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§Introduction. At this point you have probably noticed that performing explicit calcu-

lations of entanglement entropy (EE) for (discretized) quantum field theories (QFTs) is not

an easy task in general. Even in the “simple” cases of (1 + 1)-dimensional free theories, some

degree of nontrivial computational technology is required.

Part of the success of the Ryu-Takayanagi prescription [1, 2] for evaluating EE for holo-

graphic CFTs dual to Einstein gravity in the bulk comes from its computational simplicity.

In this tutorial I will show you a (toy?) model for which computations are even simpler

in general dimensions. Then, we will explicitly evaluate EE for various regions in d = 3 and

d = 4 in this model. Along the way, we will comment on the different kinds of EE universal

terms and their nature as well as on various aspects of the dependence of EE on the shape of

the entangling region.

§Color code for EE terms. non-universal and local; universal and local; universal and

non-local; non-universal and local+non-local.

§General structure of EE for CFTs. Given a smooth entangling region V on a time

slice of a (discretized) d-dimensional conformal field theory (CFT), the entanglement entropy

(EE) takes the generic form —see e.g., [3, 4],

S
(d)
EE = bd−2

Hd−2

δd−2
+ bd−4

Hd−4

δd−4
+ · · ·+

{
b1
H
δ + (−1)

d−1
2 suniv , (odd d) ,

b2
H2

δ2
+ (−1)

d−2
2 suniv log

(
H
δ

)
+ b0 , (even d) .

(0.1)

In this expression, H is some characteristic length of V , δ is a UV regulator2.

In any state, the leading term is always the “area-law” piece, which diverges as ∼ 1/δd−2

except for d = 2 theories. For those, in the simplest case of a region V corresponding to an

interval of length H, one finds

S
(2)
EE =

c

3
log

(
H

δ

)
+ b0 , (0.2)

where c is the Virasoro central charge of the theory [7, 8].

1pablo.bueno@cab.cnea.gov.ar
2Recall that, strictly speaking, the EE of subregions is an ill-defined quantity in the continuum. From a

lattice point of view, as we go to that regime, more and more entanglement accumulates between modes at

both sides of ∂V , leading to an infinite result in the limit. From the QFT perspective, the reason has to

do with the fact that algebras of observables associated to subregions are von Neumann algebras of type-III,

which do not admit a finite notion of trace —see e.g., [5, 6].
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The coefficients bd−2, . . . , b1 are “non-universal” in the sense that they are not well-defined

in the continuum: different regularization procedures give different answers for them (e.g.,

if I redefine the cutoff as δ → 2δ, then bd−2 → b̃d−2 ≡ bd−2/2
d−2). In addition to being

non-universal, all these terms have a “local nature”, in the sense that they are controlled by

integrals (of various intrinsic and extrinsic curvatures) over the entangling surface ∂V .

On the other hand, suniv are “universal”: they are well-defined in the continuum and

capture meaningful information about the CFT. In even dimensions, the universal term is

logarithmic and suniv is given by a linear combination of local integrals over the entangling

surface ∂V weighted by theory-dependent coefficients which can be shown to coincide with

the trace-anomaly charges [9–12]. These are dimensionless numbers characteristic of a given

CFT, which appear weighting various terms in the expectation value of the trace of the stress-

tensor of the theory when this is put on a curved background. The general expression takes

the form [13–15]

〈Tµµ 〉 = −2(−)d/2AXd +
∑
n

BnIn , (0.3)

where Xd is the Euler characteristic of the corresponding background, and the In are different

independent (order-d/2 in curvature) contractions of the Weyl tensor. In the four-dimensional

case, there is only one of the latter, and eq. (0.3) becomes 〈Tµµ 〉 = − a
16π2X4 + c

16π2CµνρσC
µνρσ.

For comparison, in the d = 6 case there are three “B-type” charges, B1, B2, B3, besides the

“A-type” one.

Then, in a d = 4 CFT, the EE for a smooth region is given by [9, 10]

S
(4)
EE = b2

H2

δ2
−
[
a

2π

∫
∂V
d2y
√
hR+

c

2π

∫
∂V
d2y
√
h

(
trk2 − 1

2
k2

)]
log(H/δ) + b0 , (0.4)

where R is the Ricci scalar of ∂V and the other integral involves various contractions of

extrinsic curvatures of ∂V . Observe that the dependence on the geometry of ∂V and the

dependence on the theory for which we are computing EE are strongly disentangled from

each other. The latter appears only through the constants a and c. This will be very different

for odd-dimensional theories. The charges a and c can be isolated, for instance, by considering

entangling surfaces corresponding to spheres and cylinders, respectively,

S
(4)
EE |sphere ⊃ −4a log(R/δ) , S

(4)
EE |cylinder ⊃ −

c

2

L

R
log(R/δ) , (0.5)

where R is the radius of the sphere or the cylinder, respectively, and L the length of the

former.

The coefficients appearing in the trace-anomaly and EE expressions can be constrained

imposing certain physical requirements for the theories under consideration. For instance,

given any initial state, imposing the energy flux measured at infinity integrated over time to

be positive leads to the bounds [16]

1

3
≤ a

c
≤ 31

18
. (0.6)
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These have been proven to hold for any unitary CFT in d = 4 [17].

In odd dimensions no logarithmic term is present for smooth entangling surfaces, and the

universal contribution is a constant term which no longer corresponds to an integral over ∂V .

The simplest case corresponds to three-dimensional CFTs, for which3

S
(3)
EE = b1

H

δ
− F . (0.7)

For ∂V = S1, F actually equals the free energy of the corresponding theory on S3 [20, 21],

which reveals its non-local nature. A similar relation holds for d = 5, 7, . . . , namely suniv for

∂V = Sd−2 equals the free energy on Sd. In F , suniv, the dependence on the geometric details

of V and the dependence on the details of the CFT for which we are computing EE are no

longer disentangled from each other.

No one has ever payed much attention to the constant coefficient b0 appearing for even-

dimensional theories. Just like its cousins bd−2, . . . , b1, this is a non-universal piece, in the

sense that you can pollute it by changing the regulator. However, all this pollution has a local

origin and b0 also contains a universal non-local part which does not depend on the regulator

details...

§Singular regions. When geometric singularities are present in ∂V , the structure of

divergences in eq. (0.1) gets modified. The prototypical case is that of an entangling region

bounded by a corner of opening angle Ω in d = 3 CFTs. In that case, a new logarithmic

universal contribution appears

S
(3)
EE |corner = b1

H

δ
− a(3)(Ω) log

(
H

δ

)
+ b̃0 , (0.8)

where a(3)(Ω) is a cutoff-independent function of the opening angle. This has been extensively

studied in the literature —see e.g., [22] for an updated list of references.

The dependence of a(3)(Ω) on the opening angle changes from one CFT to another —e.g.,

compare the relatively simple holographic result [23] with the highly complicated resulting

expressions for free fields [24–26]. It satisfies some general properties. On the one hand,

a(3)(Ω) = a(3)(2π − Ω), which follows from SEE(V ) = SEE(V̄ ), a consequence of the purity of

the ground state. Besides, using strong subadditivity and Lorentz invariance one can show

that [25]

a(3)(Ω) ≥ 0 , ∂Ωa
(3)(Ω) ≤ 0 , ∂2

Ωa
(3)(Ω) ≥ −∂Ωa

(3)(Ω)

sin Ω
, for Ω ∈ [0, π] . (0.9)

3Constant terms such as F are less robust than their even-dimensional logarithmic counterparts. This

is because we cannot resolve the relevant IR scales of the entangling region with more precision than the

UV cutoff. If we shift the relevant characteristic scale as R → R + aδ, with a = O(1), we will pollute the

putative universal contribution as F → F (1 − b1a). This pollution —which does not occur for logarithmic

contributions— can be remedied using mutual information as a geometric regulator [18, 19].
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Figure 1. Corner function a(3)(Ω) normalized by the two-point function charge CT for various theories:

free scalar, free fermion, Einstein gravity and various O(N) models [27–29], as well as general lower

bound function amin(Ω). Normalization by CT makes all curves lie very close to one another throughout

the whole range [30].

In the very-sharp and almost-smooth limits, the function behaves, respectively, as [24–26]

a(3)(Ω ' 0) =
k

Ω
+O(Ω) , a(3)(Ω ' π) = σ · (Ω− π)2 +

∑
p=2

σ(p−1) · (Ω− π)2p . (0.10)

In the first expression, k is a constant which coincides with the universal coefficient corre-

sponding to a slab region for general theories —see e.g., [31, 32]. Note that in the second

formula only even powers appear in the expansion. The leading coefficient, σ, turns out to

be related to the stress-energy tensor two-point function coefficient CT through4 [30, 34]

σ =
π2

24
CT , (0.11)

for general CFTs. Using eq. (0.11) and the third relation in eq. (0.9), one can find a lower

bound on a(3)(Ω) valid for general CFTs [35]. This takes the form

a(3)(Ω) ≥ amin(Ω) , where amin(Ω) ≡ π2CT

3
log [1/ sin(Ω/2)] , (0.12)

4For any CFT in d dimensions, the stress-tensor correlator behaves as 〈Tab(x)Tcd(0)〉 = CT Iab,cd(x)/|x|2d

where Iab,cd(x) is a fixed tensorial structure, and the only theory-dependent quantity is the charge CT [33].

Note also that in d = 4, CT is proportional to the trace-anomaly charge c.
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where CT is to be understood as the one corresponding to the theory we are comparing with.

The bound turns out to be pretty tight for all theories considered so far, even for considerably

small values of the opening angle [35].

The nature of a(3)(Ω) is different from the one of the analogous coefficient correspond-

ing to a conical entangling surface in four-dimensions. In that case, a similar logarithmic

enhancement of the universal term does occur, and the EE reads5

S
(4)
EE |cone = b2

H2

δ2
− a(4)(Ω) log2 (H/δ) + b̃0 log (H/δ) + b0 . (0.13)

For the cone, the universal function a(4)(Ω) is much more constrained than a(3)(Ω). In fact,

the explicit angular dependence is the same for all four-dimensional CFTs, namely [31, 36]

a(4)(Ω) =
c

4
· cos2 Ω

sin Ω
. (0.14)

The only dependence on the theory under consideration appears through the charge c. The

contrast with a(3)(Ω) can be understood from the fact that both a(3)(Ω) and a(4)(Ω) can be

(sort of) thought of as emerging from the respective contributions suniv in eq. (0.1) due to a

logarithmically divergent build-up of Fourier modes which arises on a smooth surface when

a singularity is included [37, 38]. While in d = 3, suniv is a constant and non-local term, in

d = 4 it is a geometric integral over the entangling surface.

This difference between the odd- and even-dimensional cases persists for higher d. For in-

stance, for general even-dimensional theories, it can be shown that a (hyper)conical entangling

surface gives rise to a universal term of the form [22]

SEE|(hyper)cone ⊃ (−1)
d−2
2 a(d)(Ω) log2

(
H

δ

)
, a(d)(Ω) =

cos2 Ω

sin Ω

d−4
2∑
j=0

[
γ

(d)
j cos(2jΩ)

]
, (0.15)

where again the functional dependence on the opening angle is completely fixed for any CFT

up to (d/2− 1) coefficients γ
(d)
j related to the corresponding trace-anomaly charges. On the

other hand, for odd-d one finds something like

SEE|(hyper)cone ⊃ (−1)
d−1
2 a(d)(Ω) log

(
H

δ

)
, (0.16)

where in the function a(d)(Ω) the dependence on the theory and the opening angle are no

longer disentangled from each other —see e.g., eqs. 3.25 and 3.26 in [31] for implicit formulas

for a(5)(Ω) in the case of holographic Einstein gravity. Still, the connection with CT in the

almost-smooth limit persists, and versions of eq. (0.11) for general d (both odd and even)

exist [34, 37, 39].

5Note that here, b̃0 does not really contain a non-local contribution, but still it can contain well-defined

information (local) contaminated by cut-off dependent pollution coming from the double-log term. In that

sense, it should not be colored in green, but I preferred not to introduce a fifth color...

5



One can consider other types of singular regions, with their own peculiarities and features.

These include wedges, cones with non-circular sections, curved corners and cones, polyhedral

corners, etc. —see [22, 31] and references therein.

§The “extensive mutual information” model. For some time during the Neolithic

age of QFT entanglement entropy, it was believed that the analytic result obtained for the

(1 + 1)-dimensional Dirac fermion in the multi-interval case in [40, 41] was valid for general

CFTs in that number of dimensions. While it was later understood that this was not the

case, the result exhibited an interesting property, namely, its “tripartite information” was

vanishing

I3(A;B,C) ≡ I(A,B) + I(A,C)− I(A,B ∪ C) = 0 . (0.17)

Roughly speaking, this means that there is no overlap between the information shared by A

and B and the one shared by A and C. Mutual information is “extensive” in this model,

as opposed to the I3(A;B,C) > 0 (“subextensive”) and I3(A;B,C) < 0 (“superextensive”)

cases, both possible on general grounds.

Interestingly, imposing eq. (0.17) along with some physically reasonable requirements such

as causality and Poincaré invariance, strongly restricts the form of the EE and the mutual

information in general dimensions. In particular, the entanglement entropy of a region A in

this “Extensive Mutual Information Model” (EMI) reads [40, 42, 43]:

SEMI
EE = κ(d)

∫
∂A

dd−2σ1

∫
∂A

dd−2σ2 n
i(x1)nj(x2)

δij

|x1 − x2|2(d−2)
, (0.18)

where ni(x1) is the unit normal vector to the boundary of A, ∂A, at the point x1 and κ(d) is

a positive parameter6.

It is an open problem to find out whether eq. (0.18) is the EE of an actual CFT in d ≥ 3.

Independently of the answer, the model respects all general principles of EE (such as strong

subadditivity) and is a useful tool for understanding various features.

§EE of a disk in d = 3. Let us start with the simple case of a disk region of radius R.

We work in polar coordinates and put the center of the disk in the origin of coordinates. In

principle, we have to perform two integrals, but due to the symmetry of the problem, we can

fix x2 = (R, 0), and then ~n(x2) = (1, 0), which makes one of them trivial. On the other hand,

we have x1 = (R cos θ1, R sin θ1), ~n(x1) = (cos θ1, sin θ1). Also, dσ1 = Rdθ1, dσ2 = Rdθ2.

From this, one finds |x1 − x2|2 = 2R2(1− cos θ1) = 4R2 sin2(θ/2). Then, we have

SEMI
EE = κ(3)

∫ 2π

0
Rdθ2

∫
Rdθ1

cos θ1

4R2 sin2(θ1/2)
. (0.19)

6Recall that dd−2σ1 ≡ dd−2x1
√
h(x1) where h is the determinant of the induced metric on ∂A.
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The second integral diverges when |x1 − x2|2 → 0, so we need to regulate it. One possibility

is to allow only for angles larger than δ/R. In that case, one finds

SEMI
EE =

πκ(3)

2
· 2
∫ π

δ/R

cos θ1dθ1

sin2(θ1/2)
= 4πκ(3)

R

δ
− 2π2κ(3) . (0.20)

We find an “area-law” term with coefficient b1 = 4πκ(3) and a universal piece F = 2π2κ(3).

This should match the free energy on S3 if the EMI corresponded to an actual model.

In principle we could have chosen a different procedure to regulate our integral. For

instance, we could have replaced |x1 − x2|2 → |x1 − x2|2 + δ2 instead. If we do that, we find

SEMI
EE = 2πR2κ(3)

∫ 2π

0

cos θ1dθ1

[4R2 sin2(θ/2) + δ2]
= 2π2κ(3)

R

δ
− 2π2κ(3) . (0.21)

As we can see, the universal piece is unchanged but, unsurprisingly, b1 differs now from the

result obtained using the other regulator.

§EE across a sphere in d = 4. Let us now move to four dimensions. Consider first

a spherical entangling surface. Similarly to the disk case, all points are equivalent on the

sphere surface, so we can fix x2 = (0, 0, R) and ~n(x2) = (0, 0, 1). On the other hand, x1 =

R(sin θ1 cosφ1, sin θ1 sinφ1, cos θ1) and ~n(x1) = (sin θ1 cosφ1, sin θ1 sinφ1, cos θ1). From this,

we find ~n(x1) ·~n(x2) = cos θ1, and |x1−x2|4 = 16R4 sin2(θ1/2). Also, d2σ1 = R2 sin θ1dθ1dφ1,

and so on. Putting the pieces together, we can perform three of the four integrals to get

SEMI
EE = κ(4) · 4πR2 · 2πR2

∫
dθ1

sin θ1 cos θ1

16R4 sin4(θ1/2)
. (0.22)

Just like for the disk, we can regulate this integral by allowing only for angles larger than

δ/R. This leads to

SEMI
EE =

π2κ(4)

2

∫ π

δ/R
dθ1

sin θ1 cos θ1

sin4(θ/2)
(0.23)

= 4π2κ(4)
R2

δ2
− 4π2κ(4) log (R/δ)− π2κ(4)

[
2

3
+ 4 log 2

]
. (0.24)

All expected terms show up. We have the area-law piece, a universal logarithmic contribution,

and a constant one. Comparing with eq. (0.4), we can guess the value of the would-be trace-

anomaly coefficient aEMI. One finds aEMI = π2κ(4).

Let us repeat the experiment with a different regulator. We try again with |x1 − x2|4 →
|x1 − x2|4 + δ4. In that case, we have

SEMI
EE = 8π2R4κ(4)

∫ π

0
dθ1

sin θ1 cos θ1

[16R4 sin4(θ/2) + δ4]
(0.25)

= 2π3κ(4)
R2

δ2
− 4π2κ(4) log (R/δ)− π2κ(4) [1 + 4 log 2] . (0.26)
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We see that the non-universal piece b2 changes, whereas the universal one is not affected by

the change of regulator. Regarding the often forgotten b0, we see that one of its constants gets

altered, whereas the other (the −4π2 log 2κ(4) piece) is not. This would be the kind of behavior

expected for a non-universal constant containing both local and non-local contributions, where

the latter are not affected by cutoff changes. In this case, however, this is not really the case

for −4π2 log 2κ(4), which can be contaminated by shifting δ.

§EE across a cylinder in d = 4. Consider now an entangling region consisting of an in-

finite cylinder of radius R. In cylindrical coordinates we can write x1 = (R cosφ1, R sinφ1, z1),

~n(x1) = (cosφ1, sinφ1, 0), and x2 = (R, 0, z2), ~n(x2) = (1, 0, 0), where we already took ad-

vantage of the circular symmetry of the surface. Now, d2σ1 = Rdφ1dz1 and the same for 2.

We have now |x1 − x2|4 = [4R2 sin2(φ1/2) + (z1 − z2)2]2. So we find

SEMI
EE = κ(4) · 2π

∫
Rdz2

∫
Rdz1

∫
dφ1

cosφ1

[4R2 sin2(φ1/2) + (z1 − z2)2]2
, (0.27)

where we performed the trivial integral over φ2. We could have safely set z1 = 0 from the

beginning, regulating its integral with an IR cutoff L, so we get a contribution
∫ L/2
−L/2 dz1 = L.

In the resulting expression, we can perform the integral over z2, which requires no regulation,

which yields

SEMI
EE = 2πR2 · L · κ(4) ·

∫
dφ1

π cosφ1

16R3 sin3(φ1/2)
. (0.28)

Regulating the angular integral as usual, we are finally left with

SEMI
EE = 2πR2 · L · κ(4) · 2

∫ π

δ/R
dφ1

π cosφ1

16R3 sin3(φ1/2)
(0.29)

= π2κ(4)
RL

δ2
−

3π2κ(4)

4

L

R
log (R/δ)−

π2κ(4)

2

[
1

12
+ 3 log 2

]
L

R
. (0.30)

We find a similar structure to the spherical case, with all the expected terms. Now we can

identify the other would-be trace-anomaly coefficient. This gives cEMI = 3π2κ(4)/2. Hence, we

find for the EMI model aEMI/cEMI = 2/3. It is an interesting fact of nature that the quotient

between both coefficients comfortably lies within the range of allowed values compatible with

unitarity (eq. (0.6)).

If we use the |x1 − x2|4 → |x1 − x2|4 + δ4 regularization instead, we get

SEMI
EE = π3κ(4)

RL

δ2
−

3π2κ(4)

4

L

R
log (R/δ)−

π2κ(4)

2

[
−1

2
+

9

2
log 2

]
L

R
. (0.31)

Same story, the non-universal pieces change, whereas the universal one is not affected. Note

that in this case b0 “changes completely” with respect to the other regularization.

§EE of a corner in d = 3. Let us now turn to entangling surfaces with singularities.

Consider first a corner region with opening angle Ω. We use Cartesian coordinates this time.
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The entangling surface is defined by the lines Y (X) = 0 and Y (X) = X · tan Ω with X ≥ 0.

In this case there are two contributions, one from considering 1 and 2 on the same line, and

another one from considering 1 on the Y (X) = 0 line and 2 on the Y (X) = X · tan Ω one.

Each of these appears twice in the EE expression. We write: SEMI
EE = 2(sI +sII). Let us look at

the first contribution. For that, we have ~n(X1) = ~n(X2) = (0, 1) and dσ1 = dX1, dσ2 = dX2,

sI = κ(3)

∫
dX1

∫
dX2

1

(X1 −X2)2
. (0.32)

In the case of the second contribution, we have ~n(X1) = (0,−1), ~n(X2) = (− sin Ω, cos Ω),

dσ1 = dX1, dσ2 = dX2/ cos Ω. Putting the pieces together,

sII = −κ(3)

∫
dX1

∫
dX2

1

(X1 −X2)2 + tan2 ΩX2
2

. (0.33)

We can regulate the integrals as∫
dX1 →

∫ H

δ
dX1 ,

∫
dX2 →

[∫ x1−δ

0
dX2 +

∫ ∞
x1+δ

dX2

]
. (0.34)

The results read (see [22] for some help with the integrals)

sI =
2κ(3)H

δ
− κ(3) log(H/δ) +O(δ0) , (0.35)

sII = −κ(3)(π − Ω) cot Ω log(H/δ) +O(δ0) . (0.36)

The final result reads then

SEMI
EE =

4κ(3)H

δ
− a(3)

EMI(Ω) log(H/δ) +O(δ0) , (0.37)

where

a
(3)
EMI(Ω) = 2κ(3)[1 + (π − Ω) cot Ω] . (0.38)

We can verify that this function satisfies all general properties explained above for a decent EE

corner function. In particular, in the very-sharp and almost-smooth limits, we find eq. (0.10)

indeed holds with k = 2πκ(3) and σ = 2κ(3)/3. Using eq. (0.11), we can obtain the value

of the would-be stress-tensor two-point function charge CT for the EMI model. This reads

CEMI
T = 16κ(3)/π

2.

§EE across a cone in d = 4. Let us now see how the EMI reproduces the general CFT

result for the EE across a conical region. We can parametrize the cone surface in cylindrical

coordinates by z = ρ/ tan Ω, t = 0. The induced metric on the cone surface is given by ds2
h =

dρ2/ sin2 Ω + ρ2dφ, so d2σ1 = [ρ1/ sin Ω]dρ1dφ1 and analogously for 2. Given the symmetry

of the problem, we can just set φ2 = 0 everywhere and multiply the remainder integrals by an

overall 2π. The unit normal vector to the cone surface is given ~n = ~uρ cos Ω− ~uz sin Ω, where

~uρ = cosφ~ux + sinφ~uy. Using this, it is straightforward to find ~n(x1) ·~n(x2) = cos2 Ω cosφ1 +
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sin2 Ω . Similarly, we find |x1 − x2|4 =
[
ρ2

1 + ρ2
2 − 2ρ1ρ2 cosφ1 + (ρ1 − ρ2)2/ tan2 Ω

]2
. Then,

after some trivial manipulations, we are left with the integrals

SEMI
EE =

2πκ(4)

sin2 Ω

∫
ρ1dρ1

∫
ρ2dρ2

∫ 2π

0
dφ1

[cos2 Ω cosφ1 + sin2 Ω]

[a− b cosφ1]2
, (0.39)

where a ≡ ρ2
1 + ρ2

2 + (ρ1 − ρ2)2/ tan2 Ω, b ≡ 2ρ1ρ2. We can regulate the radial integrals in

various ways. For instance, as follows:∫
dρ1 →

∫ H

δ
dρ1 ,

∫
dρ2 →

[∫ ρ1−δ

0
dρ2 +

∫ ∞
ρ1+δ

dρ2

]
. (0.40)

Performing the angular integrals, we are left with

SEMI
EE =

4π2κ(4)

sin2 Ω

[
cos2 Ω sI + sin2 Ω sII

]
, (0.41)

where

sI =

∫ ∫
b ρ1ρ2

(a2 − b2)3/2
dρ1dρ2 , sII =

∫ ∫
a ρ1ρ2

(a2 − b2)3/2
dρ1dρ2 . (0.42)

Doing the radial ones we are left with

sI =
1

64
sin Ω [cos(2Ω)− 7] log2 (H/δ) , sII =

1

32
cos2 Ω sin Ω log2 (H/δ) , (0.43)

up to nonuniversal contributions which I omit this time. Putting both pieces together, we

are left with [22]

SEMI
EE ⊃ −

3π2κ(4)

8
· cos2 Ω

sin Ω
log2 (H/δ) . (0.44)

We observe that the angular dependence is the expected one. Also, comparing with eq. (0.14),

we get cEMI = 3π2κ(4)/2, which matches the cylinder result.

§Bonus Track: EE across a deformed sphere. In [38], Mezei studied the EE of

a slightly deformed spherical entangling surface in a d-dimensional CFT. Parametrizing the

deformed sphere as

r(Ωd−2) = 1 + ε
∑

`,m1,...,md−3

a`,m1,...,md−3
Y`,m1,...,md−3

(Ωd−2) , (0.45)

where the Y`,m1,...,md−3
(Ωd−2) are real (hyper)spherical harmonics, he found that, for general

higher-curvature holographic CFTs, the universal contribution suniv takes the form

suniv = suniv
0 + ε2suniv

2 +O(ε3) , (0.46)

where suniv
0 is the result for the round sphere in each case (e.g., suniv

0 = F in d = 3 and

suniv
0 = 4a in d = 4) and

suniv
2 = CT

π
d+2
2 (d− 1)

2d−2Γ(d+ 2)Γ(d/2)

∑
`,m1,...,md−3

a2
`,m1,...,md−3

Γ(d+ `− 1)

Γ(`− 1)
×

{
π/2 (d odd)

1 (d even) .

(0.47)
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Hence, the sphere is a local extremum of the EE, and the leading correction in the deformation

is controlled by the stress-tensor two-point function charge CT . This result was later proven

to hold for general CFTs in [34] (along with relation (0.11) for the almost-smooth limit of

the corner function).

As far as I know, nobody has verified that eq. (0.47) indeed holds for the EMI...
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