts the form of EE and mutual information in general d.
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The “extensive mutual information” model

The result defines the EMI model. Its EE is given by
SEMI
EE

_ /dd201/ 4924,
|:c

551)7”1,3 (1‘2)51'3'

1 — x2|2 (d—2)
where n’(x1) is the unit normal vector to the boundary of A
0A, at the point x; and K(d) is a positive parameter
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The result defines the EMI model. Its EE is given by

_ d—2 d—a  ni(@1)nd (x2)d;;
SEMI— o /aAd o1 /Md R T

where n'(x1) is the unit normal vector to the boundary of A,
OA, at the point 1 and kg is a positive parameter.

It is an open problem to find out whether this is the EE of an
actual CFT for d > 3.
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The “extensive mutual information’ model

The result defines the EMI model. Its EE is given by

EMI __ d—2 d—2 ni(xl)nj($2)6i'
SEE = K’(d) /3Ad 01 /8Ad ()] |.T1 — $2|2(d_2)

where n'(x1) is the unit normal vector to the boundary of A,
OA, at the point 1 and kg is a positive parameter.

It is an open problem to find out whether this is the EE of an
actual CFT for d > 3.

Regardless of this, the model respects all general principles of
EE and is a useful tool for understanding various features. Com-
putationally, even simpler than Ryu-Takayanagi formula.
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EE of a disk in d = 3

Consider disk region of radius R. Due to the symmetry of the
problem, we can fix o = (R,0), and then 7i(z2) = (1,0), which
makes one of them trivial. On the other hand, we have x; =
(Rcos by, Rsinby), fi(x1) = (cosby,sinfy). Also, doy = Rdb,
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4R?sin?(0/2).
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EE of adiskin d =3

Consider disk region of radius R. Due to the symmetry of the
problem, we can fix o = (R,0), and then 7i(z2) = (1,0), which
makes one of them trivial. On the other hand, we have x; =
(Rcos by, Rsinby), fi(x1) = (cosby,sinfy). Also, doy = Rdb,
dos = Rdfy. From this, one finds|xy — 29|? = 2R?*(1 — cos ;) =
4R?sin%(0/2). Then, we have

2 cos 6
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0
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EE of adiskin d = 3

Consider disk region of radius R. Due to the symmetry of the
problem, we can fix o = (R,0), and then 7i(z2) = (1,0), which
makes one of them trivial. On the other hand, we have x; =
(Rcos by, Rsinby), fi(x1) = (cosby,sinfy). Also, doy = Rdb,
dos = Rdfy. From this, one finds|xy — 29|? = 2R?*(1 — cos ;) =
4R?sin%(0/2). Then, we have

cos 01

2T
S]]:]j]l;dl = 5(3) Rd92 /Rdelm .

0

Second integral diverges when |z — 22> — 0, so we need to
regulate it:
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EE of adiskin d = 3

Consider disk region of radius R. Due to the symmetry of the
problem, we can fix o = (R,0), and then 7i(z2) = (1,0), which
makes one of them trivial. On the other hand, we have x; =
(Rcos by, Rsinby), fi(x1) = (cosby,sinfy). Also, doy = Rdb,
dos = Rdfy. From this, one finds|xy — 29|? = 2R?*(1 — cos ;) =
4R?sin%(0/2). Then, we have

cos 01

2T
S]]:]DE/II = 5(3) Rd92 /Rdelm .

0

Second integral diverges when |z — 22> — 0, so we need to
regulate it:
1) allow only for angles larger than §/R;
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EE of adiskin d = 3

Consider disk region of radius R. Due to the symmetry of the
problem, we can fix o = (R,0), and then 7i(z2) = (1,0), which
makes one of them trivial. On the other hand, we have x; =
(Rcos by, Rsinby), fi(x1) = (cosby,sinfy). Also, doy = Rdb,
dos = Rdfy. From this, one finds|xy — 29|? = 2R?*(1 — cos ;) =
4R?sin%(0/2). Then, we have

cos 01

2T
S]]:]DE/II = 5(3) Rd92 /Rdelm .

0
Second integral diverges when |z — 22> — 0, so we need to
regulate it:

1) allow only for angles larger than §/R;
2) replace |r1 — z2|? — |21 — 22| + 52
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The “extensive mutual information” model

EE of a disk in d = 3

First regulator:

e THR@E) /7r cos01df; R 5
Spp = 5 - Sn2(0/2) 4Tk (3) 5 27K (3)

Second regulator:

2
B 9 ™ cos 01d6q , R 2
= = 2 O\ — —
SEE 27‘(’R H(g)/o [4R2 Sin2(9/2) n 52] i /i(J) 5 2 /i(g)



The “extensive mutual information” model

EE of a disk in d = 3

First regulator:

genr _ TG3) /7r cos 01do,
EE s

R 2
9 /R W = 47'”{(3)— — 21 K(3)

0

Second regulator:

cos #1d6,
4R?sin?(0/2) + 2]

. R
= 27(’211(3 - — 271’2&(3)

2
SEE}/II = 27TR2H(3)/0 [ ) 5

Universal piece unchanged, F' = 27T2K(3), whereas 0/ depends on
regulator.
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The “extensive mutual information” model

EE across sphere in d = 4

Radius-R spherical entangling surface. All points equivalent on
sphere surface, so we can fix 9 = (0,0, R) and 7i(x2) = (0,0,1).
On the other hand, 1 = R(sin 6, cos ¢1,sin 61 sin ¢, cos01) and
fi(xy) =

(sin 61 cos ¢1, sin 01 sin ¢, cos 7).



The “extensive mutual information” model

EE across sphere in d = 4

Radius-R spherical entangling surface. All points equivalent on
sphere surface, so we can fix 9 = (0,0, R) and 7i(x2) = (0,0,1).
On the other hand, 1 = R(sin 6, cos ¢1,sin 61 sin ¢, cos01) and
fi(x1) = (sinf; cos ¢1,sin by sin @1, cosfy). From this, we find
fi(x1) - 7i(z2) = cosfq, and |1 — z2|* = 16R*sin?(61/2).
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EE across sphere in d = 4

i(z1) =

sphere surface, so we can fix 9 = (0,0, R) and 7i(x2) = (0,0,1).

Radius-R spherical entangling surface. All points equivalent on
On the other hand, 1 = R(sin 6, cos ¢1,sin 61 sin ¢, cos01) and

(sin 01 cos ¢1, sin 01 sin ¢1, cos 7). From this, we find
fi(r1) - 7i(z2) = cosfq, and |1 — 22| = 16R*sin?(61/2). Also,
d?01 = R?sin#1d6,d¢;, and so on.



The “extensive mutual information” model

EE across sphere in d = 4

Radius-R spherical entangling surface. All points equivalent on
sphere surface, so we can fix 9 = (0,0, R) and 7i(x2) = (0,0,1).
On the other hand, 1 = R(sin 6, cos ¢1,sin 61 sin ¢, cos01) and
fi(x1) = (sinf; cos ¢1,sin by sin @1, cosfy). From this, we find
fi(r1) - 7i(z2) = cosfq, and |1 — 22| = 16R*sin?(61/2). Also,
d?01 = R?sin;df;d¢y, and so on. Putting the pieces together,
we can perform three of the four integrals to get

sin 6 cos 64
16R*sin(6,/2)

SET =y 4mR? - 20 R? [ oy
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The “extensive mutual information” model

EE across sphere in d = 4

Radius-R spherical entangling surface. All points equivalent on
sphere surface, so we can fix 9 = (0,0, R) and 7i(x2) = (0,0,1).
On the other hand, 1 = R(sin 6, cos ¢1,sin 61 sin ¢, cos01) and
fi(x1) = (sinf; cos ¢1,sin by sin @1, cosfy). From this, we find
fi(r1) - 7i(z2) = cosfq, and |1 — 22| = 16R*sin?(61/2). Also,
d?01 = R?sin;df;d¢y, and so on. Putting the pieces together,
we can perform three of the four integrals to get

sin 6 cos 64
16R*sin(6,/2)

SET =y 4mR? - 20 R? [ oy

Regulators:
1) allow only for angles larger than §/R;
2) |£C1 — 1‘2|4 — |l‘1 — :L‘2|4 + 54.
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The “extensive mutual information” model

EE across sphere in d = 4

First regulator:

EMI
SEE -

7T2h}(4) a
2

0
5/R
= 47T2H,(4)

sin 01 cos 01

sin*(6/2)
R2
52

— —4r%k
Second regulator:

Sggll = 87T2R4I£(4)/(; d91[
= 27T3/~i',(4)

5z A’k

16 R4 sin*(6/2) + 64]
(4) log (R/6) — 7r2/1(4) [1+4 4log?2].
=} (=) = = E DA
e

2
(4) log (R/¢) — 7r2/§(4) [3 + 4log 2] .

sin 61 cos 64




The “extensive mutual information” model

EE across sphere in d = 4
First regulator:

7r2/1(4) 7T sin 61 cos 64
2 Jsr ' sini(6/2)

SEMI _
EE
9 R2 2 2 2

=dr R~ 477k (4) log (R/6) — w7k (4) [3 + 4log 2] .
Second regulator:

sin 61 cos 64
16 R4 sin*(6/2) + 64]

Sggll = 87T2R4I£(4)/(; d91[
., R?
= 271"5#&'(4)? - 47T2/ﬂ3(4) log (R/5) - 7T2/€(4) [1 + 410g 2] .

Would-be trace-anomaly coefficient agyg = 7r2/<c(4). Non-universal
piece b» depends on regulator. by has a “piece” which remains
the same and one which varies*. EREDRE
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EE across cylinder in d = 4

Cylinder of radius R. In cylindrical coordinates we can write
x1 = (Rcos ¢1, Rsin ¢1, 21), 7i(z1) = (cos ¢1,sin ¢1,0), and x9 =
(R,0,22), 1i(x2) = (1,0,0), where we already took advantage of
the circular symmetry of the surface.
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EE across cylinder in d = 4

Cylinder of radius R. In cylindrical coordinates we can write
= (Rcos¢1, Rsin ¢y, 21), fi(x1) = (cos ¢1,sin ¢1,0), and zg =
(R, 0, z2), ii(z2) = (1,0,0), where we already took advantage of
the circular symmetry of the surface. Now, d?c; = Rd¢1dzl
and the same for 2. We have now |z — z2|* = [4R? sin?(¢1/2) +

(21 — 22)°*.
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EE across cylinder in d = 4

Cylinder of radius R. In cylindrical coordinates we can write

= (Rcos¢1, Rsin ¢y, 21), fi(x1) = (cos ¢1,sin ¢1,0), and zg =
(R, 0, z2), ii(z2) = (1,0,0), where we already took advantage of
the circular symmetry of the surface. Now, d?c; = Rd(bldzl
and the same for 2. We have now |z — z2|* = [4R? sin?(¢1/2) +
(21 — 22)?)%. So we find
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The “extensive mutual information” model

EE across cylinder in d = 4

Cylinder of radius R. In cylindrical coordinates we can write

= (Rcos¢1, Rsin ¢y, 21), fi(x1) = (cos ¢1,sin ¢1,0), and zg =
(R, 0, z2), ii(z2) = (1,0,0), where we already took advantage of
the circular symmetry of the surface. Now, d?c; = Rd(bldzl
and the same for 2. We have now |z — z2|* = [4R? sin?(¢1/2) +
(21 — 22)?)%. So we find

— ' coSs @1
Sgp = K(4) - 2T / Rdz / Rdz / don [ARZsin?(¢1/2) + (21 — 22)2)2 "

We can set z; = 0 and regulate ffé% dz; = L.

L )



The “extensive mutual information” model

EE across cylinder in d = 4

Cylinder of radius R. In cylindrical coordinates we can write

= (Rcos¢1, Rsin ¢y, 21), fi(x1) = (cos ¢1,sin ¢1,0), and zg =
(R,0,22), 1i(x2) = (1,0,0), where we already took advantage of
the circular symmetry of the surface. Now, d?c; = Rd(bldzl
and the same for 2. We have now |z — z2|* = [4R? sin?(¢1/2) +
(21 — 22)?)%. So we find

— ' coSs @1
Sgp = K(4) - 2T / Rdz / Rdz / don [ARZsin?(¢1/2) + (21 — 22)2)2 "

We can set z; = 0 and regulate [~ L2 L2 ,dz1 = L. In the resulting
expression, we can perform the integral over zo, which requires

no regulation,

T COS @1
16R3 sin3(¢1/2)

Spal =27R*- L kg - / dey

L )



The “extensive mutual information” model

EE across cylinder in d = 4

First regulator
EMI 2 RL 371-2”(4) L
See. =100 Gy I R°
Second regulator

og (R/6) —
: RL
Sg}l;/ﬂ 7T5"4(4) 52

2
37T2H(4) L
4 R

og (R/d) —

2
Ry [ 19 }L
=4 Zlog2| 2.
2 [2+20g R
] ] = = = AR
D R Y OV I




The “extensive mutual information” model

EE across cylinder in d = 4

First regulator
. RL 3 2&(4) L
2,
SEMT = 7 )5 1 R
Second regulator

o (R/3) —
ST = ey

(4)

2
37T2H(4) L o
4 R

g (R/6) —
EMI model agyi/cpvr = 2/3

s 2/1(4) 1 9 L
—— 4+ =log2| —.
2 { 5 Tgio8 } R
Would-be trace-anomaly coefficient cgy = 37r2ff(4)/ 2. For the
=] = = E E DA
D R Y OV I

L
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The “extensive mutual information” model

EE across cylinder in d = 4

First regulator
. RL 3 2&(4) L
2,
SEMT = 7 )5 1 R
Second regulator

o (R/3) —
ST = ey

(4)

2
37T2H(4) L o
4 R

g (R/0)

a 2/1(4) 1 9 L
— —— 4+ =log2| —.
2 { 5 Tgio8 } R
Would-be trace-anomaly coefficient cgy = 37r2ff(4)/ 2. For the
EMI model agyi/cpvr = 2/3 < satisfies unitarity bounds.
=] [ - = = o
D R Y OV I

L
{124-31 }R




The “extensive mutual information” model

EE across cylinder in d = 4

First regulator:

, RL 3n%k L L
EMI 2 (4) (4)
_ Bk log .
St TR4) 52 4 R og (1t/9) - 2 |:12 o } R
Second regulator:
: RL 371'2/1(4) L 7T2/<L(4) 1 9 L
Sggﬂ :71—5/‘{(4)_52 — Tﬁlog(R/d)_ 92 |:_2+10g2:| E

Would-be trace-anomaly coefficient cgy = 37r2ff(4)/ 2. For the
EMI model agni/cpvr = 2/3 < satisfies unitarity bounds.Non-

universal piece /), depends on regulator. In this case by “changes
completely”.
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Entangling surface is defined by the lines Y(X) = 0and Y/(X) =
X -tan 2 with X > 0. In this case there are two contributions,
one from considering 1 and 2 on the same line, and another

one from considering 1 on the Y (X) = 0 line and 2 on the
Y(X) =X - tanQ one.
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EE for a corner in d = 3

Entangling surface is defined by the lines Y(X) = 0and Y/(X) =
X -tan 2 with X > 0. In this case there are two contributions,
one from considering 1 and 2 on the same line, and another
one from considering 1 on the Y (X) = 0 line and 2 on the
Y(X) = X -tan () one. Each of these appears twice in the EE
expression. We write: SENT = 2(s; + sp).



The “extensive mutual information” model

EE for a corner in d = 3

Entangling surface is defined by the lines Y(X) = 0and Y/(X) =
X -tan 2 with X > 0. In this case there are two contributions,
one from considering 1 and 2 on the same line, and another
one from considering 1 on the Y (X) = 0 line and 2 on the
Y(X) = X - tan Q2 one. Each of these appears twice in the EE
expression. We write: SEY" = 2(s; + sy). First contribution:
ﬁ(Xl) = ﬁ(Xg) = (0, 1) and dUl = Xm, d02 = dXQ,
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The “extensive mutual information” model

EE for a corner in d = 3

Entangling surface is defined by the lines Y(X) = 0and Y/(X) =
X -tan 2 with X > 0. In this case there are two contributions,
one from considering 1 and 2 on the same line, and another
one from considering 1 on the Y (X) = 0 line and 2 on the
Y(X) = X - tan Q2 one. Each of these appears twice in the EE
expression. We write: SEM' = 2(s; + sy). First contribution:

ﬁ(Xl) = ﬁ(Xg) = (0, 1) and dUl = Xm, d02 = dXQ,

1
St = li(g)/Xm/ng—(Xl —X2)2 .
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The “extensive mutual information” model

EE for a corner in d = 3

Entangling surface is defined by the lines Y(X) = 0and Y/(X) =
X -tan 2 with X > 0. In this case there are two contributions,
one from considering 1 and 2 on the same line, and another
one from considering 1 on the Y (X) = 0 line and 2 on the
Y(X) = X - tan Q2 one. Each of these appears twice in the EE
expression. We write: Spy" = 2(s; + sip). First contribution:
ﬁ(Xl) = ﬁ(Xg) = (0, 1) and dUl = Xm, d02 = dXQ,

1
St :H(g)/Xm/dsz

Second contribution: 7(X;) = (0,—1), 7(X2) = (—sinQ, cos ),
doy = dX;, dog = dX3/ cos 2,

1
S = —hK(3) /Xm/dX2 (Xl — X2)2 + tan? QX22 .

L i)




The “extensive mutual information” model

EE for a corner in d = 3

Possible regulator:

H x1—0
/dX1—>/ dX, | /dX2—>[/ dX, +
0 0

[e.9]

ng] .
z1+0



The “extensive mutual information” model

EE for a corner in d = 3

Possible regulator:

H x1—0 0o
/dX1—>/ dX, | /dX2—> / dX, +
§ 0
Final result:
Ao H
spt = —2= — o)
)
where
C)
EMI

ng] |
T1+0

(2) log(H/5) + O(8°)
() = 2K3)[1 + (7 — Q) cot Q] .



The “extensive mutual information” model

EE for a corner in d = 3

Possible regulator:

H x1—0 0o
/Xm —>/ dX, | /ng = V dX, + dXQ] .
§ 0 z1+0

Final result:

Ak H
— 0~ af(9) log(H/8) + O(8°),

GEMI _
EE
where

@1(3&1(9) = 2k(3)[1 + (7 — Q) cot Q] .

This satisfies all general properties for a decent EE corner func-
tion. In particular, in the very-sharp and almost-smooth limits,

k
afn(Q = 0) = 5+0(Q),  agn(Q = 1) = 0-(Q-m)*+0(Q-m)".



The “extensive mutual information” model

EE for a corner in d = 3

Possible regulator:

H x1—0 0o
/Xm —>/ Xm, /dX2 — |:/ dXs + dX2‘| .
§ 0 z1+0

Final result:
Ak H
St = — 5 — () log(H/8) + 0(5°),

where
ag\)ﬂ(Q) = 2k(3)[1 + (7 — Q) cot Q] .
This satisfies all general properties for a decent EE corner func-
tion. In particular, in the very-sharp and almost-smooth limits,
k

Al (Q~0) = =40(Q), alD (2~ 1) = 0-(Q—7)2+0(Q—7)"

Q

Kevr = 27r/<;(3) and ogy; = 2/€(3)/3.Value of the would-be stress-
tensor two-point function charge CPM' = 16k 3) /72
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EE across a cone in d = 4

Parametrize cone in cylindrical coordinates by z
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Parametrize cone in cylindrical coordinates by z = p/tanQ.
Induced metric on cone: ds? = dp?/sin?Q + p2d¢, so doy =
[p1/sin Q]dp1d¢p; and analogously for 2. Given the symmetry

of the problem, we can set ¢ = 0 everywhere and multiply the
remainder integrals by an overall 2.



The “extensive mutual information” model

EE across a cone in d = 4

Parametrize cone in cylindrical coordinates by z = p/tanQ.
Induced metric on cone: ds? = dp?/sin?Q + p2d¢, so doy =
[p1/sin Q]dp1d¢p; and analogously for 2. Given the symmetry
of the problem, we can set ¢2 = 0 everywhere and multiply the
remainder integrals by an overall 2zr. The unit normal vector
to the cone surface is given 7 = i, cos Q0 — 1 sin {2, where i, =
COS Py, +sin Piy.
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The “extensive mutual information” model

EE across a cone in d = 4

Parametrize cone in cylindrical coordinates by z = p/tanQ.
Induced metric on cone: ds? = dp?/sin?Q + p2d¢, so doy =
[p1/sin Q]dp1d¢p; and analogously for 2. Given the symmetry
of the problem, we can set ¢2 = 0 everywhere and multiply the
remainder integrals by an overall 2zr. The unit normal vector
to the cone surface is given 7 = i, cos Q0 — 1 sin {2, where i, =
oS Piiy, +sin i, Using this, it is straightforward to find 7i(x1)-
ii(xg) = cos? Qcos @1 + sin? Q. Similarly, we find |z — zo|* =
(02 + p3 — 2p1pacos 1 + (p1 — p2)?/ tan2 Q).
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The “extensive mutual information” model

EE across a cone in d = 4

Parametrize cone in cylindrical coordinates by z = p/tanQ.
Induced metric on cone: ds? = dp?/sin?Q + p2d¢, so doy =
[p1/sin Q]dp1d¢p; and analogously for 2. Given the symmetry
of the problem, we can set ¢2 = 0 everywhere and multiply the
remainder integrals by an overall 2zr. The unit normal vector
to the cone surface is given 7 = i, cos Q0 — 1 sin {2, where i, =
oS Piiy, +sin i, Using this, it is straightforward to find 7i(x1)-
ii(xg) = cos? Qcos @1 + sin? Q. Similarly, we find |z — zo|* =
[p3 4+ p3 — 2p1p2 cos g1 + (p1 — p2)?/ tan? Q]Q.Then, we are left
with the integrals

[cos? Q cos ¢y + sin? Q)]
[a — bcos ¢y

2Tk 2m
Sep = @ /Pldm/Pzsz A d¢y

BE sin? Q

where a = p? + po® + (p1 — p2)?/ tan® Q, b = 2p1ps.
]

9
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The “extensive mutual information” model

EE across a cone in d = 4

Performing the angular integrals, we are left with
SEMI

_ 4%2/1(4)
BE sin? Q)
where

{cos2 Qs +sin?Q SH:| ,
bpip2 apip2
= // — 1) 5 ayapdridez, s //

b2 3/2 dpldPQ




The “extensive mutual information” model

EE across a cone in d = 4

2

gEMI _ dm K’(4)
EE

where

Performing the angular integrals, we are left with

sin? Q)

{cos2 Qs +sin?Q SH:| ,
bpip2
= // (= 3/2dP1dp2,

a P12
// PLo 3/2d/71dp2
Possible regulator

H p1—9
/dpl—>/ dpy, /d,02—>[/ dp2+/
4 0 P

o0

dpg] .
146



The “extensive mutual information” model

EE across a cone in d = 4

2

gEMI _ dm K‘(4)
EE

where

Performing the angular integrals, we are left with

sin? Q)

{cos2 Qs +sin?Q SH:| ,
bpip2
= // (= 3/2dP1dP2,

a P12
// PLo 3/2d/71dp2
Possible regulator

H p1—9
/dpl—>/6 dpy, /d,02—>[/ dpz-l-/
p

0
Putting pieces together, we are left with

EMI
SEE

dpg] .
146
_37r2/<;(4) cos?

8

log? (H/9) .
sin €2 og” (H/9)
Angular dependence is the expected one.
=} = = E E DA
W 22




The “extensive mutual information” model

EE across a cone in d = 4

Performing the angular integrals, we are left with

4725(4)

2 .2
M= 20 {cos Q s; + sin an} ,
where
bPlP2 aPlP2
= // (a® — 02)372 s dp1dpe // 2372 ——5adp1dps -

Possible regulator.

H p1—9 0o
/dpl —>/ dpy, /d,02 — [/ dpz-l-/ dpQ] )
é 0 p1+6

Putting pieces together, we are left with
37T2/<;(4) cos?
8 sin

SR -

log? (H/6) .

Angular dependence is the expected one. Also, cpyv = 3772/£(4) /2,

which matches the cylinder result.

32 / 32



The “extensive mutual information” model

Bonus track: EE across a deformed sphere

Parametrizing the deformed sphere as

T(Qd,Q) =1+4+¢ Z

£mi,...,mq—3

aé,ml,...,md,gyvf,ml,...,md,‘g (Qde) )

where the Yy, m, 4(Qa—2) are real (hyper)spherical harmon-
ics, for general CFTs,



The “extensive mutual information” model

Bonus track: EE across a deformed sphere

Parametrizing the deformed sphere as

T(Qd,Q) =1+4+¢ Z

ae,ml,...,md,3n7m1,...,md,3 (Qd72) )
£mi,...,mq—3
where the Yy, m, 4(Qa—2) are real (hyper)spherical harmon-
ics, for general CFTs, the universal contribution s"™V takes the
form
where iV
univ. _
sg™Y =

Sumv _ Sbmw + 625121nlv + 0(63) ,

is the result for the round sphere in each case (e.g.,
Find =3 and s§™ =4a in d = 4)



The “extensive mutual information” model

Bonus track: EE across a deformed sphere

Parametrizing the deformed sphere as
r(Qd72) =1+¢ Z ae,ml,...,md,gn,ml,...,md,g, (Qd72) ’
E,ml,...,md_g

where the Yy, m, 4 (£a—2) are real (hyper)spherical harmon-
ics, for general CFTs, the universal contribution s"™" takes the

form
Sumv _ ngv + 62512m1v + 0(83) ,
where s§™V is the result for the round sphere in each case (e.g.,
sg™ =Find=3and sf™ =4a in d = 4) and
0 0
d+2

v _ ™2 (@d-1) Yo Pd+e-1) [ 7/2  (dodd)
2 T YT %d=er(q § 2)r(d/2) Lmi,omy_3 T g _ 1) 1 (d even).

Sphere is a local extremum of the EE. Leading correction con-
trolled by stress-tensor two-point function charge Cr.
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The “extensive mutual information” model

Bonus track: EE across a deformed sphere

Parametrizing the deformed sphere as
r(Qd72) =1+¢ Z ae,ml,...,md,gn,ml,...,md,g, (Qd72) ’
E,ml,...,md_g

where the Yy, m, 4 (£a—2) are real (hyper)spherical harmon-
ics, for general CFTs, the universal contribution s"™" takes the

form
guniv ngv + 625121n1v + 0(83) ,
where s§™V is the result for the round sphere in each case (e.g.,
sg™V = Find=3 and s§™ =4a in d =4) and
d+2
univ _ 72 (d-1) 2 P(d+¢-1) /2 (d odd)
s =Cr 2d—21(d + 2)T'(d/2) Z Gemy.mg_g T —1) X{ 1 (d even).

Sphere is a local extremum of the EE. Leading correction con-

trolled by stress-tensor two-point function charge Cr.

No one has verified this result in the EMI...
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