Inelastic Dark Matter and a Dark Higgs

Camilo A. Garcia Cely

Alexander von Humboldt Fellow

New trends in dark matter

ICTP SAIFR Brazil

December 7, 2020
Inelastic Dark Matter and a Dark Higgs

Camilo A. Garcia Cely
Alexander von Humboldt Fellow

New trends in dark matter

ICTP SAIFR Brazil

December 7, 2020
Thermal dark matter is a well-motivated and predictive scenario which can be probed with direct and indirect searches as well as with collider experiments.
Thermal Dark Matter Paradigm

Inelastic DM and a Dark Higgs

Zeldovich (1966)
Lee Weinberg (1977)
Dicus, Kolb, Teplitz (1977)

$\sigma v \sim 10^{-26} \text{cm}^3/s$
$\sigma \sim 1 \text{pb}$
m from subGeV to 100 TeV

$M = 100 \text{ GeV}$

Feng et al. (2010)

Thermal dark matter is a well motivated and predictive scenario which can be probed with direct and indirect searches as well as with collider experiments.

Camilo A. Garcia Cely, DESY
Thermal Dark Matter Paradigm

Direct searches

Light dark matter does not have enough momentum to kick heavy nuclei

Loss of sensitivity mass for SubGeV masses.

Indirect searches

S-wave thermal cross sections are excluded by CMB observations
Inelastic Dark Matter

A simple scenario for light thermal dark matter which evades the strong CMB bounds is the case where DM couples inelastically to Standard Model.

Here a sufficiently large mass splitting between the DM particle χ_1 and its heavier twin χ_2 ensures that:

(i) direct detection limits are basically absent

(ii) residual DM annihilations are no longer efficient during the time of the CMB.

Smith, Weiner (2001)
A simple scenario for light thermal dark matter which evades the strong CMB bounds is the case where DM couples inelastically to Standard Model.

Here a sufficiently large mass splitting between the DM particle χ_1 and its heavier twin χ_2 ensures that:

(i) direct detection limits are basically absent
(ii) residual DM annihilations are no longer efficient during the time of the CMB.

Smith, Weiner (2001) start with ψ a Dirac fermion charged under a $U(1)$ symmetry.

After $U(1)$ symmetry breaking

$$\chi_1 = \frac{\psi - \psi^c}{\sqrt{2}},$$

and

$$\chi_2 = \frac{\psi + \psi^c}{\sqrt{2}}.$$
\(B_{\mu\nu} V_{\mu\nu} \)
“Kinetic mixing” with additional U(1)’ group

\(H^+ H (\lambda S^2 + A S) \)
Higgs-singlet scalar interactions (scalar portal)

\(LH N \)
neutrino Yukawa coupling, \(N \) – RH neutrino
$B_{\mu\nu} V_{\mu\nu}$

“Kinetic mixing” with additional U(1)' group

$H^+ H (\lambda S^2 + A S)$

Higgs-singlet scalar interactions (scalar portal)

$LH N$

neutrino Yukawa coupling, N – RH neutrino
\[\mathcal{L} = \mathcal{L}_{\text{SM}} - \frac{1}{4} \hat{X}_{\mu\nu} \hat{X}^{\mu\nu} - \frac{\epsilon}{2c_W} \hat{X}_{\mu\nu} \hat{B}^{\mu\nu} \]

Inelastic DM and a Dark Higgs

\(B_{\mu\nu} V_{\mu\nu} \)
“Kinetic mixing” with additional U(1)’ group

\(H^+ H (\lambda S^2 + A S) \)
Higgs-singlet scalar interactions (scalar portal)

\(\Lambda H N \)
neutrino Yukawa coupling, \(N - \text{RH neutrino} \)

\(\chi_1, \chi_2 \)
Dark Photon \(A' \)

\(A' \) inherits the coupling structure of the photon to the SM fermions where the electric charge is multiplied by a common factor \(\epsilon \).
Inelastic DM and a Dark Higgs

Inelastic Dark Matter

\[\chi_1 \xrightarrow{A'} \text{fsm} \]

\[\chi_2 \xrightarrow{A'} \text{fsm} \]

Thermal Process

\[e^+ + e^- \rightarrow \gamma + \chi_1 \]

\[\gamma \rightarrow \chi_1 + A' \]

\[\chi_1 \rightarrow \mu^+ + \mu^- + h^+ + h^- \]

\[\text{Take } m_{A'} > m_{\chi_1} \]

\[\text{to avoid CMB constraints} \]

Collider signatures

displaced vertices

Izaguirre, Krnjaic, Shuve (2016)

Izaguirre, Kahn, Krnjaic, Moschella (2017)

Izaguirre, Kahn, Krnjaic, Moschella (2017)

Duerr, Ferber, Hearty, Kahlhoefer, Schmidt-Hoberg (2019)

Vertex detector

Drift chamber

Calorimeter

Muon system

Inelastic DM and a Dark Higgs

Camilo A. Garcia Cely, DESY
Open questions

What process generates the dark photon mass?

What induces the mass splitting \(\Delta = m_{\chi_2} - m_{\chi_1} \)?

Does it affect the phenomenology?

Invoke the dark Higgs mechanism:

\[
V(\phi, H) = \lambda_H \left(H^\dagger H - \frac{v_H^2}{2} \right)^2 + \lambda_\phi \left(\phi^* \phi - \frac{v_\phi^2}{2} \right)^2 + \lambda_{\phi H} \left(H^\dagger H - \frac{v_H^2}{2} \right) \left(\phi^* \phi - \frac{v_\phi^2}{2} \right)
\]

\[
\phi = \frac{v_\phi + \hat{\phi}^\prime}{\sqrt{2}}, \quad H = \begin{pmatrix} 0 & (v_H + \hat{h})/\sqrt{2} \end{pmatrix}^T
\]

\(\phi \) has two units of charge
Portals to the Standard Model

\[B_{\mu\nu} V_{\mu\nu} \]

“Kinetic mixing” with additional U(1)’ group

\[H^+ H (\lambda S^2 + A S) \]

Higgs-singlet scalar interactions (scalar portal)

\[LH N \]

neutrino Yukawa coupling, \(N - \text{RH} \) neutrino

\[\mathcal{L}_\psi = \frac{1}{2} \left(i\bar{\chi}_1 \partial_\mu \chi_1 + i\bar{\chi}_2 \partial_\mu \chi_2 - m_{\chi_1} \bar{\chi}_1 \chi_1 - m_{\chi_2} \bar{\chi}_2 \chi_2 \right) \]

\[+ \frac{i}{2} g_X \hat{X}_\mu (\bar{\chi}_2 \gamma^\mu \chi_1 - \bar{\chi}_1 \gamma^\mu \chi_2) + \frac{f}{2} \hat{h}' (\bar{\chi}_1 \chi_1 - \bar{\chi}_2 \chi_2) , \]
Inelastic DM and a Dark Higgs

Portals to the Standard Model

Wilczek (2006)

\[B_{\mu\nu} V_{\mu\nu} \]

\(H^+ H \left(\lambda S^2 + A S \right) \)

\[\theta \]

scalar mixing angle

\[\mathcal{L}_\psi = \frac{1}{2} \left(i \bar{\chi}_1 \hat{\phi} \chi_1 + i \bar{\chi}_2 \hat{\phi} \chi_2 - m_{\chi_1} \bar{\chi}_1 \chi_1 - m_{\chi_2} \bar{\chi}_2 \chi_2 \right) \]

\[+ \frac{i}{2} g X \hat{X}_\mu (\bar{\chi}_2 \gamma^\mu \chi_1 - \bar{\chi}_1 \gamma^\mu \chi_2) + \frac{f}{2} \hat{h}' (\bar{\chi}_1 \chi_1 - \bar{\chi}_2 \chi_2) \]
Inelastic DM and a Dark Higgs

Camilo A. Garcia Cely, DESY

Portals to the Standard Model

Wilczek (2006)

\[B_{\mu\nu} V_{\mu\nu} \]

\[H^+ H (\lambda S^2 + A S) \]

\[LHN \]

“Kinetic mixing” with additional U(1)' group

Higgs-singlet scalar interactions (scalar portal)

neutrino Yukawa coupling, \(N – RH \) neutrino

two portal model

\[
\mathcal{L}_\psi = \frac{1}{2} \left(i \chi_1 \phi \chi_1 + i \chi_2 \phi \chi_2 - m_{\chi_1} \chi_1 \chi_1 - m_{\chi_2} \chi_2 \chi_2 \right)
\]

\[+ \frac{i}{2} g x \hat{X}_\mu (\chi_2 \gamma^\mu \chi_1 - \chi_1 \gamma^\mu \chi_2) + \frac{f}{2} \hat{h}'(\chi_1 \chi_1 - \chi_2 \chi_2), \]

Inelastic interactions Elastic interactions
Inelastic Dark Matter and a Dark Higgs

Relic density via thermal processes

p-wave
Inelastic DM and a Dark Higgs

Camilo A. Garcia Cely, DESY
Inelastic Dark Matter and a Dark Higgs

Relic density via thermal processes

Elastic Scattering

$\chi_1 \rightarrow \h_1 \h_1$

p-wave

$\chi_1 \rightarrow \h_1$

suppressed
Inelastic Dark Matter and a Dark Higgs

Relic density via thermal processes

Elastic Scattering

More parameter space

p-wave

$\superscript{suppressed}$

Rich phenomenology

Camilo A. Garcia Cely, DESY
Displaced Vertices involving the Higgs

Inelastic DM and a Dark Higgs
Inelastic DM and a Dark Higgs

Camilo A. Garcia Cely, DESY

Dark Photon Plane

\[m_{A'} = 4m_{\chi_1} \]
\[m_{h'} = 1 \text{GeV} \]
\[\theta = 10^{-5}, \Delta = m_{\chi_1} \]
\[\alpha_D = 0.1 \]

BaBar mono-\(\gamma \)

Thermal relic

\[\epsilon \]

Preliminary
Duerr, Ferber, Garcia-Cely, Hearty, Schmidt-Hoberg

\[m_{A'} = 4m_{\chi_1} \]
\[m_{h'} = 1 \text{GeV} \]
\[\theta = 10^{-5}, \Delta = m_{\chi_1} \]
\[\alpha_D = 0.5 \]

\[\epsilon \]

Inelastic DM and a Dark Higgs

Camilo A. Garcia Cely, DESY
Inelastic DM and a Dark Higgs

Preliminary

Duerr, Ferber, Garcia-Cely, Hearty, Schmidt-Hoberg

Camilo A. Garcia Cely, DESY
Inelastic DM and a Dark Higgs

Camilo A. Garcia Cely, DESY

Preliminary

\(\epsilon = 10^{-3} \quad \theta = 10^{-5} \quad m_{A'} = 4m_{X_1} \)
\(\alpha_D = 0.1 \quad \alpha_f = 0.006 \quad (\Delta = m_{X_1}) \)

\(m_{A'} = 4m_{X_1} = 10 \text{ GeV} \)
\(\theta = 10^{-5} \quad \epsilon = 10^{-3} \quad \alpha_D = 0.1 \)

\(\Delta/m_{X_1} \)

CMB

\(m_{A'} \) (GeV)

\(m_{X_1} \) (GeV)

\(\Delta/m_{X_1} \)
Conclusions

Inelastic DM is a well-motivated thermal DM candidate at the subGeV scale, in which a mass splitting between dark matter and its excited state allows to evade stringent CMB bounds and direct detection limits.

I discussed the phenomenological impact of including a dark Higgs to generate the mass splitting and the dark photon mass.

I have investigated the sensitivity of Belle II for the key signature of this model: a lepton pair originating from a displaced vertex in association with a single photon as well as with a dark Higgs.

Preliminary Duerr, Ferber, Garcia-Cely, Hearty, Schmidt-Hoberg