Dark Monopoles in GUTs

M.L. Deglmann & M.A.C.

Kneipp

JHEP 01 (2019) 013, PLB 806 (2020) 135476

Introduction

- One of the consequences of Grand Unified Theories (GUTs) is that they have topological magnetic monopoles.
- In general, these monopoles have a magnetic charge in the abelian subalgebra of the unbroken group G_{ν} .
- In this work, however, we construct monopoles with vanishing abelian magnetic charge, so that they do not interact with the $U(1)_{em}$ electromagnetic field.

Dark Monopoles Construction

- We consider that the gauge group is G =SU(n) and that it is broken down to $G_{\nu} =$ $[SU(p) \times SU(n-p) \times U(1)]/Z$ by a Higgs field ϕ (adjoint representation) with a vacuum of the form $\phi_0 = v \frac{\lambda_p \cdot H}{|\lambda_p \cdot H|}$, where λ_p is a fundamental weight of the Lie algebra L(G).
- Our ansatz is constructed using an SO(3)subgroup of G, whose generators are called monopole generators, M_i (i =the (1, 2, 3), which are given by a linear combination of step operators of L(G).
- Their mass possess lower and upper **bounds** (similar to the 't Hooft-Polyakov monopole).
- They have a purely non-abelian magnetic flux. The magnetic charge is conserved, quantized and it follows from an asymptotic symmetry of the field configuration.
- Regarding stability, we found unstable modes.

Conclusions

- We expect that our construction can be generalized to other gauge groups.
- These Dark Monopoles must exist in some GUTs and we analyzed the SU(5) case in details.
- cosmological implications of The these monopoles are still an open question.

We have found magnetic monopole solutions (in GUTs) whose magnetic field is not in the direction of electromagnetism.

Some Technical Notes

• Ansatz:

 $\phi($

Asymptotic Magnetic Field:

Numerical Solution for the radial equations f(r)and u(r) for the SU(5) case:

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

• Monopole Mass:

that:

$$W_{i}(\mathbf{r}) = -\frac{[1 - u(r)]}{er} \epsilon_{ijk} n^{j} M_{k},$$

$$\phi(\mathbf{r}) = vS + \frac{2v}{\sqrt{6}|\lambda_{p}|} \sqrt{\frac{4\pi}{5}} f(r) \sum_{m=-2}^{2} Y_{2m}^{*} Q_{m},$$
where

$$M_3 = 2T_2^{ij}$$
,
 $M_1 = 2T_2^{jk}$,
 $M_2 = 2T_2^{ki}$,

with $2T_2^{ij} = -i(E_{ij} - E_{ji})$ while the E_{ij} are the step operators associated with the root α_{ii} . Moreover, Q_m form a quintuplet under the su(2) algebra of M_i , while S is a singlet. In addition, $n^i = \frac{x^i}{r}$.

$$B_i(r o \infty) = -rac{n^i}{er^2} n^a M_a$$

That is, the magnetic field only takes values in the direction of some step operators s.t. $Tr(B_i\phi) = 0$.

$$M=\frac{4\pi\nu}{2}\,\tilde{E}(\lambda/e^2),$$

where $\tilde{E}(\lambda/e^2)$ is a monotonically increasing function of λ/e^2 . In the SU(5) case, we obtained

$$\tilde{E}(0) = 1.294,$$

 $\tilde{E}(\lambda \rightarrow \infty) = 3.262.$

Magnetic Charge: $Q_M = -\frac{8\pi}{e}$.

E-mail Adress: m.l.deglmann@posgrad.ufsc.br.