

### **Stefano Profumo**

#### University of California, Santa Cruz





ICTP-SAIFR – Workshop on New Trends in Dark Matter – Tuesday December 8, 2020

#### Organizers:

- Nicolás Bernal (Antonio Nariño University, Colombia)
- Josef Pradler (Institute of High Energy Physics, Austria)
- Stefano Profumo (University of California, Santa Cruz, USA)
- Farinaldo Queiroz (International Institute of Physics, Brazil)
- Rogério Rosenfeld (IFT & ICTP-SAIFR, Brazil)



- Why it is interesting to consider PBH as Dark Matter
- > Where it is interesting to look for PBH as Dark Matter
- ...some "NO-SEE-UMS", "SPACE COWS", "PYRAMIDS"

#### Can there be enough PBH around to be the DM?

What is the maximal fraction of dark matter in PBH?



Carr et al, 2017

### The fraction of PBH that could be the dark matter depends on the mass function!



...what is the mathematical function that maximizes the mass fraction of primordial black holes compatibly with constraints?

Carr et al, 2017

### The Maximal-Density Mass Function for Primordial Black Hole Dark Matter



 $\infty$ 

#### Benjamin V. Lehmann, Stefano Profumo and Jackson Yant

Department of Physics, University of California Santa Cruz, 1156 High St., Santa Cruz, CA 95064, USA Santa Cruz Institute for Particle Physics, 1156 High St., Santa Cruz, CA 95064, USA

E-mail: blehmann@ucsc.edu, profumo@ucsc.edu, jyant@ucsc.edu

**Abstract.** The advent of gravitational wave astronomy has rekindled interest in primordial black holes (PBH) as a dark matter candidate. As there are many different observational probes of the PBH density across different masses, constraints on PBH models are dependent and the functional form of the PBH model. This complication probes of the problem of the problem of the problem.

# Answer: with *N* independent constraints, the optimal function is a linear combination of *N* delta functions with calculable relative weights

 $\min \{ \|\mathbf{x}\| \mid \mathbf{x} \in \operatorname{conv} \{ \mathbf{g}(M) \mid M \in U \} \}$ 



# Answer: with N independent constraints, the optimal function is a linear combination of N delta functions with calculable relative weights

#### **Numerical validation**





\* Lehmann, Profumo and Yant, JCAP 2018

|     | $f_{ m mono}$ | $f_{\rm max,all}$ | $f_{ m max,GW}$ | $\sigma[\psi]/M_{\odot}$ | $\langle M/M_{\odot} \rangle$ |
|-----|---------------|-------------------|-----------------|--------------------------|-------------------------------|
| Α   | 27.17         | 27.25             | 2.580           | 2.259                    | 31.09                         |
| AB  | 1.372         | 1.965             | 5.139           | 0.162                    | 0.009                         |
| AC  | 1.371         | 1.443             | 0.566           | 7.294                    | 1.807                         |
| ABC | 1.371         | 1.402             | 2.936           | 0.220                    | 0.015                         |
| Ā   | 0.991         | 1.502             | 2.171           | 4.827                    | 1.492                         |
| ĀΒ  | 0.991         | 1.437             | 11.07           | 0.221                    | 0.017                         |
| ĀC  | 0.330         | 0.484             | 0.364           | 7.963                    | 5.430                         |
| ĀBC | 0.330         | 0.405             | 0.982           | 0.741                    | 0.182                         |

### So YES, depending on the constraints choice, PBH can be 100% of the dark matter!

Is there a **goldilocks** signature of **PBH**?

#### Yes! BH merger with a sub-Chandrasekhar mass (1.4 M<sub>sun</sub>)

LIGO search results are out\*

\* Abbott B., et al., 2019b, Phys. Rev. Lett., 123, 161102

Is there a **goldilocks** signature of **PBH**?

Yes! BH merger with a sub-Chandrasekhar mass (1.4 M<sub>sun</sub>) LIGO search results are out\*

Given a mass function, one can calculate:

1. Rate of "goldilocks events"

$$R_{\rm DP}(\psi) = \int_{\rm DP^2} dm_1 dm_2 \,\mathcal{R}(m_1, m_2) V_{\rm eff}(m_1, m_2),$$

2. Mass fraction of light+detectable BHs

$$r_{\rm DP} = \frac{1}{f_{\rm PBH}} \int_{m_{\rm DP}^{\rm min}}^{m_{\rm DP}^{\rm max}} \mathrm{d}m\,\psi(m).$$

\* Abbott B., et al., 2019b, Phys. Rev. Lett., 123, 161102

### We can numerically compute the maximal and minimal possible "goldilocks event rate"



\* Lehmann, Profumo and Yant, MNRAS

### We can numerically compute the maximal and minimal possible "goldilocks event rate"



\* Lehmann, Profumo and Yant, MNRAS

### We can numerically compute the maximal and minimal possible "goldilocks event rate"



\* Lehmann, Profumo and Yant, MNRAS

### Besides the mass, LIGO informs us about the spin of BHs...

### Besides the mass, LIGO informs us about the spin of BHs...

LIGO/Virgo Collaboration arXiv:1811.12940

| Event    | $m_1/{ m M}_{\odot}$        | $m_2/M_{\odot}$              | $\mathcal{M}/\mathrm{M}_{\odot}$ | $\chi_{ m eff}$                 | $M_{\rm f}/{ m M}_{\odot}$ | $a_{ m f}$                      | $E_{\rm rad}/({\rm M}_{\odot}c^2)$ | $\ell_{\text{peak}}/(\text{erg s}^{-1})$ | $d_L/Mpc$                     | z                               | $\Delta\Omega/deg^2$ |
|----------|-----------------------------|------------------------------|----------------------------------|---------------------------------|----------------------------|---------------------------------|------------------------------------|------------------------------------------|-------------------------------|---------------------------------|----------------------|
| GW150914 | $35.6^{+4.8}_{-3.0}$        | 30.6 <sup>+3.0</sup><br>-4.4 | $28.6^{+1.6}_{-1.5}$             | $-0.01^{+0.12}_{-0.13}$         | $63.1^{+3.3}_{-3.0}$       | $0.69\substack{+0.05\\-0.04}$   | $3.1\substack{+0.4\\-0.4}$         | $3.6^{+0.4}_{-0.4} 	imes 10^{56}$        | $430^{+150}_{-170}$           | $0.09\substack{+0.03\\-0.03}$   | 180                  |
| GW151012 | $23.3^{+14.0}_{-5.5}$       | $13.6^{+4.1}_{-4.8}$         | $15.2^{+2.0}_{-1.1}$             | $0.04^{+0.28}_{-0.19}$          | $35.7^{+9.9}_{-3.8}$       | $0.67\substack{+0.13 \\ -0.11}$ | $1.5^{+0.5}_{-0.5}$                | $3.2^{+0.8}_{-1.7} \times 10^{56}$       | $1060^{+540}_{-480}$          | $0.21\substack{+0.09\\-0.09}$   | 1555                 |
| GW151226 | $13.7\substack{+8.8\\-3.2}$ | $7.7^{+2.2}_{-2.6}$          | $8.9^{+0.3}_{-0.3}$              | $0.18\substack{+0.20 \\ -0.12}$ | $20.5^{+6.4}_{-1.5}$       | $0.74\substack{+0.07 \\ -0.05}$ | $1.0^{+0.1}_{-0.2}$                | $3.4^{+0.7}_{-1.7}\times10^{56}$         | $440^{+180}_{-190}$           | $0.09\substack{+0.04 \\ -0.04}$ | 1033                 |
| GW170104 | $31.0^{+7.2}_{-5.6}$        | $20.1^{+4.9}_{-4.5}$         | $21.5^{+2.1}_{-1.7}$             | $-0.04^{+0.17}_{-0.20}$         | $49.1^{+5.2}_{-3.9}$       | $0.66\substack{+0.08\\-0.10}$   | $2.2^{+0.5}_{-0.5}$                | $3.3^{+0.6}_{-0.9}\times10^{56}$         | 960 <sup>+430</sup><br>-410   | $0.19\substack{+0.07 \\ -0.08}$ | 924                  |
| GW170608 | $10.9^{+5.3}_{-1.7}$        | $7.6^{+1.3}_{-2.1}$          | $7.9^{+0.2}_{-0.2}$              | $0.03^{+0.19}_{-0.07}$          | $17.8^{+3.2}_{-0.7}$       | $0.69\substack{+0.04 \\ -0.04}$ | $0.9^{+0.05}_{-0.1}$               | $3.5^{+0.4}_{-1.3}\times10^{56}$         | $320^{+120}_{-110}$           | $0.07\substack{+0.02 \\ -0.02}$ | 396                  |
| GW170729 | $50.6^{+16.6}_{-10.2}$      | $34.3^{+9.1}_{-10.1}$        | $35.7^{+6.5}_{-4.7}$             | $0.36^{+0.21}_{-0.25}$          | $80.3^{+14.6}_{-10.2}$     | $0.81\substack{+0.07 \\ -0.13}$ | $4.8^{+1.7}_{-1.7}$                | $4.2^{+0.9}_{-1.5}\times10^{56}$         | $2750^{+1350}_{-1320}$        | $0.48^{+0.19}_{-0.20}$          | 1033                 |
| GW170809 | $35.2^{+8.3}_{-6.0}$        | $23.8^{+5.2}_{-5.1}$         | $25.0^{+2.1}_{-1.6}$             | $0.07^{+0.16}_{-0.16}$          | $56.4^{+5.2}_{-3.7}$       | $0.70\substack{+0.08\\-0.09}$   | $2.7^{+0.6}_{-0.6}$                | $3.5^{+0.6}_{-0.9}\times10^{56}$         | $990^{+320}_{-380}$           | $0.20\substack{+0.05 \\ -0.07}$ | 340                  |
| GW170814 | $30.7^{+5.7}_{-3.0}$        | $25.3^{+2.9}_{-4.1}$         | $24.2^{+1.4}_{-1.1}$             | $0.07^{+0.12}_{-0.11}$          | $53.4^{+3.2}_{-2.4}$       | $0.72\substack{+0.07 \\ -0.05}$ | $2.7^{+0.4}_{-0.3}$                | $3.7^{+0.4}_{-0.5}\times10^{56}$         | $580^{+160}_{-210}$           | $0.12\substack{+0.03 \\ -0.04}$ | 87                   |
| GW170817 | $1.46^{+0.12}_{-0.10}$      | $1.27^{+0.09}_{-0.09}$       | $.186^{+0.00}_{-0.00}$           | $0.00^{+0.02}_{-0.01}$          | ≤ 2.8                      | ≤ 0.89                          | ≥ 0.04                             | $\geq 0.1 \times 10^{56}$                | $40^{+10}_{-10}$              | $0.01\substack{+0.00\\-0.00}$   | 16                   |
| GW170818 | 35.5+7.5                    | $26.8^{+4.3}_{-5.2}$         | $26.7^{+2.1}_{-1.7}$             | $-0.09\substack{+0.18\\-0.21}$  | $59.8^{+4.8}_{-3.8}$       | $0.67\substack{+0.07 \\ -0.08}$ | $2.7^{+0.5}_{-0.5}$                | $3.4^{+0.5}_{-0.7}\times10^{56}$         | $1020\substack{+430 \\ -360}$ | $0.20\substack{+0.07 \\ -0.07}$ | 39                   |
| GW170823 | $39.6^{+10.0}_{-6.6}$       | $29.4_{-7.1}^{+6.3}$         | $29.3^{+4.2}_{-3.2}$             | $0.08\substack{+0.20\\-0.22}$   | $65.6^{+9.4}_{-6.6}$       | $0.71\substack{+0.08 \\ -0.10}$ | $3.3^{+0.9}_{-0.8}$                | $3.6^{+0.6}_{-0.9}\times10^{56}$         | $1850^{+840}_{-840}$          | $0.34\substack{+0.13 \\ -0.14}$ | 1651                 |
|          |                             |                              |                                  |                                 |                            |                                 |                                    |                                          | A DECK OWNER                  |                                 |                      |

Masses



Slide credit: Nico Fernandez (UCSC  $\rightarrow$  UIUC)

Spin

# Effective Spin

 $\vec{J} = \vec{L} + \vec{S}$ 

 $=\vec{S_1}+\vec{S_2}$ 

 $heta_{
m LS}$ 

 $\vec{L}$ 

 $\chi_{ ext{eff}}$ 



Dimensionless spin parameter

$$\chi_{\rm eff} = \frac{m_1 \chi_1 \cos \theta_1 + m_2 \chi_2 \cos \theta_2}{m_1 + m_2}$$

Information about:

- Direction. +++
- Spin magnitude. ++
- masses. +

## Effective Spin = 1



Most black holes from stellar binaries probably start off with their spins aligned

## Effective Spin = 0



Spins are essentially isotropic in the dynamical formation scenario. Binary was probably formed in a cluster

## Effective Spin = 0



Spin magnitudes are close to zero (expected from PBHs).

## Effective Spin = -1



Both spins are anti-aligned with its orbit (rare)

### **Magnitude Spin Priors**



# Model Selection

- Spin magnitude: Low (L), Flat (F), High (H) and PBH
- Spin orientations: Isotropic (I) and Aligned (A)
- Example:

FI = Flat spin magnitude and isotropic spins (LIGO)FA = Flat spin magnitude and align spins

### **Effective Spin Priors**





### Evolution of the Odds ratios



### Evolution of the Odds ratios



**Truth: Low-isotropic** 

### What about mixed models?

### What about mixed models?





### Assuming an initial spin and alignment distribution, one can compute the "best-fit" axion mass

Similarly, spin measurements can put constraints on axion-like particles



### **Regge** plot (effective spin vs mass) assuming Flat priors for both mass and spin\*

\*Fernandez, Ghalsasy, Profumo, 1911.07862



\*Fernandez, Ghalsasy, Profumo, 1911.07862



#### **Posterior Probability for ALP mass**

\*Fernandez, Ghalsasy, Profumo, 1911.07862





#### SUBARU HSC microlensing, 1701.02151 VERSION 1



SUBARU HSC microlensing, 1701.02151 VERSION 2: wave effects

\* Katz et al, 1807.11495



SUBARU HSC microlensing, VERSION 3: finite source AND wave effects

...but assuming all stars have  $R = R_{sun}$  !

...but are these bounds robust?

A few (worrisome) assumptions:

> All stars are at the same distance

> All stars have the same size (1 R<sub>sun</sub>)

DM is completely smooth

\* Smyth, Profumo et al, 1910.01285, PRD



### Sun-like stars are however too dim for HSC!





Stars that contribute to the microlensing constraints are ~ 100x larger in the sky than the Sun!









\* Profumo, Smyth+ PRD 2020



### How do we go after them? Capture and perturbation around PSR?

### Lightest PBH that can be dark matter...

$$\tau(M) \simeq 200 \ \tau_U \left(\frac{M}{10^{15} \text{ g}}\right)^3 \simeq 200 \ \tau_U \left(\frac{10 \text{ MeV}}{T_H}\right)^3$$

are ~ asteroid/comet/PYRAMID mass
 can't be much hotter than 10 MeV





### **Our new COMPTEL constraints are among strongest/robust**



**New MeV Telescopes could discover Hawking evaporation!** 



### New MeV Telescopes could discover Hawking evaporation!



\* \*\*\*\*

## ...even if PBH are NOT the dark matter, they can PRODUCE the dark matter via Hawking evaporation!



### John Tamanas

| Country       | WCA ID     | Gender | Competitions |
|---------------|------------|--------|--------------|
| United States | 2007TAMA02 | Male   | 41           |

#### **Current Personal Records**

| Event               | NR   | CR   | WR   | Single  | Average |
|---------------------|------|------|------|---------|---------|
| 3x3x3 Cube          | 330  | 424  | 1485 | 8.16    | 10.13   |
| 2x2x2 Cube          | 195  | 265  | 901  | 1.55    | 3.49    |
| 4x4x4 Cube          | 1115 | 1644 | 7465 | 51.91   | 58.40   |
| 5x5x5 Cube          | 1654 | 2403 | 9997 | 2:28.52 | 2:43.81 |
| : 3x3x3 Blindfolded | 666  | 900  | 4609 | 5:47.28 |         |



## ...even if PBH are NOT the dark matter, they can PRODUCE the dark matter via Hawking evaporation!

| Mass (g)              | $T_H (\text{GeV})$   | au (s)                            | $T_{\rm evap} = T(\tau) \; ({\rm GeV})$ |
|-----------------------|----------------------|-----------------------------------|-----------------------------------------|
| $5M_P \simeq 10^{-4}$ | $1.7 \times 10^{17}$ | $10^{-41}$                        | $2 \times 10^{17}$                      |
| 1                     | $1.7 \times 10^{13}$ | $4 \times 10^{-29}$               | $2 \times 10^{11}$                      |
| $10^{3}$              | $1.7 \times 10^{10}$ | $4 \times 10^{-20}$               | $6 	imes 10^6$                          |
| $10^{6}$              | $1.7 \times 10^7$    | $4 \times 10^{-11}$               | 200                                     |
| $10^{9}$              | $1.7 	imes 10^4$     | 0.04                              | 0.006                                   |
| $10^{12}$             | 17                   | $4 \times 10^7 \sim 1 \text{ yr}$ | $\sim 1 \ {\rm keV}$                    |

#### \* Morrison, Profumo and Yu (JCAP, 2019)



## Dark Matter can be a mix of Planck-scale relics from PBH evaporation, and stuff the PBH evaporated into!



#### \* Morrison, Profumo and Yu (JCAP, 2019)

As BH approach the Planck scale, they can acquire a significant relic electric charge

(under simple assumptions)  $P(Q) \sim \exp(-4\pi\alpha(Q/e)^2)$ the relic charge is approximately Gaussian\*  $(8\pi\alpha)^{-1/2} \approx 2.34$ 

If evaporation stops around the Planck scale (because of extremality, or because of quantum gravity) we are left with a population of charged, Planck-scale relics!

\* Page, 1977

\*\* Lehmann, Johnson, Profumo and Schwemberger, 1906.06348



\* Lehmann, Johnson, Profumo and Schwemberger, 1906.06348



\* Gaspari, Lehmann, Profumo, in preparation



 ✓ Microlensing a lot trickier than previously thought!
 ✓ Detection strategies? PTA?



# ✓ Best constraints: COMPTEL✓ Future MeV telescopes



✓ Decays can produce DM,
 BAU, Planck relics



# ✓ Likely (partly) charged✓ Detectable!

In the era of gravitational wave astronomy, the physics of macroscopic DM candidates offers many opportunities for the ingenuity of theorists and the craft of observers



### Merger rate calculation (Cheng+Huang, 2018; Raidal +, 2017)

$$\tilde{\tau}(m_1, m_2, m_3) = \frac{348}{85} \frac{\alpha^4 \beta^7 a_{\rm eq}^4 m_3^7 \tilde{x}(m_1, m_2)^4}{G^3 m_1 m_2 (m_1 + m_2)^8}.$$

$$\begin{aligned} \mathcal{G}(\psi; \ m_1, m_2, m_3) &= \Gamma\left(\frac{58}{37}, \ \frac{\tilde{N}(\psi; \ m_1, m_2) \ t^{3/16}}{\tilde{\tau}(m_1, m_2, m_3)^{3/16}}\right) \\ &- \Gamma\left(\frac{58}{37}, \ \frac{\tilde{N}(\psi; \ m_1, m_2) \ t^{-1/7}}{\tilde{\tau}(m_1, m_2, m_3)^{-1/7}}\right), \end{aligned}$$

$$\begin{aligned} \mathcal{R}(m_1, m_2) &= \frac{9\bar{m}(\psi)^3 \tilde{N}(\psi; m_1, m_2)^{\frac{53}{37}}}{296\pi\delta_{\rm dc}\tilde{x}(m_1, m_2)^3 t^{34/37}} \\ &\times \frac{\psi(m_1)\psi(m_2)}{m_1m_2} \int {\rm d}m_3 \, \frac{\mathcal{G}(\psi; m_1, m_2, m_3)}{\tilde{\tau}(m_1, m_2, m_3)^{3/37}} \frac{\psi(m_3)}{m_3}. \end{aligned}$$

