WIMP Dark Matter in a Type-II Scotogenic model

Roberto A. Lineros

Departamento de Física, Universidad Católica del Norte

Work in collaboration with Mathias Pierre (IFT UAM/CSIC)

arxiv:2011.08195

Workshop on New Trends in Dark Matter
7 to 9 December 2020
Science around Antofagasta

When Dark Matter will be observed?

Atacama Large Millimeter Array

(Probably) The Southern Wide-field Gamma-ray Observatory

Universities with PhD program

Cerro Paranal – Very Large Telescope

LLAMAS

Cherenkov Telescope Array South

Milky Way

Cerro Paranal – Very Large Telescope

Cherenkov Telescope Array South

© V. Gammaldi
The Plan

1. Introduction
2. Dark Matter and Neutrinos
3. The Model
4. Conclusions
The Standard Model

SM matter families

Symmetries
- Lorentz
- SU(3)_c: Color
- SU(2)_L: Isospin
- U(1)_y: Hypercharge

Matter content
- 3 families quarks
- 3 families leptons

Higgs field
- SU(2)_L x U(1)_y → U(1)_EM
- Mass to fundamental particles
Dark Matter

Observations support Dark Matter

- Dynamics of clusters and galaxies
- Structure formation
- CMB anisotropies
- Baryon Acoustic Oscillation

$$\Omega_{DM} h^2 = 0.1196 \pm 0.0031$$
Dark Matter Searches

relic abundance

$$\Omega_{DM} h^2 = 0.1196 \pm 0.0031$$

indirect detection

direct detection

particle collider

astrophysical probes
Neutrinos

The SM predicts zero neutrino mass

Beyond SM physics is required to explain mass spectrum and mixing angles

Forero, Tortola and Valle PRD 90 (2014) 093006
Neutrino mass mechanisms

A large fraction of the models uses the 5-dim *Weinberg operator* to generate *majorana* neutrino masses

\[\mathcal{O}_{5ij} = \frac{1}{\Lambda} (L_i H)^T (L_j H) \]

This operator preserves SM symmetries but it breaks lepton number in 2 units

\[\mathcal{O}_{5ij} = \frac{v^2}{\Lambda} \nu_j \nu_i = M_{ij} \nu_j \nu_i \]
Neutrino mass mechanisms

The most known schemes are see-saw mechanisms

Type-I

\[m_\nu \propto \frac{v^2 y^2}{M_N} \]

Type-II

\[m_\nu \propto \frac{v^2 y\mu}{M_\Delta^2} \]

Type-III

\[m_\nu \propto \frac{v^2 y^2}{M_\Sigma} \]
Radiative seesaw

To connect neutrino mass mechanism and dark matter

(See Restrepo et al. JHEP arxiv:1308.3655)

We focus on scotogenic models:

E. Ma, Phys.Rev.D73:077301,2006

Scotogenic models

DM candidates:

Type I: \(N \eta^0 \eta^A \)

Type III: \(\Sigma^0 \eta^0 \eta^A \)

Fermion singlet

E. Ma, Phys. Rev. D73:077301, 2006

Scalar SU(2) doublet

Type II

Fermion SU(2) triplet

A type-II inspired Scotogenic model

The minimal construction of the model requires:

- 2 scalar triplets
- 2 fermion doublets (vector-like)

DM candidates:

- S_1^0
- \tilde{S}^0
- f^0

CP-even scalar
CP-odd scalar
Dirac fermion

Scalar triplet with hypercharge
Scalar triplet no hypercharge

Vector-like doublet fermion
Charge assignment

<table>
<thead>
<tr>
<th>Field</th>
<th>L_i</th>
<th>f_L</th>
<th>f_R</th>
<th>Δ</th>
<th>Ω</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spin</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Chirality</td>
<td>L</td>
<td>L</td>
<td>R</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>SU(2)$_L$</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>U(1)$_Y$</td>
<td>-1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1</td>
<td>0</td>
<td>1/2</td>
</tr>
<tr>
<td>\mathbb{Z}_2</td>
<td>+1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>+1</td>
</tr>
</tbody>
</table>

The \mathbb{Z}_2 symmetry is the minimal addition to the model, besides the fields.

After considering, neutrino masses, scalar potential minimization and stability, and minimal DM phenomenology.

The DM candidate is only one: S^0_1
The model’s lagrangian

\[\mathcal{L} \supset -y^i_{\Delta} \left(f_R \Delta L_i + \text{h.c.} \right) - y^i_{\Omega} \left(f^c_L i \sigma_2 \Omega L_i + \text{h.c.} \right) - m_f \left(f_L f_R + \bar{f}_R f_L \right) - V_{\text{scalar}} \]

\[V_{\text{scalar}} = -\mu_h^2 |H|^2 + \lambda_h |H|^4 + \frac{m^2_{\Delta}}{2} \text{Tr} [\Delta^\dagger \Delta] + \frac{\lambda_{\Delta}}{4} \text{Tr} [\Delta^\dagger \Delta \Delta^\dagger \Delta] + \frac{\lambda'_{\Delta}}{4} \text{Tr} [\Delta^\dagger \Delta]^2 \]

\[\quad + \frac{m^2_{\Omega}}{4} \text{Tr} [\Omega^\dagger \Omega] + \frac{\lambda_{\Omega}}{16} \text{Tr} [\Omega^\dagger \Omega]^2 + \frac{1}{8} \lambda_{\Delta \Omega} \text{Tr} [\Delta^\dagger \Delta] \text{Tr} [\Omega^\dagger \Omega] \]

\[\quad + \frac{1}{2} \lambda_{H \Delta} H^\dagger \Delta \Delta^\dagger H + \frac{1}{2} \lambda'_{H \Delta} \text{Tr} [\Delta^\dagger \Delta] H^\dagger H + \frac{1}{2} \lambda_{H \Omega} H^\dagger \Omega \Omega^\dagger H \]

\[\quad + \frac{1}{4} s_{\kappa} \kappa \left(H^T \tilde{\Delta} \Omega H + \text{h.c.} \right) \]
Neutrino masses

The scotogenic mechanism in this model gives non-zero mass to 2 neutrino, but one remains massless.

\[m_{ij} = \frac{1}{16\sqrt{2}\pi^2} \left(y_\Delta y_\Omega^j + y_\Omega^i y_\Delta^j \right) m_f F_{\text{loop}}(m_{S_1^0}, m_{S_1^\pm}, m_f) \]

\[m_{\nu_1} = 0 \]

\[m_{\nu_2} = -2\hat{y}_\Delta \hat{y}_\Omega \sin^2(\phi_N) m_f F_{\text{loop}} \]

\[m_{\nu_3} = -2\hat{y}_\Delta \hat{y}_\Omega \cos^2(\phi_N) m_f F_{\text{loop}} \]

\[\phi_N \equiv \arctan \left(\left(\frac{\Delta m_{21}^2}{\Delta m_{32}^2} \right)^{1/4} \right) \]

\[\hat{y}_\Omega \equiv \frac{\sqrt{\Delta m_{21}^2}}{2\hat{y}_\Delta \sin^2(\phi_N) m_f F_{\text{loop}}} \]
Indirect searches channels

The model has many annihilation channels. Among them some are shared with Minimal DM scenarios. However other are genuine due to the scotogenic construction.
Indirect searches: W channel

The ElectroWeak channel are strong due to DM comes from triplets. Beyond ~1.5 TeV, those are not enough to explain DM relic abundance

\[\langle \sigma v \rangle_{W^+W^-} \simeq 5 \times 10^{-26} \text{ cm}^3 \text{s}^{-1} \left(\frac{1.15 \text{ TeV}}{m_{S_1^0}} \right)^2 \]
Indirect searches: tau channel

The interaction due to the scotogenic mechanism produces a large flux into leptons.
Indirect searches: neutrinos

Neutrino flux large enough to be detected in KM3Net

\[\langle \sigma v \rangle_{\nu\nu} \text{ [cm}^3 \text{s}^{-1}] \]

\begin{align*}
\times 10^{-25} & \quad \times 10^{-26} \\
\times 10^{-27} & \quad \times 10^{-28} \\
\times 10^{-29} & \quad \times 10^{-30} \\
\times 10^{-31} & \quad \times 10^{-32} \\
\end{align*}

\begin{align*}
10^3 & \quad \times 10^4 \\
\end{align*}

\text{mS}_0 [\text{GeV}]
Direct detection: Tree-level vs One-loop

Tree-level

Higgs portal

Higgs portal + electroweak loops

Tree-level + one-loop
Conclusions

• Neutrinos observables and DM are keys to unveil New Physics

• Scotogenic mechanism connects DM stability and neutrino masses

• A type-II seesaw inspired scotogenic model provide an interesting TeV DM candidate

• The complementarity between CTA, KM3Net, and Darwin is key to explore the model.
Thanks
Neutrino masses

\[
m_{\nu_1} = 0, \\
m_{\nu_2} = -2\hat{y}_\Delta \hat{y}_\Omega \sin^2(\phi_N) m_f F_{\text{loop}}(m_{S^0_{1,2}}, m_{S^\pm_{1,2}}, m_f), \\
m_{\nu_3} = -2\hat{y}_\Delta \hat{y}_\Omega \cos^2(\phi_N) m_f F_{\text{loop}}(m_{S^0_{1,2}}, m_{S^\pm_{1,2}}, m_f).
\]