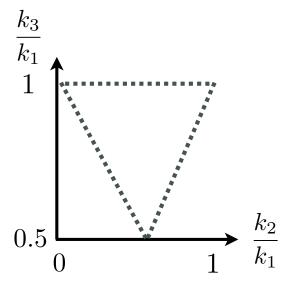
Learning about inflation from the three-point functions

Jorge Noreña Pontificia Universidad Católica de Valparaíso

Outline

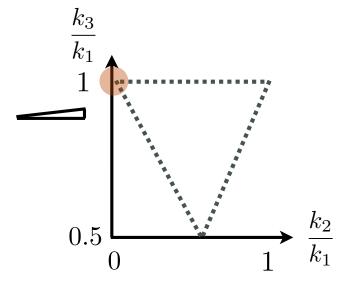
- Non-Gaussianity
- Current and future constraints
- Relativistic galaxy power spectrum and bispectrum

$$\langle \zeta(\vec{k}_1)\zeta(\vec{k}_2)\zeta(\vec{k}_3)\rangle = (2\pi)^3 \delta(\vec{k}_1 + \vec{k}_2 + \vec{k}_3)B(k_1, k_2, k_3)$$



$$\langle \zeta(\vec{k}_1)\zeta(\vec{k}_2)\zeta(\vec{k}_3)\rangle = (2\pi)^3 \delta(\vec{k}_1 + \vec{k}_2 + \vec{k}_3)B(k_1, k_2, k_3)$$

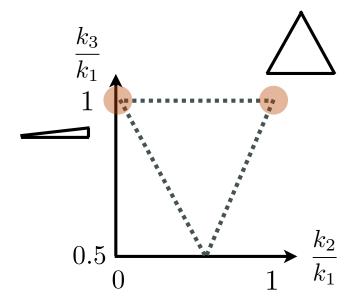
Squeezed limit: $k_1 \ll k_2, k_3$



$$\langle \zeta(\vec{k}_1)\zeta(\vec{k}_2)\zeta(\vec{k}_3)\rangle = (2\pi)^3 \delta(\vec{k}_1 + \vec{k}_2 + \vec{k}_3)B(k_1, k_2, k_3)$$

Squeezed limit: $k_1 \ll k_2, k_3$

Equilateral configurations: $k_1 = k_2 = k_3$

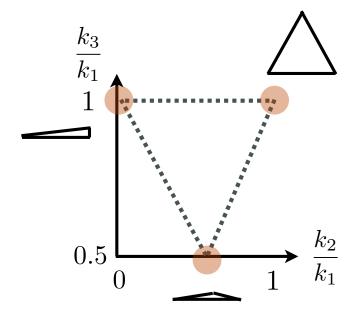


$$\langle \zeta(\vec{k}_1)\zeta(\vec{k}_2)\zeta(\vec{k}_3)\rangle = (2\pi)^3 \delta(\vec{k}_1 + \vec{k}_2 + \vec{k}_3)B(k_1, k_2, k_3)$$

Squeezed limit: $k_1 \ll k_2, k_3$

Equilateral configurations: $k_1 = k_2 = k_3$

Enfolded configurations: $k_1 = 2k_2 = 2k_3$

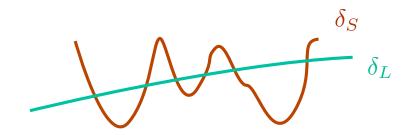


Squeezed limit

The information about the non-linearity of the evolution of the perturbations from inflation all the way to the LSS is contained in higher-order correlation functions

$$\langle \delta(\mathbf{q})\delta(\mathbf{k}_1)\delta(\mathbf{k}_2)\rangle = (2\pi)^3\delta(\mathbf{q} + \mathbf{k}_1 + \mathbf{k}_2)B(q, k_1, k_2)$$

We will be interested in the limit $q \ll k_1, k_2$



$$\langle \delta(\mathbf{q})\delta(\mathbf{k}_1)\dots\delta(\mathbf{k}_n)\rangle \stackrel{q\to 0}{=} \langle \delta(\mathbf{q})\langle \delta(\mathbf{k}_1)\dots\delta(\mathbf{k}_n)\rangle_{\delta_L}\rangle$$

Khouri, Hinterbickler, Hui, Joyce, 2012

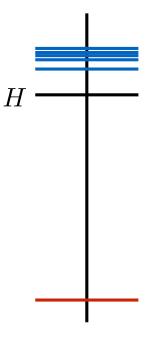
Khouri, Hinterbickler, Hui, Joyce, 2013

Ghosh, Kundu, Raju, Trivedi, 2014

Goldberger, Hui, Nicolis, 2013

The squeezed limit contains model independent information about the physics during inflation

Single field



$$B(q, k_1, k_2) \stackrel{q \to 0}{\sim} \frac{1}{q}$$

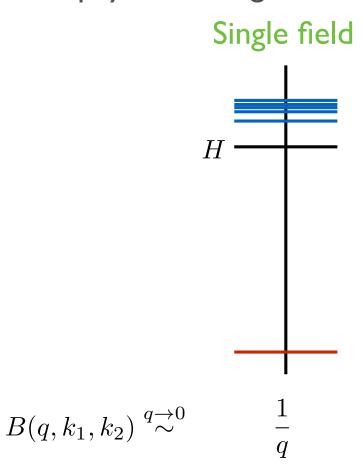
J. Maldacena, 2003

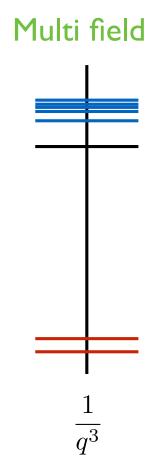
P. Creminelli, M. Zaldarriaga, 2004

P. Creminelli, G. D'Amico, M. Musso, JN, 2011

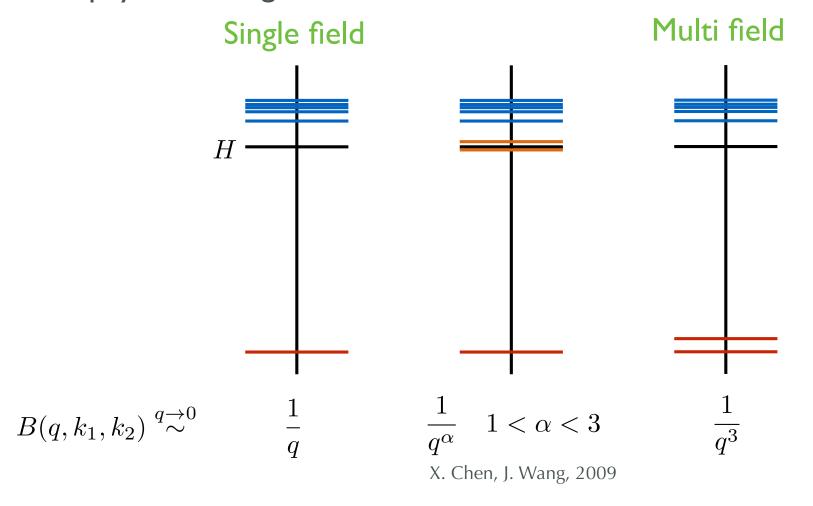
P. Creminelli, JN, M. Simonovic, 2012

The squeezed limit contains model independent information about the physics during inflation





The squeezed limit contains model independent information about the physics during inflation



The squeezed limit contains model independent information about the physics during inflation

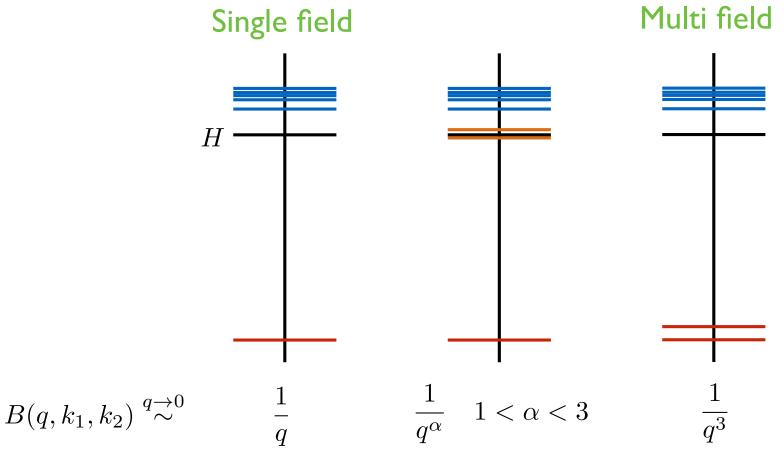
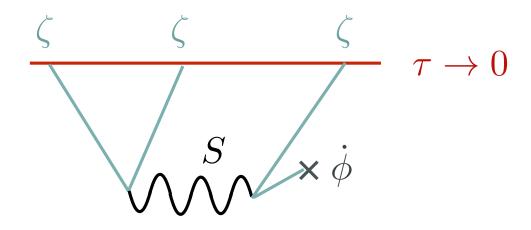


Figure Assassi, Baumann, Green, 2012

Other fields



$$\langle \zeta(q)\zeta(k)\zeta(k)\rangle \sim e^{-\pi\mu} \left[e^{i\delta(\mu)} \left(\frac{q}{k} \right)^{\frac{3}{2}+i\mu} + e^{-i\delta(\mu)} \left(\frac{q}{k} \right)^{\frac{3}{2}-i\mu} \right] P_s(\cos\theta)$$

Characteristic angle dependence

$$\mu = \sqrt{\frac{m^2}{H^2} - \left(s - \frac{1}{2}\right)}$$

J. Maldacena, N. Arkani-Hamed, 2015

H. Lee, D. Baumann, G. Pimentel, 2016

A. Riotto, A. Kehagias, 2017

A. Moradinezhad, H. Lee, J. Muñoz, C. Dvorkin, 2018

L. Bordin, P. Creminelli, A. Khlemintsky, L. Senatore 2018

EFT of Inflation

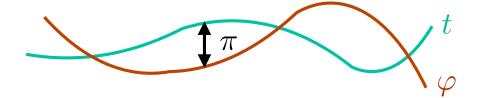
A way of writing the EFT for inflation

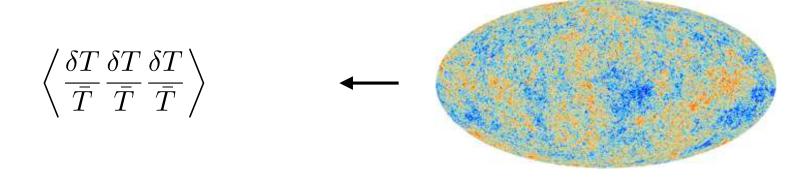
$$\mathcal{L} = -\frac{M_{\rm pl}^2 \dot{H}}{c_s^2} \left(\dot{\pi}^2 \left(-\frac{c_s^2}{a^2} (\partial_i \pi)^2 \right) \right)$$

$$+ \frac{M_{\rm pl}^2 \dot{H}}{c_s^2} (1 - c_s^2) \frac{1}{a^2} \dot{\pi} (\partial_i \pi)^2 + \frac{M_{\rm pl}^2 \dot{H}}{c_s^2} A \dot{\pi}^3$$

I define the field perturbations in the following way

$$\varphi(t, \vec{x}) = \varphi_o(t + \pi(t, \vec{x}))$$

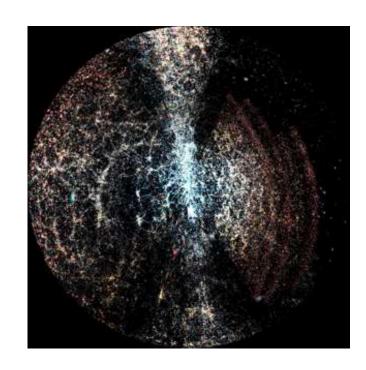




$$\left\langle \frac{\delta T}{\bar{T}} \frac{\delta T}{\bar{T}} \frac{\delta T}{\bar{T}} \right\rangle \qquad -$$

$$\Delta_g = \frac{n_g(z, \hat{n}) - \bar{n}_g(z)}{\bar{n}_g(z)}$$

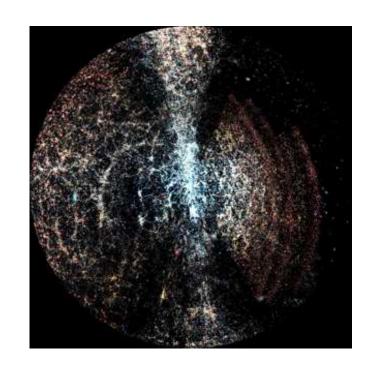
$$\Delta_g \sim \delta_m$$



$$\left\langle \frac{\delta T}{\bar{T}} \frac{\delta T}{\bar{T}} \frac{\delta T}{\bar{T}} \right\rangle \qquad -$$

$$\Delta_g = \frac{n_g(z, \hat{n}) - \bar{n}_g(z)}{\bar{n}_g(z)}$$

$$\Delta_g \sim \delta_m^{"} \sim k^2 \Phi$$
"

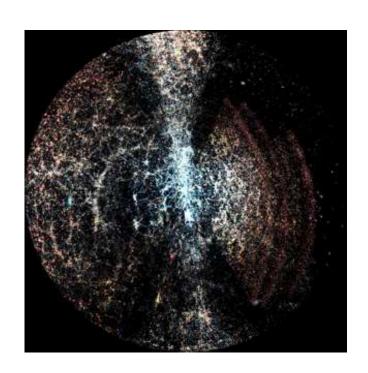


$$\left\langle \frac{\delta T}{\bar{T}} \frac{\delta T}{\bar{T}} \frac{\delta T}{\bar{T}} \right\rangle$$

$$\Delta_g = \frac{n_g(z, \hat{n}) - \bar{n}_g(z)}{\bar{n}_g(z)}$$

$$\Delta_g \sim \delta_m^{"} \sim k^2 \Phi$$
"

$$\langle \Delta_g \Delta_g \Delta_g \rangle$$

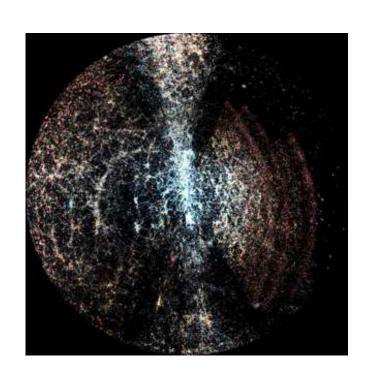


$$\left\langle \frac{\delta T}{\bar{T}} \frac{\delta T}{\bar{T}} \frac{\delta T}{\bar{T}} \right\rangle$$

$$\Delta_g = \frac{n_g(z, \hat{n}) - \bar{n}_g(z)}{\bar{n}_g(z)}$$

$$\Delta_g \sim \delta_m^{"} \sim k^2 \Phi$$
"

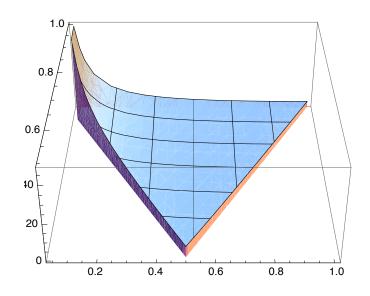
$$\langle \Delta_g \Delta_g \Delta_g
angle$$
 and $\langle \Delta_g \Delta_g
angle$



Consider a phenomenological model:

$$\zeta = \zeta_g + \frac{3}{5} f_{NL}^{local} \zeta_g^2$$

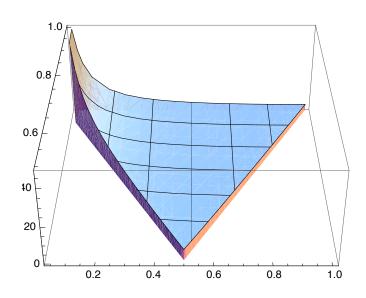
$$F^{local}(k_1, k_2, k_3) = -2\frac{3}{5} f_{NL}^{local} A^2 \frac{1}{k_1^3 k_2^3} + 3 perms.$$



Consider a phenomenological model:

$$\zeta = \zeta_g + \frac{3}{5} f_{NL}^{local} \zeta_g^2$$

$$F^{local}(k_1, k_2, k_3) = -2\frac{3}{5} f_{NL}^{local} A^2 \frac{1}{k_1^3 k_2^3} + 3 perms.$$



shape "Overlap"

$$F_1 \cdot F_2 \equiv \sum_{k_1, k_2, k_3} \frac{F_1(k_1, k_2, k_3) F_2(k_1, k_2, k_3)}{\sigma^2(k_1) \sigma^2(k_2) \sigma^2(k_3)}$$

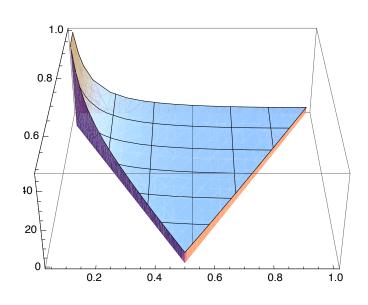
Two shapes are "similar" if they have a cosine of order one.

Data is analyzed for simple shapes.

Consider a phenomenological model:

$$\zeta = \zeta_g + \frac{3}{5} f_{NL}^{local} \zeta_g^2$$

$$F^{local}(k_1, k_2, k_3) = -2\frac{3}{5} f_{NL}^{local} A^2 \frac{1}{k_1^3 k_2^3} + 3 perms.$$



shape "Overlap"

$$F_1 \cdot F_2 \equiv \sum_{k_1, k_2, k_3} \frac{F_1(k_1, k_2, k_3) F_2(k_1, k_2, k_3)}{\sigma^2(k_1) \sigma^2(k_2) \sigma^2(k_3)}$$

Two shapes are "similar" if they have a cosine of order one.

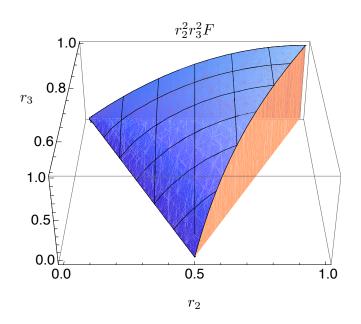
Data is analyzed for simple shapes.

This shape is the one produced by multi-field models.

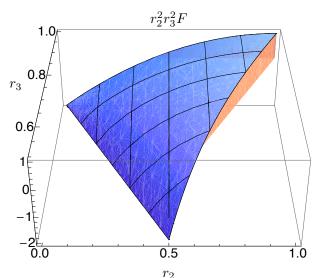
General single field models

Find templates that are like the NG produced by the 2 EFT operators

Equilateral



Orthogonal



Creminelli, 2003 [arXiv: astro-ph/0306122] Cheung et. al., 2008 [arXiv: 0709.0293] Senatore et. al., 2010 [arXiv: 09053746]

(68% CL)

Single-field EFT Equilateral $f_{
m NL}^{equi} = -26 \pm 47$ Orthogonal $f_{
m NL}^{orth} = -38 \pm 24$ Multi-field Local $f_{
m NL}^{loc} = -0.9 \pm 5.1$

$$f_{\rm NL}^{equi} = -26 \pm 47$$

$$f_{\mathrm{NL}}^{orth} = -38 \pm 24$$

Planck collaboration 2019

$$f_{\rm NL}^{loc} = -0.9 \pm 5.1$$

Consistent with single-field

Consistent with single-field $f_{
m NL}^{loc}=\mathcal{O}(0.1)$ and fixed by 2pf

Consistent with single-field $f_{
m NL}^{loc} = \mathcal{O}(0.1)$ and fixed by 2pf

Multi-field predicts $f_{
m NL}^{loc}=\mathcal{O}(1)$ if spectator field. $f_{
m NL}^{loc}=\mathcal{O}(0.1)$ if coupled to inflaton.

Consistent with single-field $f_{
m NL}^{loc} = \mathcal{O}(0.1)$ and fixed by 2pf

Multi-field predicts
$$f_{
m NL}^{loc}=\mathcal{O}(1)$$
 if spectator field. $f_{
m NL}^{loc}=\mathcal{O}(0.1)$ if coupled to inflaton.

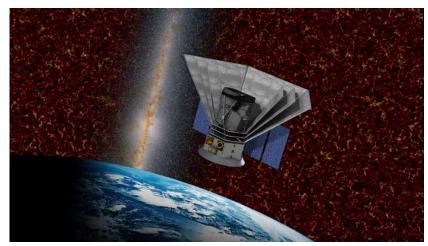
Consistent with weakly coupled inflation

The EFT of inflation teaches us that $f_{
m NL}^{equil} \propto (H/\Lambda)^2$

Current constraints imply $\Lambda \gtrsim \mathcal{O}(10)H$

Future: LSS





The Scale-dependent bias

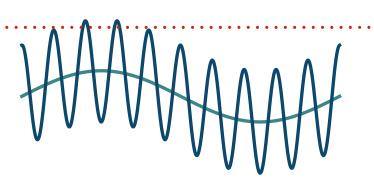
Bias is the connection of galaxies and matter

$$\delta_g = b\delta$$

For the local model:

$$\Phi = \Phi_g + f_{\rm NL} \Phi_g^2$$

Dalal, et. al., 2008 Matarrese, Verde, et. al., 2008 Slosar, et. al., 2008



$$f_{\rm NL} = 0$$

The Scale-dependent bias

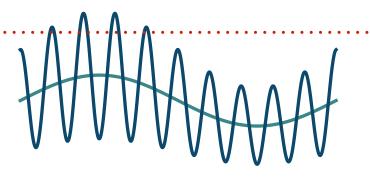
Bias is the connection of galaxies and matter

$$\delta_g = b\delta$$

For the local model:

$$\Phi = \Phi_g + f_{\rm NL} \Phi_g^2$$

Dalal, et. al., 2008 Matarrese, Verde, et. al., 2008 Slosar, et. al., 2008



$$f_{\rm NL} > 0$$

The Scale-dependent bias

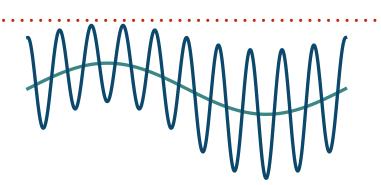
Bias is the connection of galaxies and matter

$$\delta_g = b\delta$$

For the local model: $\Phi = \Phi_g + f_{\rm NL} \Phi_g^2$

$$\Phi = \Phi_g + f_{\rm NL} \Phi_g^2$$

Dalal, et. al., 2008 Matarrese, Verde, et. al., 2008 Slosar, et. al., 2008



$$f_{\rm NL} < 0$$

There is a correlation between Φ and the number of galaxies Δ_q .

$$\langle \Delta_g \Delta_g \rangle \subset \langle \Phi \delta \rangle \sim \frac{1}{k^2} \langle \delta \delta \rangle$$

Sensitive to the squeezed limit!

Forecasts

Karagiannis et. al., 2018

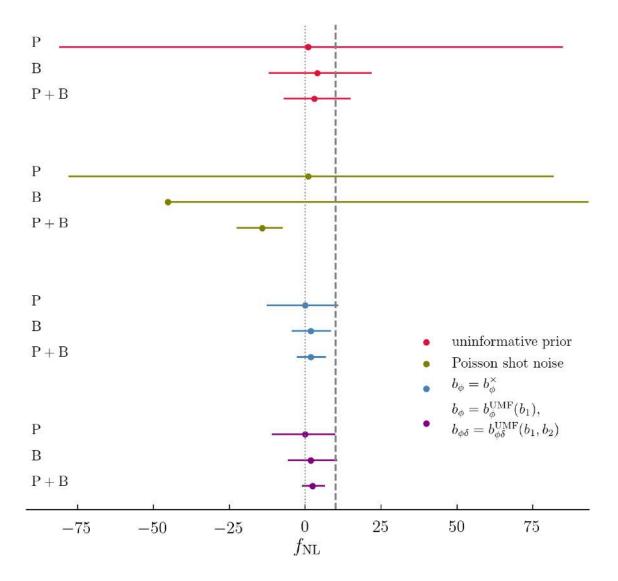
Doré et. al., 2014

	"Euclid-like"	"LSST inspired"	SPHEREX
P	~ 6	~ 1	~ 1
B	~ 6	~ 0.5	~ 0.2
P + B	~ 5	~ 0.5	

Single tracer

Multi tracer

Can we improve on CMB?



No coupling with potential

A homogeneus gravitational potential has no physical meaning

No coupling with potential

A homogeneus gravitational potential has no physical meaning

No coupling with potential

A homogeneus gravitational potential has no physical meaning

A homogeneus gravitational force can be set to zero by going to a freely falling frame

No coupling with potential

A homogeneus gravitational potential has no physical meaning

$$\Phi \to 0$$

A homogeneus gravitational force can be set to zero by going to a freely falling frame

$$\nabla \Phi \to 0$$

$$\vec{V} \to \vec{V} - t \nabla \Phi$$

Exploiting the consistency relation

Express the bispectrum as a series in the soft mode

$$B(q, k, \theta) = \sum_{n} a_n(k, \theta) q^n P(q)$$

Exploiting the consistency relation

Express the bispectrum as a series in the soft mode

$$B(q, k, \theta) = \sum_{n} a_n(k, \theta) q^n P(q)$$

Average over the small-wavelength momenta

$$B(q, k, \theta) = \sum_{n} \bar{a}_{n} q^{n} P(q)$$

Exploiting the consistency relation

Express the bispectrum as a series in the soft mode

$$B(q, k, \theta) = \sum_{n} a_n(k, \theta) q^n P(q)$$

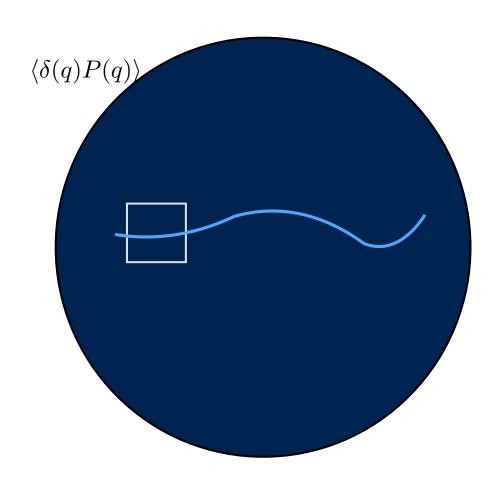
Average over the small-wavelength momenta

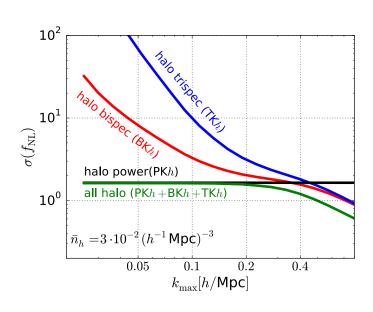
$$B(q, k, \theta) = \sum_{n} \bar{a}_n q^n P(q)$$

Non-perturbative scales.

Few points → Simpler covariance

Position dependent PS





Other techniques

Skew-spectra

Moradinezhad, et. al., 2019

Dai, Verde, Xia, 2020

Topological...

Biagetti, Cole, Shiu, 2020

Reconstruction

Shirasaki, et. al., 2020

However: Projection effects

We observe the number density of galaxies in a direction \hat{n} and a redshift z

$$n_g(z, \hat{n}) = \bar{n}_g(z)(1 + \Delta_g(z, \hat{n})) \qquad \bar{n}_g(z) = \frac{\bar{N}_g(z)}{V}$$

For example, the frequency of the photon is sensitive to Φ

$$\delta z \supset (1+z)(\Phi_e - \Phi_o)$$

The separation between photon propagation and "dynamics" is gauge-dependent.

We observe the number density of galaxies in a direction \hat{n} and a redshift z

$$n_g(z,\hat{n}) = \bar{n}_g(z)(1 + \Delta_g(z,\hat{n})) \qquad \bar{n}_g(z) = \frac{N_g(z)}{V}$$

The distortion in redshift affects our measurement of the average number of galaxies at a given z. Parametrised by

$$e = rac{d \log ar{N}_g}{d \log z}$$
 Evolution bias.

We observe the number density of galaxies in a direction \hat{n} and a redshift z

$$n_g(z,\hat{n}) = \bar{n}_g(z)(1 + \Delta_g(z,\hat{n}))$$
 $\bar{n}_g(z) = \frac{N_g(z)}{V}$

The distortion in redshift affects our measurement of the average number of galaxies at a given z. Parametrised by

$$e = rac{d \log ar{N}_g}{d \log z}$$
 Evolution bias.

→ The coordinate volume is different from the physical volume.

We observe the number density of galaxies in a direction \hat{n} and a redshift z

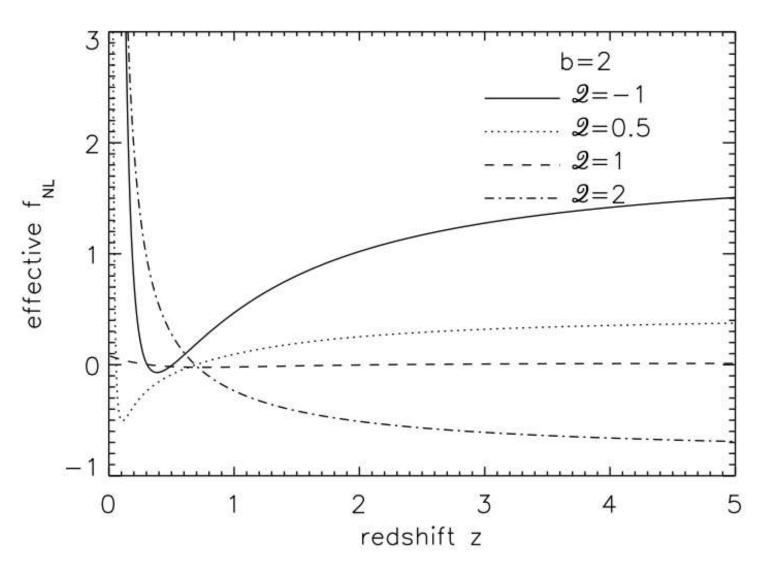
$$n_g(z,\hat{n}) = \bar{n}_g(z)(1 + \Delta_g(z,\hat{n})) \qquad \bar{n}_g(z) = \frac{N_g(z)}{V}$$

The distortion in redshift affects our measurement of the average number of galaxies at a given z. Parametrised by

$$e = rac{d \log ar{N}_g}{d \log z}$$
 Evolution bias.

- → The coordinate volume is different from the physical volume.
- Lensing magnification makes galaxies appear fainter or brighter. At the threshold of observation, some may appear or disappear.

Magnification bias t



Standard steps to compute the bispectrum

→ Expand the metric and stress tensor in perturbations

$$ds^{2} = -(1+2\Phi)dt^{2} + 2\omega_{i}dx^{i}dt + a^{2}((1+2\Psi)\delta_{ij} + \gamma_{ij})dx^{i}dx^{j} \qquad \rho = \bar{\rho}(1+\delta)$$

Standard steps to compute the bispectrum

→ Expand the metric and stress tensor in perturbations

$$ds^{2} = -(1+2\Phi)dt^{2} + 2\omega_{i}dx^{i}dt + a^{2}((1+2\Psi)\delta_{ij} + \gamma_{ij})dx^{i}dx^{j} \qquad \rho = \bar{\rho}(1+\delta)$$

→ Fix a gauge: Poisson:

$$\partial_i \omega_i = 0$$
$$\partial_i \gamma_{ij} = 0$$

$$\partial_i \gamma_{ij} = 0$$

Synchronous-comoving:

$$u^0 = \frac{dx^0}{d\tau} = 1$$

$$\partial_i \gamma_{ij} = 0$$

Standard steps to compute the bispectrum

→ Expand the metric and stress tensor in perturbations

$$ds^{2} = -(1+2\Phi)dt^{2} + 2\omega_{i}dx^{i}dt + a^{2}((1+2\Psi)\delta_{ij} + \gamma_{ij})dx^{i}dx^{j} \qquad \rho = \bar{\rho}(1+\delta)$$

→ Fix a gauge: Poisson:

$$\partial_i \omega_i = 0$$

$$\partial_i \gamma_{ij} = 0$$

Synchronous-comoving:

$$u^0 = \frac{dx^0}{d\tau} = 1$$

$$\partial_i \gamma_{ij} = 0$$

Take all fields to be small, expand Einstein's and fluid equations to second order, and solve. $\delta \sim \Phi \sim v \ll 1$

Bartolo, Matarrese, Verde, ..., ... 2020 Jolicoeur, Umeh, Maartens, Clarkson, 2014 ... 2020, Di Dio, Durrer, Marozzi, Montanari, 2014, 2015 Yoo, ..., 2014 ... 2020

Standard steps to compute the bispectrum

→ Expand the metric and stress tensor in perturbations

$$ds^{2} = -(1+2\Phi)dt^{2} + 2\omega_{i}dx^{i}dt + a^{2}((1+2\Psi)\delta_{ij} + \gamma_{ij})dx^{i}dx^{j} \qquad \rho = \bar{\rho}(1+\delta)$$

→ Fix a gauge: Poisson:

$$\partial_i \omega_i = 0$$

$$\partial_i \gamma_{ij} = 0$$

Synchronous-comoving:

$$u^0 = \frac{dx^0}{d\tau} = 1$$

$$\partial_i \gamma_{ij} = 0$$

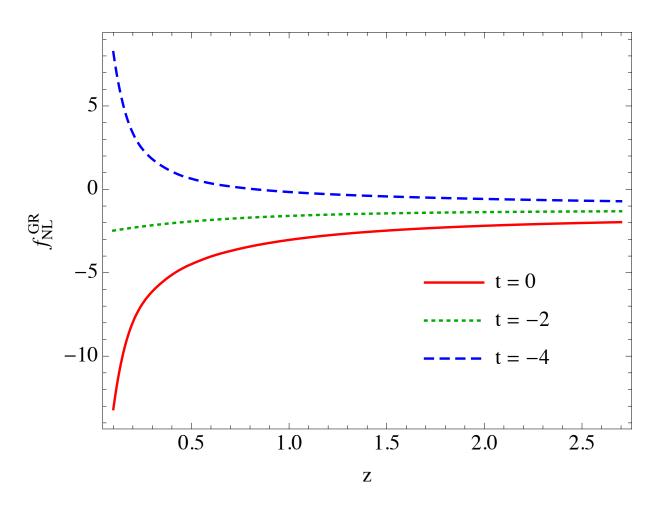
- Take all fields to be small, expand Einstein's and fluid equations to second order, and solve. $\delta \sim \Phi \sim v \ll 1$
- → Solve for the photon geodesic at second order to get lensing and redshift space distortions.

 Bartolo, Matarrese, Verde, ..., ... 2020

Jolicoeur, Umeh, Maartens, Clarkson, 2014 ... 2020, Di Dio, Durrer, Marozzi, Montanari, 2014, 2015
Yoo, ..., 2014 ... 2020

The very squeezed limit

Sum of all terms going like $\langle \Phi \delta \delta \rangle$



A. Kehagias, A. Moradinezhad, JN, H. Perrier, A. Riotto, 2015

The I-loop bispectrum requires 4th order perturbation theory... Seems impossible in GR, but... even on small scales:

$$\Phi \sim \mathcal{O}(10^{-5}) \qquad \vec{v} \sim \mathcal{O}(10^{-3})$$

Density, however, becomes non-linear $\delta = \frac{2k^2}{3a^2H^2}\Phi$

The I-loop bispectrum requires 4th order perturbation theory... Seems impossible in GR, but... even on small scales:

$$\Phi \sim \mathcal{O}(10^{-5}) \qquad \vec{v} \sim \mathcal{O}(10^{-3})$$

$$\Phi \sim \mathcal{O}(10^{-5}) \qquad \vec{v} \sim \mathcal{O}(10^{-3})$$
 Density, however, becomes non-linear
$$\delta = \frac{2k^2}{3a^2H^2}\Phi$$

$$aH \sim 10^{-3}~{\rm Mpc}^{-1}$$

The I-loop bispectrum requires 4th order perturbation theory... Seems impossible in GR, but... even on small scales:

$$\Phi \sim \mathcal{O}(10^{-5}) \qquad \vec{v} \sim \mathcal{O}(10^{-3}) \qquad k \sim 0.1 \, \rm Mpc^{-1}$$
 Density, however, becomes non-linear
$$\delta = \frac{2k^2}{3a^2H^2}\Phi$$

$$aH \sim 10^{-3} \, \rm Mpc^{-1}$$

The I-loop bispectrum requires 4th order perturbation theory... Seems impossible in GR, but... even on small scales:

$$\Phi \sim \mathcal{O}(10^{-5}) \qquad \vec{v} \sim \mathcal{O}(10^{-3}) \qquad k \sim 0.1 \, \rm Mpc^{-1}$$
 Density, however, becomes non-linear
$$\delta = \frac{2k^2}{3a^2H^2} \Phi \sim 1$$

$$aH \sim 10^{-3} \, \rm Mpc^{-1}$$

The I-loop bispectrum requires 4th order perturbation theory... Seems impossible in GR, but... even on small scales:

$$\Phi \sim \mathcal{O}(10^{-5}) \qquad \vec{v} \sim \mathcal{O}(10^{-3}) \qquad k \sim 0.1 \, \rm Mpc^{-1}$$
 Density, however, becomes non-linear
$$\delta = \frac{2k^2}{3a^2H^2} \Phi \sim 1$$

$$aH \sim 10^{-3} \, \rm Mpc^{-1}$$

Let us start by writing equations which are fully non-linear in $\,\delta\,$ but perturbative in $\,\Phi\,$ and $\,\vec{v}\,$.

The I-loop bispectrum requires 4th order perturbation theory... Seems impossible in GR, but... even on small scales:

$$\Phi \sim \mathcal{O}(10^{-5}) \qquad \vec{v} \sim \mathcal{O}(10^{-3}) \qquad k \sim 0.1 \, \rm Mpc^{-1}$$
 Density, however, becomes non-linear
$$\delta = \frac{2k^2}{3a^2H^2} \Phi \sim 1$$

$$aH \sim 10^{-3} \, \rm Mpc^{-1}$$

Let us start by writing equations which are fully non-linear in $\,\delta\,$ but perturbative in $\,\Phi\,$ and $\,\vec{v}\,$.

In other words, take derivatives to be large: $\left(aH/k\ll 1\right)$

The I-loop bispectrum requires 4th order perturbation theory... Seems impossible in GR, but... even on small scales:

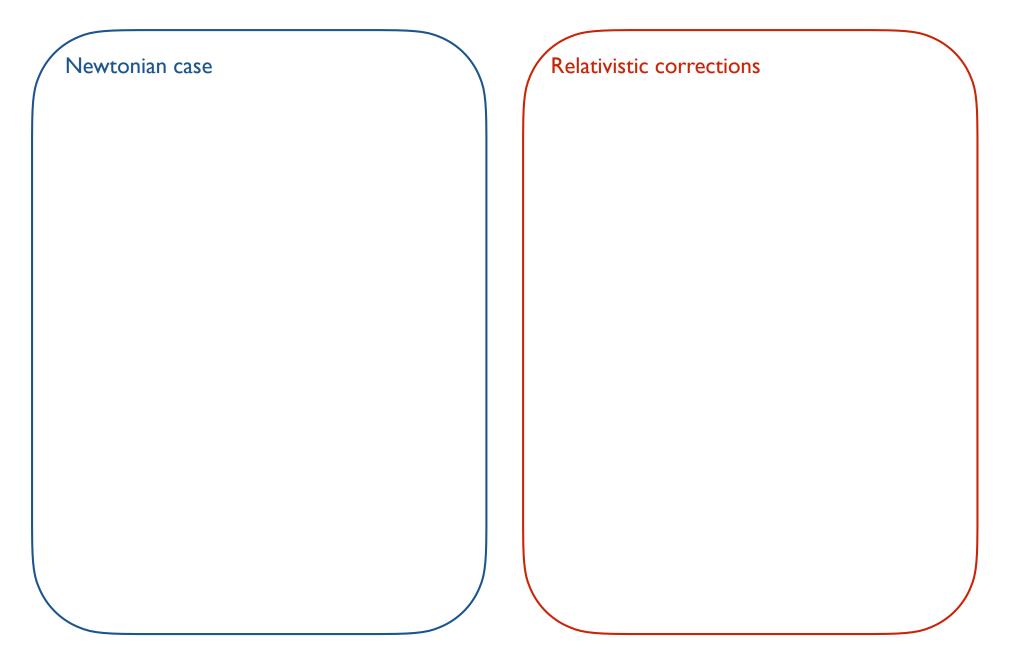
$$\Phi \sim \mathcal{O}(10^{-5}) \qquad \vec{v} \sim \mathcal{O}(10^{-3}) \qquad k \sim 0.1 \, \rm Mpc^{-1}$$
 Density, however, becomes non-linear
$$\delta = \frac{2k^2}{3a^2H^2} \Phi \sim 1$$

$$aH \sim 10^{-3} \, \rm Mpc^{-1}$$

Let us start by writing equations which are fully non-linear in $\,\delta\,$ but perturbative in $\,\Phi\,$ and $\,\vec{v}\,$.

In other words, take derivatives to be large: $\left(aH/k\ll1\right)$

For simplicity take the universe to be Einstein de Sitter.



Newtonian case

It is correct to use linear initial conditions (nonlinearities grow). Relativistic corrections

Newtonian case

It is correct to use linear initial conditions (nonlinearities grow). Relativistic corrections

Now $F_2^R \sim a$, so initial conditions must be fixed at 2nd order.

Newtonian case

It is correct to use linear initial conditions (nonlinearities grow).

The background is fixed

$$\langle \delta(\vec{k}) \rangle = (2\pi)^3 \delta_D(\vec{k}) \int_{\vec{q}} F_2(-\vec{q}, \vec{q}) P(q)$$

$$\lim_{\vec{q}_1 \to -\vec{q}_2} F_2(\vec{q}_1, \vec{q}_2) \propto (\vec{q}_1 + \vec{q}_2)^2$$

$$\implies \langle \delta \rangle = 0$$

Relativistic corrections

Now $F_2^R \sim a$, so initial conditions must be fixed at 2nd order.

Newtonian case

It is correct to use linear initial conditions (nonlinearities grow).

The background is fixed

$$\langle \delta(\vec{k}) \rangle = (2\pi)^3 \delta_D(\vec{k}) \int_{\vec{q}} F_2(-\vec{q}, \vec{q}) P(q)$$

$$\lim_{\vec{q}_1 \to -\vec{q}_2} F_2(\vec{q}_1, \vec{q}_2) \propto (\vec{q}_1 + \vec{q}_2)^2$$

$$\implies \langle \delta \rangle = 0$$

Relativistic corrections

Now $F_2^R \sim a$, so initial conditions must be fixed at 2nd order.

The background must be renormalized

$$\lim_{\vec{q}_1 \to -\vec{q}_2} F_2^R(\vec{q}_1, \vec{q}_2) \propto a^2 H^2$$

Reabsorb $\langle \delta \rangle$ in $\bar{\rho}$.

Newtonian case

It is correct to use linear initial conditions (nonlinearities grow).

The background is fixed

$$\langle \delta(\vec{k}) \rangle = (2\pi)^3 \delta_D(\vec{k}) \int_{\vec{q}} F_2(-\vec{q}, \vec{q}) P(q)$$

$$\lim_{\vec{q}_1 \to -\vec{q}_2} F_2(\vec{q}_1, \vec{q}_2) \propto (\vec{q}_1 + \vec{q}_2)^2$$

$$\Longrightarrow \langle \delta \rangle = 0$$

Relativistic corrections

Now $F_2^R \sim a$, so initial conditions must be fixed at 2nd order.

The background must be renormalized

$$\lim_{\vec{q}_1 \to -\vec{q}_2} F_2^R(\vec{q}_1, \vec{q}_2) \propto a^2 H^2$$

Reabsorb $\langle \delta \rangle$ in $\bar{\rho}$.

Reabsorb $\langle \Phi \rangle$ with \bar{p} .

Conclusions

- Non-Gaussianity is a way to detect the fields active during the very early universe, especially in the soft limit.
- The CMB has already taught us a lot. But we are still far from the natural values expected from theory.
- The LSS has the potential to improve on CMB observations by an order of magnitude.
- GR effects are important if you hope to achieve

$$\Delta f_{\rm NL} \sim \mathcal{O}(1)$$

THE