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Squeezed limit

The information about the non-linearity of the evolution of
the perturbations from inflation all the way to the LSS is
contained in higher-order correlation functions

(6(a)d(k1)d(ko)) = (2m)°6(q + k1 + ko) B(gq, k1, k2)

We will be interested in the limit ¢ < k1, ke
0s

or,

—0

(0(a)d(k1) ... d(kn)) "= (5(a)(S(k1) ... 5(kn))s, )

Khouri, Hinterbickler, Hui, Joyce, 2012 Ghosh, Kundu, Raju, Trivedi, 2014
Khouri, Hinterbickler, Hui, Joyce, 2013 Goldberger, Hui, Nicolis, 2013



Squeezed limit information

The squeezed limit contains model independent information about
the physics during inflation

Single field
—
H
—0 1 J. Maldacena, 2003
B(q, k1, kg) = & P. Creminelli, M. Zaldarriaga, 2004

P. Creminelli, G. D’Amico, M. Musso, N, 2011
P. Creminelli, JN, M. Simonovic, 2012
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Squeezed limit information

The squeezed limit contains model independent information about
the physics during inflation

Single field Multi field
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Assassi, Baumann, Green, 2012



Other fields

T — 0

(i) ~ e [o0 ()74 i (1)1 o
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Characteristic angle dependence

= m? I 1 J. Maldacena, N. Arkani-Hamed, 2015
H? 2 H. Lee, D. Baumann, G. Pimentel, 2016
A. Riotto, A. Kehagias, 2017

A. Moradinezhad, H. Lee, ). Munoz, C. Dvorkin, 2018
L. Bordin, P. Creminelli, A. Khlemintsky, L. Senatore 2018




EFT of Inflation

A way of writing the EFT for inflation

| define the field perturbations in the following way

o(t, T) = po(t + m(t, X)) m t
¥

Cheung, Creminelli, Fitzpatrick, Kaplan, Senatore, 2008
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CMB Constraints

Consider a phenomenological model:

C _ Cg + flocal ;
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CMB Constraints

Consider a phenomenological model:

C _ Cg + flocal ;

1
kyks

Flocal(f kg, ks) = —2= flocal + 3 perms.

‘‘‘‘‘‘

0.2 0.4 0.6 0.8 1.0

shape “Overlap”

> By (K1, ko, k) Fa(k, ko, ks) Two shapes are “similar” if

Fl . Fg = :
ok O (k1)o?(k2)o (ks) they have a cosine of order one.

Data is analyzed for simple shapes.

This shape is the one produced by multi-field models.



CMB Constraints

General single field models

Find templates that are like the NG produced by the 2 EFT operators

Equilateral Orthogonal

r3riF

~ 05 - 1.0

r

2 i Creminelli, 2003 [arXiv: astro-ph/0306122]
Cheung et. al., 2008 [arXiv: 0709.0293]
Senatore et.al., 2010 [arXiv: 09053746]



Single-field
EFT

Multi-field

CMB Constraints

Equilateral

Orthogonal

Local

(68% CL)

equ

equl — _96 + 47

Ri=—38+24

loc
NL —

—0.9 = 5.1

Planck collaboration 2019
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Implications tor theory

Consistent with single-field floe = ©(0.1) and fixed by 2pf

Multi-field predicts fi3 = O(1) if spectator field.

¢ =0(0.1) if coupled to inflaton.

Consistent with weakly coupled inflation
The EFT of inflation teaches us that  fri** o (H/A)?

Current constraints imply AZ O(10)H



Future: LSS




The Scale-dependent bias

Bias is the connection of galaxies and matter 6, = 6

Dalal, et. al., 2008
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The Scale-dependent bias

Bias is the connection of galaxies and matter 6, = b6

Dalal, et. al., 2008

FOI" the IOC&I model: b = (I)g + fNL(I)g Matarrese, Verde, et. al., 2008
Slosar, et. al., 2008

There is a correlation between ® and the number of galaxies A,

1

<A9Ag> C <(I)5> k2

(09)

Sensitive to the squeezed limit!



Forecasts

Karagiannis et. al., 2018 Doré et. al., 2014

“Euclid-like” “LSST inspired”  SPHEREx

P ~ 6 ~ 1 ~ 1
P+ B ~ 9 ~ 0.5

Single tracer Multi tracer



Can we improve on CMB?
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Moradinezhad Dizgah, Biagetti, et. al., 2020
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No coupling with potential

A homogeneus gravitational potential has no physical meaning

b — 0 N A —> S

A homogeneus gravitational force can be set to zero by going
to a freely falling frame

Vo — 0 1
)x/ — NN

V sV -tV

Peloso, Pietroni, 2013 Kehagias, Riotto, 2013 Creminelli, JN, Simonovi€, Vernizzi, 2014



Exploiting the consistency relation

Express the bispectrum as a series in the soft mode
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Exploiting the consistency relation

Express the bispectrum as a series in the soft mode

B(g,k,0) = > an(k,0)q" P(q)

n

Average over the small-wavelength momenta

B(q,k,0) =) anq"P(q)

n

Non-perturbative scales.

Few points — Simpler covariance

Esposito, Hui, Scocimarro, 2019



Position dependent PS

Chiang, Wagner, Schmidt, Komatsu, 2015

10°

o(fxr)

10°}

halo power(PKn)
all halo (PKh +BKR+TKR)

i, =3-107%(h "' Mpc)

0.05 0.1 0.2
Kynax R/ MpC]

04

De Puttter, 2018



Other techniques

Skew-spectra Moradinezhad, et. al., 2019
Dai, Verde, Xia, 2020

TOPOIOgicaI cos Biagetti, Cole, Shiu, 2020

Reconstr’uctlon Shirasaki, et. al., 2020



However: Projection etfects

We observe the number density of galaxies in a direction
and a redshift z

ng(z, ) = ng(2)(1+ Ay(z,0))  fg(z) = N%/(Z)

For example, the frequency of the photon is sensitive to &

525 (14 2)(Be — B,)

The separation between photon propagation and “dynamics” is
gauge-dependent.

Yoo, Fitzpatrick, Zaldarriaga, 2009, Durrer, Bonvin, 2011, Jeong, Schmidt, Hirata, 2011



Relativistic power spectrum

We observe the number density of galaxies in a direction

and a redshift z _
ng(z, ) = ng(2)(1+ Ay(z,0))  fg(z) = N%/(z)

— The distortion in redshift affects our measurement of the
average number of galaxies at a given 2 .Parametrised by
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Relativistic power spectrum

We observe the number density of galaxies in a direction
and a redshift z

ng(z, ) = ng(2)(1+ Ay(z,0))  fg(z) = N%z)

— The distortion in redshift affects our measurement of the
average number of galaxies at a given 2 .Parametrised by

o — dlog Ny Evolution bias.

dlog z

—> The coordinate volume is different from the physical volume.

— Lensing magnification makes galaxies appear fainter or brighter.
At the threshold of observation, some may appear or disappear.

Magnification bias ¢

Yoo, Fitzpatrick, Zaldarriaga, 2009, Durrer, Bonvin, 2011, Jeong, Schmidt, Hirata, 2011



effective f

Relativistic power spectrum

2§
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O 1 2 g 4 5
redshift z

Jeong, Schmidt, Hirata, 2011



Relativistic bispectrum

Standard steps to compute the bispectrum
+ Expand the metric and stress tensor in perturbations

ds* = —(1 4 2®)dt* + 2w;daz'dt + a*((1 + 29)6;; + i )dx'dz?  p = p(1+9)

Bartolo, Matarrese, Verde, ..., ... 2020

Jolicoeur, Umeh, Maartens, Clarkson, 2014 ... 2020,
Di Dio, Durrer, Marozzi, Montanari, 2014, 2015
Yoo, ..., 2014 ... 2020
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Relativistic bispectrum

Standard steps to compute the bispectrum
+ Expand the metric and stress tensor in perturbations

ds* = —(1 4 2®)dt* + 2w;daz'dt + a*((1 + 29)6;; + i )dx'dz?  p = p(1+9)

+ Fix a gauge: Poisson: Synchronous-comoving:
0
diw; =0 u’ = da” =1
dr
divi; =0 9i7ij =0

* Take all fields to be small, expand Einstein’s and fluid equations

to second order, and solve. 5o ® o< 1

+ Solve for the photon geodesic at second order to get lensing and

redshift Space distortions. Bartolo, Matarrese, Verde, ..., ... 2020
Jolicoeur, Umeh, Maartens, Clarkson, 2014 ... 2020,
Di Dio, Durrer, Marozzi, Montanari, 2014, 2015
Yoo, ..., 2014 ... 2020



The very squeezed limit

Sum of all terms going like (®4)
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A. Kehagias, A. Moradinezhad, JN, H. Perrier, A. Riotto, 2015



Castiblanco, Gannouiji, JN, Stahl, 2018

Weak field approximation

The |-loop bispectrum requires 4th order perturbation theory...

Seems impossible in GR, but... even on small scales:

d ~ O(107°) 7~ O(1073)
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Weak field approximation

The |-loop bispectrum requires 4th order perturbation theory...

Seems impossible in GR, but... even on small scales:

~ —5 Y~ -3
O ~ O(1079) T~ 0007 01 Mpe!

: , 2k2
Density, however, becomes non-linear 0 = <I> ~ 1

X
aH ~ 1073 Mpc™*

Let us start by writing equations which are fully non-linear in ¢

but perturbative in ® and v .

In other words, take derivatives to be large: @H [k < 1)

For simplicity take the universe to be Einstein de Sitter.

Green, Wald, 2011, Adamek, Durrer, Kunz, 2014
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Differences with Newtonian case

Nwtonian case \

It is correct to use linear
initial conditions (non-
linearities grow).

The background is fixed
(5(F)) = (2m)%0p(F) / 0

q

im  Fo(q1, @) o (q1 + ¢)°

qd1——q2

= (0) =0
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@vistic corrections \
Now Fy® ~ a, so initial

conditions must be fixed at
2nd order.

The background must be
renormalized

lim FQR(Cfl,(fz) X a2H2

q1——q2

Reabsorb (4) in p.

ﬁbsorb (®) with D. J




Conclusions

Non-Gaussianity is a way to detect the fields active during
the very early universe, especially in the soft limit.

The CMB has already taught us a lot. But we are still far
from the natural values expected from theory.

The LSS has the potential to improve on CMB
observations by an order of magnitude.

GR effects are important if you hope to achieve

Afnn ~ O(1)
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