WORKSHOP ON NEW TRENDS IN DARK MATTER

GRAVITATIONAL WAVE PROBES OF PRIMORDIAL BLACK HOLE DARK MATTER

Hardi Veermäe NICBP, Estonia

December 8, 2020

(inflationary) PBH formation

general idea: collapse of large inhomogeneities in the early universe an example: two phase single field inflation

[1705.06225 Kannike et al]

PBH formation

Critical collapse

$$m = \kappa M_k \left(\delta_m - \delta_c\right)^{\gamma}$$

horizon mass $M_k \approx 1.4 \times 10^{13} M_{\odot} \left(k/\mathrm{Mpc}^{-1} \right)^{-2}$

collapse parameters $\gamma = 0.36, \kappa = 4, \delta_c = 0.55$

*for a real-space top-hat window function [1904.00984 Young et al]

non-linear relation between density contrast and curvature fluctuations $\delta_m = \delta_{\zeta} - (3/8) \, \delta_{\zeta}^2$

Mass function

$$\psi(m) \propto m^{1+1/\gamma} \exp\left[-c_1(m/\langle m \rangle)^{c_2}\right]$$

Average PBH mass

$$\langle m \rangle \approx 3M_k$$

Scalar induced GWs

- * Large primordial scalar perturbations source a stochastic GW background at the second order.
- * Light PBH DM scenarios testable by future GW experiments.

the NANOGrav signal

No monopolar or dipolar correlations, but also

no definite evidence for quadrupolar correlations.

No definite GW detection, but we can speculate.

the NANOGrav signal

No monopolar or dipolar correlations, but also

no definite evidence for quadrupolar correlations.

No definite GW detection, but we can speculate.

LIGO-VIRGO PBH SCENARIO

PBH SCENARIO FOR SMBH SEEDS

- * for power law and lognormal shapes in curvature power spectra
- * k_* is the position of the peak and A is of the peak are varied
- * curvature fluctuations assumed to be gaussian
- potentially large uncertainties related to the PBH formation process

[2009.07832 Vaskonen et al]

Masses in the Stellar Graveyard

GWTC-2 plot v1.0 LIGO-Virgo | Frank Elavsky, Aaron Geller | Northwestern

BHs after LIGO-Virgo O3a

- Mass distribution
 - PBHs tend to have simple peaked mass distributions
 - astrophysical BHs have a low mass cut-off around $3M_{\odot}$, pair-instability supernova (PISN) gap around $55-130M_{\odot}$

Mass distribution

- PBHs tend to have simple peaked mass distributions
- astrophysical BH low mass cut-off around $3M_{\odot}$, pair-instability supernova (PISN) gap around $55 130M_{\odot}$

• Redshift dependence

- PBH merger rate monotoneously growing with redshift
- astrophysical BH mergers roughly follow star formation, decreasing when $z\gtrsim 3$

Mass distribution

- PBHs tend to have simple peaked mass distributions
- astrophysical BH low mass cut-off around $3M_{\odot}$, pair-instability supernova (PISN) gap around $55-130M_{\odot}$

Redshift dependence

- PBH merger rate monotoneously growing with
- astrophysical BH mergers roughly follow star f

Spins

- EFFECTIVE SPIN $\chi_{\text{eff}} = \frac{m_1 \vec{\chi}_1 + m_2 \vec{\chi}_2}{M} \cdot \hat{L}_{\text{orbital}}$
- PBHs initially non-spinning, spin aquired by accretion [e.g. 2011.01865 Wong et al]
- spins of astrophysical BHs expected to be aligned , depends on the production channel

Mass distribution

- PBHs tend to have simple peaked mass distributions
- astrophysical BH low mass cut-off around $3M_{\odot}$, pair-instability supernova (PISN) gap around $55-130M_{\odot}$

Redshift dependence

- PBH merger rate monotoneously growing with redshift
- astrophysical BH mergers roughly follow star formation, decreasing when $z\gtrsim3$
- Spins
 - PBH initially non-spinning, spin aquired by accretion
 - spins of astrophysical BH expected to be aligned , depends on the production channel

Spatial correlations

- PBHs are DM and PBH mergers must correlate with DM

Mass distribution

- PBHs tend to have simple peaked mass distributions
- astrophysical BH low mass cut-off around $3M_{\odot}$, pair-instability supernova (PISN) gap around $55-130M_{\odot}$

Redshift dependence

- PBH merger rate monotoneously growing with redshift
- astrophysical BH mergers roughly follow star formation, decreasing when $z\gtrsim3$
- Spins
 - PBH initially non-spinning, spin aquired by accretion
 - spins of astrophysical BH expected to be aligned , depends on the production channel
- Spatial correlations
 - PBHs are DM and PBH mergers must correlate with DM

PBH Binary formation

Poisson distribution of surrounding PBH

* does not have to be Poisson

MERGER RATE

$$R_{\text{early}} \approx \frac{2.8 \times 10^6}{\text{Gpc}^3 \text{yr}} f_{\text{PBH}}^{\frac{53}{37}} \left(\frac{t}{t_0}\right)^{-\frac{34}{37}} \left(\frac{m}{M_{\odot}}\right)^{-\frac{32}{37}} \times S_{\text{sup}}$$

MERGER RATE

$$R_{\text{early}} \approx \frac{2.8 \times 10^6}{\text{Gpc}^3 \text{yr}} f_{\text{PBH}}^{\frac{53}{37}} \left(\frac{t}{t_0}\right)^{-\frac{34}{37}} \left(\frac{m}{M_{\odot}}\right)^{-\frac{32}{37}} \times S_{\text{sup}}$$

Observations give $R_{\text{observed}} \approx \mathcal{O}(10) \,\text{Gpc}^{-3} \text{yr}^{-1}$

PBH binaries

PBH binaries

PBH binaries

TYPICAL CHARACTERISTICS

These PBH binaries are...

- Hard => collisions tend to harden them further
- Extremely eccentric => collisions tend to reduce eccentricity, increase coalescence time

PBH binary merger rate

*assuming a log-normal mass function $\psi(m) \propto \exp\left[-\ln^2(m/m_c)/(2\sigma^2)\right]$

PBH binary merger rate

*assuming a log-normal mass function $\psi(m) \propto \exp\left[-\ln^2(m/m_c)/(2\sigma^2)\right]$

*assuming a log-normal mass function $\psi(m) \propto \exp\left[-\ln^2(m/m_c)/(2\sigma^2)\right]$

*assuming a log-normal mass function $\psi(m) \propto \exp\left[-\ln^2(m/m_c)/(2\sigma^2)\right]$

*assuming a log-normal mass function $\psi(m) \propto \exp\left[-\ln^2(m/m_c)/(2\sigma^2)\right]$

best-fit scenarios for the LIGO-Virgo events

Our naive model for astrophysical BH:

- * a power law mass distribution truncated at $3M_{\odot}$ and $55M_{\odot}$
- * z-dependence derived from star formation

CC: the critical collapse mass function $\psi(m) \propto m^{1+1/\gamma} \exp\left[-c_1(m/\langle m \rangle)^{c_2}\right]$

Both populations contain a roughly equal number of events

- Both populations contain a roughly equal number of events
- $R_0 = 0$, i.e., the PBH only scenario disfavoured at 4σ

- Both populations contain a roughly equal number of events
- $R_0 = 0$, i.e., the PBH only scenario disfavoured at 4σ
- a peak on top of the truncated power law favoured at 1.7σ

- Both populations contain a roughly equal number of events
- $R_0 = 0$, i.e., the PBH only scenario disfavoured at 4σ
- a peak on top of the truncated power law favoured at 1.7σ
- more complete astrophysical binary BH models may also contain peaks around 30M_o

Constraints on solar mass PBH

MONOCHROMATIC MASS FUNCTION

LOG-NORMAL MASS FUNCTION

Constraints on solar mass PBH

MONOCHROMATIC MASS FUNCTION

LOG-NORMAL MASS FUNCTION

Constraints on solar mass PBH

MONOCHROMATIC MASS FUNCTION

LOG-NORMAL MASS FUNCTION

SUMMARY

- An astrophysical component must be included when modelling LIGO-Virgo GW events. PBH only scenario is disfavoured.
- Less than 0.2% of PBH DM in the $2-400\,M_{\odot}$ range
- A better understanding of accretion and spins of astrophysical and primordial BH spins needed
- NANOGrav may hint for PBH formation
- PBHs are viable DM candidates in the $10^{-16} 10^{-11} M_{\odot}$ mass range