

UPDATES FROM THE COHERENT NEUTRINO-NUCLEUS INTERACTION EXPERIMENT - CONNIE MARTÍN MAKLER FOR THE CONNIE COLLABORATION

3rd SOUTH AMERICAN DARK MATTER WORKSHOP

CONNIE and Dark Matter

- CONNIE is a neutrino detector operating at the ground
- What are you doing here?!
- Search for DM inspired physics BSM
- Reactor

(anti-)neutrinos: light mediators modify cross section

- new particle production at the reactor:
 - Axions and axion-like particles
- On the ground
 - Strongly Interacting Massive Particles
- Sterile neutrinos (very short baseline oscillation experiments low energy)
- Any particle physics experiment has been turned into a search for dark sector
 - Low energy threshold: coherent interaction, neutral current

Proliferation of experimental efforts worldwide !

from Matthieu VIVIER@Magnificent CEvNS workshop 2020

CONNIE Experiment Coherent Neutrino-Nucleus Interaction Experiment

250 um thick CCD Developed by LBNL Microsystems LAB

CONNIE 2014 Engineering run 250 µm CCDs, 1 g 1 CCD for physics analysis Exposure ~ 15 g-day

2k

15 a 15 cm pl

JINST II (2016) P07024

CONNIE 2016 Detector upgrade 675 µm CCDs, 5.8 g each 8 CCD for physics analysis Running since Aug 2016 Exposure ~ 2000 g-day

4k

Phys. Rev. D 100 (2019) 092005

CCDs – Charge Coupled Device

- Characteristics
 - high-resistivity CCDs created at LBNL and used in the DAMIC experiment
 - threshold of ~40 eV for ionization energy of the nuclear recoil (quenching factor)
 - large mass compared to regular CCDs (now 675 µm, 5.25 g, 4k x 4k)
 - "3D" information (diffusion): rejection of surface events

Particle identification CCD

The detector

Location

30 m from the Angra 2 nuclear power plant reactor core, Rio de Janeiro – Brazil

antineutrino source of $3.8 \text{ GW}_{\text{th}}$

estimated flux of 7.8 x 1012 v s⁻¹cm⁻² at the detector position.

Two experiments on the Neutrinos Lab

- Neutrinos Angra
- ► CONNIE

Analysis of 2016 + 2017 data

Stability is controlled through:

- read-out noise and dark current
- calibration of Cu and Si peaks
- high-energy event rates
- Event selection
 - Good CCDs (noise & DC)
 - Edge effect & hot pixels removal
 - Total exposure: 2.1kg-day reactor ON 1.6 kg-day reactor OFF
- Search for the SM CEvNS signal
 - Background is not modelled
 - Compare the rates with the reactor ON and reactor OFF

Efficiency computation:

- simulate low-energy neutrino events in each image and process the full event reconstruction analysis
- Expected neutrino event rate

Phys. Rev. D 100, 092005 (2019); arXiv:1906.02200

Reactor ON/OFF - 2016 + 2017 data

• Energy spectrum difference

reactor reaching recoil energies down to 1 keV (0.1 keV_{ee})

 CEvNS event rate: 95% confidence level limit from the reactor on - off measurement

Phys. Rev. D 100, 092005 (2019) arXiv:1906.02200

2019 - 2020 Data

- A hardware binning of data reduces the effect of readout noise at low energies. (CONNIE 19/20)
- understanding and controlling the low energy background
- improvement in calibrations and event selection
- revised neutrino signal selection

blind analysis

- adjust all analyses using only the reactor OFF data
- unblind the mid to high energy reactor ON data for stability check-ups

rate of events corrected by efficiency for reactor OFF

2019 - 2020 Data

- A hardware binning of data reduces the effect of readout noise at low energies. (CONNIE 19/20)
- understanding and controlling the low energy background
- improvement in calibrations and event selection
- revised neutrino signal selection

blind analysis

- adjust all analyses using only the reactor OFF data
- unblind the mid to high energy reactor ON data for stability check-ups

2019 - 2020 Data

Implications for BSM physics: light mediators

Event rates in the lowest-energy bin yield limits on non-standard neutrino interactions:

- light vector (Z') mediator
- most stringent limits for low mediator masses $M_{z'} < 10$ MeV
- first competitive BSM constraint from CEvNS in reactors!

$$\frac{d\sigma_{SM+Z'}}{dE_R} (E_{\bar{\nu}_e}) = \left(1 - \frac{Q_{Z'}}{Q_W}\right)^2 \frac{d\sigma_{SM}}{dE_R} (E_{\bar{\nu}_e})$$
$$Q_{Z'} = \frac{3(N+Z)g'^2}{\sqrt{2}G_F (2ME_R + M_{Z'}^2)}.$$

J. High Energ. Phys. 2020, 54 (2020); arXiv:1910.04951

Implications for BSM physics: light mediators

Event rates in the lowest-energy bin yield limits on non-standard neutrino interactions:

- light scalar (φ) mediator.
- most stringent limits for low mediator masses $M_{\Phi} < 30$ MeV
- first competitive BSM constraint from CEvNS in reactors!

$$\frac{d\sigma_{SM+\phi}}{dE_R}(E_{\bar{\nu}_e}) = \frac{d\sigma_{SM}}{dE_R}(E_{\bar{\nu}_e}) + \frac{G_E^2}{4\pi}Q_{\phi}^2 \left(\frac{2ME_R}{E_{\bar{\nu}_e}^2}\right)MF^2(q)$$

$$Q_{\phi} = \frac{(14N+15.1Z)g_{\phi}^2}{\sqrt{2}G_F\left(2ME_R+M_{\phi}^2\right)}$$

J. High Energ. Phys. 2020, 54 (2020); arXiv:1910.04951

Axion Like Particles

- Nuclear reactors are high intensity low energy γ sources:
 - γ are produced in the core in large amounts (10²³ γ per day at 1 MW)
 - high-Z material in the core ²³⁵U, ²³¹Th → convert to ALPs via Primakoff, Compton channels or nuclear de-exitation
- Detected via the inverse Compton and Primakoff channels, as well as decays, inside detector housing

See also D.Aristizabal, et al., arXiv: 2010.15712

Strongly Interacting Massive Particles (SIMPs)

- DM particle candidates that interact with nucleons via nuclear-scale cross sections
- SIMPs interact with Earth, atmosphere and shielding, modifying their distribution in the lab
- For large SIMP-nucleon cross sections the sensitivity of traditional direct dark matter searches using underground experiments is limited by the energy loss experienced by SIMPs.
- Surface-based experiments are ideal for a SIMP search!
- Constraints on sub-GeV mass SIMPs: 2017 Surface Run of the ν-cleus prototype, obtained by the CRESST collaboration, 0.49 g Al₂O₃ target running for a total live time of 2.27 h, with a low-energy threshold of 20 eV

EDELWEISS collaboration, PRD 99, 082003 (2019)

SIMPS

EDELWEISS **33.4 g** Ge cryogenic detector operated in a surface lab. **One day** exposure and a **60 eV** analysis energy threshold

Constraints on sub-GeV mass SIMPs: 2017 Surface Run of the ν-cleus prototype, obtained by the CRESST collaboration, 0.49 g Al₂O₃ target running for a total live time of 2.27 h, with a low-energy threshold of 20 eV

EDELWEISS collaboration, PRD 99, 082003 (2019)

Modulation Signatures

- Effect of attenuation of the Earth and Deflection
- The Earth rotation induces a **daily modulation** in the rate, which is highly sensitive to the detector latitude (+ DM mass and interactions and detector)

Kavanagh+JCAP **01** (2017), CRESST-II-like detector $p_{
m scat} = 10\%$ $m_{\chi} = 0.5~{
m GeV}$

Modulation Signatures

- Look for daily modulations at CONNE:
 - Higher modulation expected at Angra!
 - Very stable detector
 - Sidereal time: average over the year to minimize seasonal effects
 - Much larger exposure, but higher background
 - Working at higher energies will allow us to have almost continuous coverage for a couple of years

Prospects for the future

- Upgrade CONNIE with 1-2 new skipper-CCDs:
 - Reduction in electronic noise
 - Individual electron detection
 - Promising for neutrino and dark matter detection
- Goals:
 - Reduce CONNIE energy threshold to ~ 15 eV
 - Better understanding of the background experiment
 - In coordination with vIOLETA R&D effort
- Carry out the analysis with ALPs, SIMPs, and other BSM physics

30

25

20

15

10

5

R (events/day/kg)

Summary

- CCDs can be used as particle detectors with good spatial and energy resolution and very low electronic noise
- Capability to **detect nuclear recoils**
- CONNIE now **operating at Angra 2** nuclear power plant: source of **neutrinos** and photons, with **possible production of ALPs and other BSM particles**
- First competitive BSM constraint from CEvNs at reactors
- Low threshold detector at the ground: promising for **SIMPs**
- 2019-2020 data: improvements in data taking and analysis (will be published soon)
- Data will eventually be made public
- Next year: installation of 1-2 skipper-CCDs, greatly reduce the noise

CONNIE has helped to develop the Latin American expertise in reactor neutrino experiments and CCDs as particle detectors (instrumentation and data analysis)

Neutrino Laboratory could host other experiments

