UNCERTAINTIES IN THE ANTIPROTON FLUX PRODUCED FROM COSMIC-RAY INTERACTIONS AND ITS IMPORTANCE FOR INDIRECT SEARCHES OF DM

Pedro de la Torre Luque, INFN Bari
pedro.delatorreluque@ba.infn.it
04/12/2020
Outline

➢ Propagation and generation of secondary particles

➢ Antiproton production
 • Background of cosmic \bar{p}
 • Primary production hints?

Full uncertainties associated to CR production of antiprotons

Is there any hint of exotic sources of antiproton production?
The basic idea is that primary particles are accelerated in astrophysical sources (namely SNRs) and propagate throughout the Galaxy, occasionally interacting with gas, mainly in the disc of the Galaxy, and there they produce secondary nuclei through spallation.

\[D \propto \frac{1}{\tau_{\text{diff}}} \]

\[J_{\text{pr}} \propto \frac{Q_{\text{pr}}(E)}{D(E)} \]

\[J_{\text{sec}} \propto \frac{Q_{\text{sec}}(E)}{D(E)} \]

\[Q_{\text{sec}} \propto J_{\text{pr}}(E) \sigma(E) \]

\[\frac{J_{\text{sec}}}{J_{\text{pr}}} = \frac{Q_{\text{sec}}}{Q_{\text{pr}}} \sim \frac{\sigma(E)}{D(E)} \]
Two different diffusion coefficients tested:

\[D = D_0 \beta^n \left(\frac{R}{R_0} \right)^\delta \]
Source hypothesis

\[D = D_0 \beta^n \frac{(R/R_0)^\delta}{1 + (R/R_b)^{\Delta\delta/s}} \]
Diffusion hypothesis

Systematic uncertainties in the parametrization of D are small in the region from 1 to 200 GeV.
Markov-chain Monte Carlo analysis

Solved with the **DRAGON** code with cross sections option **DRAGON2** and **Winkler**

https://github.com/cosmicrays/DRAGON2-Beta_version

- Precision of AMS-02 data ~2-5%
- No public release of errors correlation
- Systematic uncertainties from the experiment become progressively more important at very low and very high energies
ANTIPROTON PREDICTIONS

Secondary production from CR interactions

\[q_{\text{CR+ISM}\rightarrow \bar{p}}(T_\bar{p}) = \int_0^\infty dT_\bar{p} 4\pi n_{\text{ISM}} \Phi_{\text{CR}}(T) \frac{d\sigma_{\text{CR+ISM}\rightarrow \bar{p}}}{dT_\bar{p}}(T, T_\bar{p}) \]

Primary production from Dark matter?

\[q_{\bar{p}}^{(\text{DM})}(x, T) = \frac{1}{2} \left(\frac{\rho(x)}{m_{\text{DM}}} \right)^2 \sum_f \langle \sigma v \rangle_f \frac{dN_f^\bar{p}}{dT} \]

Cuoco, Krämer, Kosmeier (2017)
arXiv:1610.03071
Important lack of data
Average uncertainties of data ~ 22%
Parametrizations based on these data and are extrapolated for channels with no existent data
High uncertainties in XSecs \rightarrow High uncertainties in the secondary CRs

$$Q_{sec}(E) \propto \sum_{pr} J_{pr}(E) \sigma_{pr \rightarrow sec}(E)$$

Important lack of data

Average uncertainties of data $\sim 22\%$

Parametrizations based on these data and are extrapolated for channels with no existent data

B production cross sections
Scaling factors are mainly dependent on the secondary-over-secondary ratios.
Scaling factors are mainly dependent on the secondary-over-secondary ratios.
\(\left(\frac{E \, d^3 \sigma}{dp^3} \right)_{pp \rightarrow \bar{p}} = \left(\frac{E \, d^3 \sigma}{dp^3} \right)_{pp \rightarrow \bar{p}}^{\text{prompt}} \cdot 2 + \Delta_{IS} + 2 \Delta_{\Lambda} \)

\[
p + p \rightarrow \{ n \rightarrow \bar{p} \} + X
\]

\[
\Delta_{IS} = \frac{\sigma_{pp \rightarrow n}}{\sigma_{pp \rightarrow \bar{p}}} - 1
\]

Kappl & Winkler, 2019; arXiv:1408.0299

Reinert, Winkler 2017; arXiv:1712.00002
Uncertainties in the cross sections parametrizations of antiproton production estimated to be from 12% to 20% in Korsmeier, Donato, di Mauro 2018 arXiv:1802.03030

\[\tilde{p}/p \] spectrum - Winkler cross sections

\[\tilde{p}/p \] spectrum - Tan & NG cross sections

Winkler, 2017 arXiv:1701.04866v1

OTHER SYSTEMATIC UNCERTAINTIES

Scaling factors uncertainties
- Also related to the inelastic cross sections and the “shape” of the parametrizations
- Estimated to be around ± 5%

Modulation uncertainties
- Force-Field approximation with the Cholis-Hooper-Linden (arXiv:1511.01507) correction
- Neutron monitor (NEWK experiment) + Voyager-01 data
TOTAL UNCERTAINTIES

These results do not have into account:

- Heavy elements (~2%)
- Primary uncertainties
- Correlations in AMS-02 data

The excess found around 10 GeV is not significant even under conservative assumptions.
In conclusion...

• We have seen that using the most recent cross sections of antiproton production, an **evident excess of data** appears over the models, peaking around 10 GeV

• In turn, we have demonstrated that with a careful analysis of the quantities that play an important role in the derivation of the propagation modelling, the **residuals** with respect to the model are **of 10%** in that energy region

• The most important source of uncertainties is related to the **cross sections of antiproton production**

• Finally, an estimation of the total, statistical and systematic, uncertainties makes this **excess of data over model not significant at all**, even with conservative assumptions
THANK YOU FOR YOUR ATTENTION!
The basic idea is that primary particles are accelerated in astrophysical sources (namely supernovae) and propagate throughout the Galaxy, occasionally interacting with gas, mainly in the disc of the Galaxy, and there they produce secondary nuclei through spallation.

\[\vec{\nabla} \cdot \left(-D \nabla N_i - \vec{v}_\omega N_i \right) + \frac{\partial}{\partial p} \left[p^2 D_{pp} \frac{\partial}{\partial p} \left(\frac{N_i}{p^2} \right) \right] = Q_{\text{source}} + \frac{\partial}{\partial p} \left[\dot{p} N_i - \frac{p}{3} \left(\vec{\nabla} \cdot \vec{v}_\omega N_i \right) \right] \]

\[D = D_0 \beta^\eta \left(\frac{R}{R_0} \right)^\delta F(\vec{r}, z) \]

\[J_{\text{sec}} \sim D(E) \sigma(E) \]

\[\Gamma^s_{j \rightarrow i} = \beta_j c n_i \sigma_{j \rightarrow i} N_j \]

Solved with the DRAGON code https://github.com/cosmicrays/DRAGON2-Beta_version
CURRENT SITUATION

Li and Be at the level of B
Discrepancy around 10-11 GeV points to a 80 GeV dark matter particle

Cuoco, Krämer, Kosmeier, 2017; arXiv:1610.03071
SOLAR MODULATION

- Force-Field approximation
- Neutron monitor (NEWK experiment) + Voyager-01 data
- p with the Cholis-Hooper-Linden (arXiv:1511.01507) correction

\[
\Phi_{\text{TOA}}(T) = \frac{2mT + T^2}{2m(T + \frac{Z}{A}\phi) + (T + \frac{Z}{A}\phi)^2} \Phi_{\text{IS}}(T + \frac{Z}{A}\phi)
\]

\[
\phi^\pm(t, \mathcal{R}) = \phi_0(t) + \phi^\pm_1(t) \mathcal{F}\left(\frac{\mathcal{R}}{\mathcal{R}_0}\right)
\]