

Cusp-to-core conversion from late-time dark matter oscillations

Guillermo Gambini 1,2 Samuel D. McDermott 3 James M. Cline ¹ Matteo Puel 1

¹McGill University, Department of Physics

²Instituto de Física Gleb Wataghin - UNICAMP

³Fermi National Accelerator Laboratory

arXiv: 2010.12583

ABSTRACT

Dark matter—anti-dark matter $(\chi - \bar{\chi})$ oscillations can cause the reactivation of DM annihilations during structure formation, eliminating cusps from galactic DM profiles while respecting constraints from BBN, CMB, and the observed DM relic density.

OSCILLATION FORMALISM: TWO MODELS

$$\mathcal{L}_m = \frac{1}{2} \delta m (\bar{\chi} \chi^c + \text{H.c.})$$

$$\mathcal{L}_1\supset -rac{1}{2}m_V^2V_\mu^2-g'ar{\chi}V\chi$$
 (vector mediator) $\mathcal{L}_2\supset -rac{1}{2}m_\phi^2\phi^2-rac{1}{2}m_a^2a^2-g'ar{\chi}(\phi+ia\gamma_5)\chi$ (scalar mediator)

$$\chi \, \bar{\chi} \to VV : \sin^2(\varphi - \varphi')$$
 (flavor sensitive) $\chi \, \bar{\chi} \to \phi a : \sin^2(\varphi + \varphi')$ (flavor blind)

For annihilations to recouple during structure formation, the oscillations should start before \sim 0.1 Gyr, so

$$10^{-31} \text{ eV} \lesssim \delta m \lesssim \frac{\sqrt{g_*} \, m_\chi^2}{M_p \, x_{f.o.}^2} \sim 10^{-14} \text{ eV},$$

assuming $m_\chi \sim$ 100 MeV. Annihilations could decouple in the early universe while still being important in overdense environments at late times.

EARLY COSMOLOGY

Following [1, 2], the quantum Boltzmann equations are

Model 1 (falvor-sensitive vector mediator)

$$\begin{split} Y' &= -\frac{i}{xH} \left[\mathcal{H}_0, Y \right] - \xi^3 \frac{3 \langle \sigma v \rangle_s s}{2xH} \begin{pmatrix} 0 & Y_{12} \\ Y_{21} & 0 \end{pmatrix} \text{Tr} Y \\ &- \xi^3 \frac{\langle \sigma v \rangle_a s}{xH} \left(\det Y - Y_{\text{eq}}^2 \right) \end{split}$$

Model 2 (falvor-blind scalar mediator)

$$\begin{split} Y' &= -\frac{i}{xH} [\mathcal{H}_0, Y] \\ &- \xi^3 \frac{\langle \sigma v \rangle_a s}{xH} \left[\begin{pmatrix} \det' Y & Y_{12} \mathrm{Tr} \, Y \\ Y_{12} \mathrm{Tr} \, Y & \det' Y \end{pmatrix} - Y_{\mathsf{eq}}^2 \right] \end{split}$$

where det' $Y \equiv Y_{11}Y_{22} + Y_{12}Y_{21}$ and $\xi = T_{\chi}/T$.

Figure 1: Comoving density $Y \times 10^{10}$ vs. $x = m_{\chi}/T$.

STRUCTURE FORMATION & N-BODY **SIMULATIONS**

Figure 2: $\log_{10} \rho_{\chi}$ vs. $\log_{10} r$. Evolving $\rho_{\chi,0}^{NFW}$ for \sim 10 Gyr in a dwarf spheroidal galaxy and a cluster of galaxies.

REFERENCES

- [1] Marco Cirelli, Paolo Panci, Geraldine Servant, and Gabrijela Zaharijas. Consequences of DM/antiDM oscillations for asymmetric WIMP dark matter. Journal of Cosmology and Astroparticle Physics, 2012(03):015, 2012.
- [2] Sean Tulin, Hai-Bo Yu, and Kathryn M Zurek. Oscillating asymmetric dark matter. Journal of Cosmology and Astroparticle Physics, 2012(05):013, 2012.

ACKNOWLEDGEMENTS

